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Abstract. Artificial intelligence (AI) has shown great promise for diag-
nostic imaging assessments. However, the application of Al to support
medical diagnostics in clinical routine comes with many challenges. The
algorithms should have high prediction accuracy but also be transpar-
ent, understandable and reliable. Thus, explainable artificial intelligence
(XAI) is highly relevant for this domain. We present a survey on XAI
within digital pathology, a medical imaging sub-discipline with particu-
lar characteristics and needs. The review includes several contributions.
Firstly, we give a thorough overview of current XAI techniques of po-
tential relevance for deep learning methods in pathology imaging, and
categorise them from three different aspects. In doing so, we incorporate
uncertainty estimation methods as an integral part of the X AT landscape.
We also connect the technical methods to the specific prerequisites in
digital pathology and present findings to guide future research efforts.
The survey is intended for both technical researchers and medical pro-
fessionals, one of the objectives being to establish a common ground for
cross-disciplinary discussions.
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1 Introduction and Motivation

1.1 Background

Artificial intelligence (AI) applications are showing great promise for assisting
diagnostic tasks in medical imaging. Nevertheless, it is difficult to translate the
technology from academic experiments to clinical use. A central challenge for
AT in medicine is that mistakes can have serious consequences. This means that
human experts must be able to gauge the trustworthiness of machine predictions,
and put it into the context of other diagnostic information. This is the purpose
of explainable artificial intelligence (XAI) techniques. XAI research embraces
the insight that AI solutions should not only have high accuracy performance,
but also be transparent, understandable and reliable from the end user’s point
of view.

* This work was supported by the Swedish e-Science Research Center.
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This survey investigates XAl in the domain of digital pathology. The adoption
of digital microscopy, whole-slide imaging (WSI), at clinical pathology depart-
ments is progressing at a fast pace in many parts of the world. A key motivation
for this investment is the potential to use Al assistance for image analysis tasks.
XATI has been described as an essential component to make AI successful in
imaging diagnostics [63], and we argue this is particularly pertinent for digital
pathology. For example, assume that a pathologist is faced with an Al result
marking a WSI region as “benign tumour”, whereas the pathologist deemed it
as probably malignant. It is easy to see how the pathologist would need further
information on the rationale of the machine prediction in order to accept or
reject the result that was in conflict with his/her own initial assessment.

There are several motivations to specifically target XAl for digital pathology,
as we do in this survey. XAl has so far been dominated by the explainability
tailored for AI developers, whereas the needs of pathologists and other medical
professionals are distinctly different, as will be described below. Pathology is
also quite different from other medical imaging. Gigapixel images are the norm,
which are visually scrutinised on many scales. The characteristics of the large
histology “landscapes” are very different both from photos such as in ImageNet
and from radiological images. We believe that describing the XAI prerequisites
in pathology will be valuable for informing much needed future research efforts
in this domain.

This survey is a niched drill-down complementing previous more general re-
views. There are broad XAI overviews [1} 24} [36], [42] [74], and more specialised
reviews such as for Convolutional Neural Network (CNN) methods [122]. A few
efforts discuss the potential of XAI for medicine in general [44] [1T4].

There are several specific contributions in our survey. We have elicited a
classification of XAI techniques from three separate aspects: explanation target,
result representation, and technical approach. We have identified previous XAl
efforts with relevance for digital pathology, most of them not applied to this do-
main yet, and categorise them into the defined classes. Estimation and visualisa-
tion of uncertainty are sometimes treated as a topic separate from explainability.
We echo previous researchers arguing against such a separation [4, [44] [109] and
incorporate uncertainty methods as an inherent part of the XATI overview in this
review. Finally, based on an analysis of the survey outcome, we provide some
key findings that could guide future research efforts to solve XAI challenges in
digital pathology. We believe that this paper is suitable for both technical re-
searchers and medical domain professionals. For example, the categorisation is
made with both target groups in mind, where result representation and explana-
tion target are of interest to the medical experts, whereas the technical approach
is separated into an isolated group. Thus, we believe that the survey can assist
in understanding across the disciplines by providing a joint structure as a base
for discussions.

Our survey places the focus on image recognition tasks as most Al algorithms
in digital pathology work with image data. Therefore, all methods described in
this survey are applicable for CNN models as, currently, this is the state-of-



Survey of XAI in digital pathology 3

the-art in digital pathology. We use the terms Al tools, Al solutions and Al
algorithms interchangeably.

1.2 Al in pathology

The workload for pathologists is predicted to increase continuously due to the
ageing population, shortage of physicians, increased cancer screening programimes
and increased complexity of diagnostic tests [06]. One way of addressing this
problem is to introduce digital pathology; that is, new workflows and tools based
on the digitisation of microscopy images [I13]. The possibility to add assistive
AT tools is a major component of the foreseen improvements. As a foundation
for our discussion on XAI, we will in this section first provide a brief overview
of some important types of Al use cases for the clinical routine setting of digital
pathology. For more exhaustive overviews of applied AI research in this area,
we refer to previous review efforts [IT], 2], [96], and for an introduction to the
diagnostic work of a pathologist, we refer to [8§].

A common diagnostic task in pathology is to detect the existence of cancer.
Thus, Al development efforts are often directed towards assisting the tumour
detection process. One improvement aspect is to make the search more efficient.
Since the lesions may be just a handful of cells in a sea of normal tissue, it can
be very time-consuming to locate them. For some scenarios the search can stop
when a first lesion is found, meaning that normal/benign cases are the most
time-consuming as the search then covers the entire sample. Metastasis detec-
tion in breast cancer lymph nodes is a common Al research application [26] [64].
The other task aspect is to determine whether a finding actually is malignant
or not, and often this includes performing a subtype classification of the cancer
in question. Hlustrative Cresearch efforts in this subarea include a tool for de-
tection and subtype classification of gliomas and non-small-cell lung carcinomas
[45], classification of gastric carcinoma [97], and malignancy prediction in breast
cancer cytology [35].

Detection tools could also help to reorganise the worklist of a pathologist so
that the cases with a high risk of malignant tumours would be prioritised. Apart
from tumours, potential detection tasks for Al include needle-in-a-haystack searches
for tuberculosis or helicobacter pylori bacteria [71].

In the diagnostic work-up of oncology cases, the pathologist typically provides
further granularity in the analysis in the form of grading and staging assessments.
These assessments often suffer from poor inter-observer reproducibility as well
as high time consumption, making Al assistance attractive. In breast cancer,
quantification of cell proliferation is part of the grading. Detecting and counting
mitotic cells is a common target for Al methods [9, [I8, [I15]. AI solutions are
commonly employed also for other cell quantification in breast cancer diagnos-
tics, regarding positive nuclei in sections stained through immunohistochemistry
(THC) [5], 411, 48] [76], [117]. Quantified IHC analysis is relevant to predict response
for many targeted treatments, with active research efforts in AI method devel-
opment. Important examples include detection of positive cell membranes in the
PD-L1 [56] and HER2 [92] stains.
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The Gleason score is used to stage prostate cancer by assessing the extent
of different architectural patterns of a tumour. This analysis has been in focus
for applied Al research [6] [75] and recent larger studies show results on par with
human experts [14], [106].

Another cell identification task is to count lymphocytes, which for example
is important for predicting treatment response for immunotherapy on cancer
patients. Deep learning methods have shown the potential to provide support
for this diagnostic task as well [19, [34] [T08].

A pathologist’s assessment can be underpinned by other more generic quan-
tification where Al could contribute to higher efficiency. This is relevant for area
measures such as tumour/stroma ratio or tumour necrosis rate, and potentially
for automation of distance measurements such as tumour thickness in skin cancer
and the margin from the tumour to the resection border.

Apart from the tasks described above, neural networks have the potential
to be used for content-based image retrieval (CBIR) to find previous cases with
similar histology patterns as the patient at hand. This can not only assist the
daily work of a pathologist but also improve the education of new physicians
[58]. Deep learning has been employed for this purpose, both in research [I5]
and in a commercial application [47].

Overall, deep learning is a flexible approach that can be used to assist pathol-
ogists in many different aspects of their work. However, the path from promising
AT models to actual clinical usage is very challenging. We argue that a key part
of meeting that challenge is to develop effective and tailored X AT methods. Next,
we will drill down into the specific needs of XAI in this domain.

1.3 Needs of XAI in digital pathology

XATI serves different purposes depending on the role of the person receiving the
explanation, and depending on the reason for interacting with the Al technology.
In digital pathology for clinical use we see three main scenarios, having quite
different characteristics (Figure . The arguably most common target for XAl
is to assist the Al developer working to create or improve the model, which of
course is relevant also in this domain. The second scenario is when the clinical
end user, typically the pathologist, employs an AI solution in the diagnostic
routine. The third XAI target area, perhaps less considered than the others, is
healthcare professionals doing quality assurance (QA) of AT solutions. This role
may be taken by pathologists or other medical staff, but we may also see data
scientists entering the diagnostic departments to carry out such assignments. QA
can correspond to initially assessing how well an algorithm performs at the lab
in question, for calibrating or configuring the solution to fit local characteristics,
to evaluate if there is a drift in performance over time, and more.

The AI developer perspective on XAI needs is fairly generic, at the concep-
tual level it is the same in digital pathology as in other application areas. We
will give an outline here, while further details can be found in the survey by
Hohman et al. [42]. Explainability is a key component to support the developer
in improving the performance of the trained model. For example, studying er-
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Fig. 1. Overview of the three main scenarios in digital pathology where XAI methods
are relevant.

roneous predictions is effective for evaluating the next development steps to be
taken. Prediction accuracy aside, the developer also benefits from X AT analysing
the generalisability of the results; is the training data, including augmentations
made, representative for wider use, and is there any bias to consider? As collect-
ing and preparing data could be very laborious, often including human experts
spending many hours annotating images, the collection may not have sufficient
coverage for the intended application. For instance, if there are many classes to
separate, some of them may have too few examples in the data collected.

For the routine diagnostic use of AI solutions, there are many situations
where explainability would be beneficial. In fact, we argue that effective XAI
is essential for broad successful deployment of computational pathology in the
clinical environment.

For a physician using Al assistance, a main task is to spot and correct any
errors made by the algorithm. XAI would then provide assistance to critically
assess the result. The typical ML model always predicts one of its predetermined
outcomes, even if the evidence is lacking for any of the alternatives. An important
aspect is therefore to convey the uncertainty of the prediction made. This is
particularly useful when there is not a black-or-white assessment to be made,
but a conclusion from a complex set of contributing factors.

The physician would likely also benefit from a deeper understanding of the
source of the AT tool’s limitations in the context it is used. For models trained
by supervised learning, the representativeness of the training data in relation
to the local data characteristics is a key factor, i.e. its ability to generalise.
Image differences due to e.g. staining variations is a well-known challenge in
computational pathology [105] [IT1], creating a domain gap between the training
data and the data used for inference. There may also be discrepancies in the
definition of the diagnostic task trained for and the local diagnostic protocol.
Such problems makes it important to highlight when the diagnosis provided by
an Al application cannot be trusted due to a lack in its ability to generalise to
the current situation.

Achieving the above transparency is useful for making correct conclusions
for individual cases, but also to allow the medical professionals to gain trust in
the solution in general. Such trust is necessary in order to arrive at an effective
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division of labour between man and machine. Powerful XAl can, however, induce
too high levels of trust, counteracting the objective of critical assessment [49].
Therefore, XAI methods should be carefully designed to provoke sound reflection,
rather than just creating blind trust.

An additional benefit of explainable Al predictions is for teaching. Whereas it
today is very difficult to verbalise the complex assessments a senior pathologist
does [44], XAI visualisations may be able to better convey such knowledge.
Furthermore, there is a direct connection to medical research, as XAI may help
uncover previously unknown disease characteristics.

In digital pathology, Al researchers face the challenge of dealing with very
large data sets, typically gigapixel images. Diagnostic pathology assessments
almost always include considering small-scale and large-scale features in tandem,
and computational pathology needs to do the same. This is a particular challenge
for XAI as well. An Al prediction will likely need to be explained both at local
cellular level and at a higher tissue structure level.

The QA scenario shares many of the XAl needs of the diagnostic assessments
described above. Identifying errors, assessing uncertainty, and understanding
limitations are in focus here as well. The difference is that the focus shifts from
individual cases to analyses across larger case sets representing the entire opera-
tions at the lab. This poses additional requirements for XAl solutions, to support
systematic, in-depth investigations akin to the diligent validation procedures for
other lab equipment.

The aspects discussed above clearly shows that there is a great diversity of
situations where pathology diagnostics require transparency and interpretabil-
ity. In summary, there is strong rationale for XAl advances tailored for digital
pathology.

2 Glossary

XAT: explainable artificial intelligence, a field of study on how to increase trans-
parency and intepretabily of artificial intelligence algorithms such that the results
could be understood by a human expert.

Standard neural network (NN): the most common type of neural network
used in research as well as in practical applications. They are based on frequen-
tist probability theory which states that each parameter of a model has a true
fixed value. It is hard and often impossible to find the exact true values, hence
the backpropogation algorithm provides a means of approximating them [37].
In the context of the uncertainty estimation, the parameters of a NN are not
random variables, hence, probabilities cannot be associated with them and other
frequentist techniques have to be used [119].

Bayesian neural network (BNN): a type of neural network that is based on
Bayesian theory and requires more complex procedures of training and inference.
According to the Bayesian approach, a probability is a degree of the belief that a
certain event will occur and can be modelled by Bayes’ theorem. Bayes’ theorem
states that the conditional probability of an event depends on the data as well as
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prior information/belief. The model parameters are viewed as random variables,
and Bayesian inference is used to estimate the probability distribution over them.
This distribution reflects the strength of the belief regarding what parameter
values that are possible, and it is used during forward pass through a BNN to
sample some likely parameters and produce a range of possible outcomes [119].

3 State-of-the-art

In this section, we provide an overview of the current methods that aim to help
in developing transparent and interpretable Al solutions. We focus on methods
that are specifically developed for, or can be easily applied to, visual detection
tasks. There are many ways in which the methods can be grouped. In this work,
we provide three alternative taxonomies, namely Fzplanation target, Result rep-
resentation and Technical approach. Each taxonomy is described in detail in
the corresponding subsection below, followed by examples of representative XAl
methods that can be assigned to it. Table[I]in Appendix [A] contains all reviewed
XATI methods, classified according to the three alternative ways of categorisation.

The explanation target gives a general understanding of what can be ex-
plained in visual detection tasks and for which group of professionals — AT devel-
opers, QA specialists or pathologists — this explanation is most relevant. Result
representation illustrates how the explainability may be presented in an Al solu-
tion while the Technical approach provides an insight into what techniques and
mathematical theories are used in order to achieve the explainability. Many of
the existing XAI techniques focus on explaining classification tasks, or at least
illustrate their work with examples of classification algorithms. Some methods
encompass other computer vision tasks, such as detection, localisation and seg-
mentation. Furthermore, it is important to note that some methods can be or
have already been adapted for different tasks which could make them fall under
several different categories. We decided to base our categorisation on how the
method is described in the original paper.

Figure [2| summarises the reviewed papers based on our three dimensions of
categorisation, and Figure |3[ shows the development over time. In Figure [2| the
matrix plot in the top gives an overview of what technical approaches are most
commonly used for which explanation targets. In contrast, the plot in the bottom
gives an overview of what result presentation types are most commonly used for
which explanation targets. We can see that irreducible uncertainty so far has
been only presented as an auxiliary measure even though there are quite a few
different technical approaches for determining it. In contrast, the explanation of
inner workings can be presented in many different ways, but the activation opti-
misation approach is the most commonly used to achieve the results. Figure[2]not
only summarises previous work in XAI but also highlights which combinations
of the categories that have not yet been explored.

It is important to note that this section is aimed at providing a general un-
derstanding of existing methods, hence the text does not focus on the pathology
specific aspects. However, the result representation part is mainly illustrated by
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Fig. 2. Summary of the reviewed papers based on the three ways of categorisation.
Explanation targets are given on the y-axis. The top plot has Technical approach as
x-axis with markers indicating different Result representations. Conversely, the bot-
tom plot shows Result representations on the x-axis with the markers indicating the
Technical approach. Papers containing two method components representing different
categories have been registered twice.

XATI methods applied to histopathological data. Furthermore, a discussion on
how the different methods can be used for fulfilling the need for reliable and
transparent Al tools of digital pathology is provided in Section

3.1 Explanation target

Explainability could have several objectives in the context of Al assisting visual
analysis. Figure [4 illustrates the four targets that an XAI method may help
to understand better. In this section we describe in more detail each of the
explainability types and illustrate with some examples from the reviewed papers.
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Fig. 3. Time histogram of the methods in Figure Grouping is made according to the
different explanation targets.

Explaining predictions Explaining predictions refers to methods that are de-
veloped to understand why a certain image led to a corresponding NN output.
The expectation is often that the reasoning of an NN would match the logic
that human experts use when solving the problem. For example, if an NN is
detecting the presence of a tumour, we would like to see that the NN is basing
its prediction on the areas of the image that contain tumour cells. This would
reassure pathologist that the prediction is trustworthy. Some well-known exam-
ples in this category include saliency maps [100], Excitation Backprop [121] and
explanations generated using meaningful perturbations [30]. Such explanations
could be useful for the Al developers to debug their created algorithms, could
aid QA specialists in guaranteeing an appropriate behaviour of an NN, and could
foster trust in the community of the end-users.

Explaining inner workings Methods in the category of inner workings ex-
planation aim to increase the understanding of how an algorithm works. There
are a few ways that researchers have attempted to achieve this. For example,
activation maximisation techniques show the patterns to which neurons react
most [28] 79 [T18]. Other methods analyse image representations encoded by
the model in order to understand what information is retained and what is lost.
This can be done by recreating the original images from the representations
saved at different layers of a CNN [23] [67]. Finally, some techniques examine
what interpretable concepts, such as textures and patterns, that are detected for
a specific class of interest. This enables explanation of behavioural properties
of deep neural networks [54], [62]. This explanation type is most relevant to the
AT developers as it can give new insights into what an NN is doing and how its
performance could be boosted.

Understanding reducible uncertainty Reducible uncertainty, also known
as epistemic uncertainty, refers to when the training of the model has been im-
perfect, insufficiently covering the phenomenon of the interest. Having high such
uncertainty means that the parameters of an NN are not tuned properly to
make an informed prediction for some inputs [22], i.e., data points being outliers
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Fig. 4. Hlustration of the different explanation targets. In order to understand inner
workings, we can explore neurons, channels, layers and the relations between them.
Explaining the predictions only focus on a specific class output and what logic the
model is using to arrive at them. Understanding reducible uncertainty enables us to
detect outliers in the data and warn when an NN is making an uninformed prediction,
while the irreducible uncertainty shows how well our model approximates the variability
in the phenomenon of interest.

in relation to the training data. This results in the model being incapable of
providing informed predictions about outliers as the prior knowledge gathered
during training is insufficient. If we would expand the training data and ensure
it contains all outliers, this uncertainty could be reduced to zero. Even without
more data, an improved training scheme could also reduce the epistemic uncer-
tainty. Explanations targeting this uncertainty type enable us to understand the
limitations of our model via training data and how we can improve it to increase
prediction accuracy.

There are two main ways of estimating the epistemic uncertainty. It can
be modelled on the NN’s weights directly [12, 40, [O1]. Other methods use the
exploration of the data sets used for training and validating an NN to find out
which points that are outliers and tune the uncertainty estimates to match this

information [38], [84], 85].

Understanding irreducible uncertainty The irreducible uncertainty arises
due to the intrinsic randomness of a phenomenon of interest and the fact that our
model is an approximation of it. It is is also known as an aleatoric uncertainty
[22]. This uncertainty cannot be reduced by increasing the size of the training
data set. For an intuitive understanding, consider that even if we train a model
to detect a tumour in WSIs on all of the relevant images existing in the world,
our model is still an approximation of the complex phenomenon (tumour in
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human tissue). Hence, the upcoming new images from new patients may inherit
some variability that our model is unable to classify correctly due to the missing
variables/parameters that are necessary for capturing it.

So what does such uncertainty explain to us? It reminds the users that they
should never trust an Al prediction completely as the nature of the world con-
tains intrinsic variations that none of the models can perfectly capture. Further-
more, aleatoric uncertainty also gives an insight into whether developers chose an
appropriate architecture of the model for a particular problem. If the developers
observe low epistemic uncertainty but high aleatoric uncertainty, this indicates
that the model is too simple to approximate the properties of the phenomenon of
the interest well [53]. In an ideal situation, the chosen model would only contain
low aleatoric uncertainty and the prediction variability would be as low as possi-
ble. Some examples of methods for estimating the aleatoric uncertainty include
[7, [13], 33].

3.2 Result representation

The categorisation of result representations assesses what type of results the
user should expect to receive from applying an explainability technique. This
allows users and developers to quickly pick a subgroup of methods that would
provide the desired explanation output. We have distinguished four main groups
of how the results are presented: synthetic visualisations, visualisations on an
input image, showing by example and auxiliary measures. If we are working
on helping a pathologist with a tumour detection task or want to boost the
pathologist’s confidence in an Al solution, we may be most interested in the
techniques that provide visualisations on the original input images or show how
an NN works by an example. However, if we are debugging or validating the
overall classification strategy of an NN, the methods that generate synthetic
visualisations or auxiliary measures may be preferred.

Synthetic visualisations Synthetic visualisations is a broad group of methods
that all generate a synthetic image as an outcome. The group can be further
divided based on what sort of image is generated.

The first subgroup generates surrealistic images from scratch that can be
interpreted as illustrations of what some part of the NN reacts to. These methods
are also known as activation maximisation: they attempt at finding, through
optimisation, the input images that maximally activate a chosen neuron, channel
or layer. Some examples of the methods can be found in [I7], 28] [79, BT}, [118].
The visualisations give an insight into what patterns the neurons are looking
for. For example, this knowledge may aid the analysis of a domain shift problem
[103]. Figureshows an example of patterns that maximally activate some filters
of a Mini-GoogLeNet that is trained to classify tumours in WSI patches [105].
The different rows use different strategies for formulating the training data but
are all based on the same original dataset. The results show how very different
representations are learned by the convolutional layers depending on how the
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Fig. 5. Activation maximisation of GoogLeNet filters (per channel) trained on histopa-
phology data. Each row corresponds to filters from the same model, but trained on
different formulations of the same original dataset, from top to bottom: unmodified
original data, colour and intensity augmentations, stain normalisation, and Cycle-GAN
transformation for domain-adaptation between different medical centres. Reproduced
with the authors’ permission from [105].

data is pre-processed, e.g. how colour augmentation makes the representation
less sensitive to absolute colour values in the input (second row).

Another subgroup of methods focuses on using the feature representations in
an NN to generate images that resemble parts of the original input. The aim is
not to retrieve the original image but to conclude which patterns could be most
responsible for the NN’s prediction (or a neuron’s activation). A well-known
method of this category is deconvolutional networks [120]. Other examples that
aim to explain the target NN include PatternNet [55] and Guided Backprop [103].
The main drawback these methods have is that they produce visualisations that
are not class-specific. This means that the techniques give an insight into which
patterns are important in general, but cannot be used to understand why an NN
predicted the specific class [80].

Finally, some methods have focused on reconstructing the original images
from the feature representations in an NN. They are also known as model inver-
sion methods. This type of visualisation illustrates what information an NN is
keeping about the image which, in turn, helps to understand better how an NN
works. For example, comparing the reconstructed images to the original input,
Dosovitskiy and Brox [23] found that the colour seems to be a crucial feature
for the prediction they studied. Similar visualisations can be found in [67] [68].

Visualisations on an input image The methods in this group produce three
types of visualisations: heatmaps, important patches and receptive fields. A
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Fig. 6. Grad-CAM visualisations of the four residual blocks in ResNetl8 trained to
detect tumours in skin WSIs. In the example, the model’s prediction of the absence
of a tumour is incorrect: tumour cells are present in the bottom of the patch (image
(a)). Observing Grad-CAM visualisations (images (b) - (e)), where high prediction
importance is shown in red, we can conclude that throughout the blocks the NN is
incorrectly using the presence of fat tissue to indicate absence of tumour; an indication
of potential bias in the trained model.

heatmap is a graphical representation of 2D scalar data where the values are en-
coded by colour. With such representation, this first type of visualisation shows
how much each pixel contributes to the prediction. This information is visu-
ally conveyed by overlaying the colour gradient on the original input image.
Well-known techniques that produce heatmaps are Excitation Backprop [121],
Grad-CAM [95] and Layer-wise relevance propagation [§]. The second type of
visualisation is produced by keeping the important patches (pixel regions) of the
original input and cropping out the remaining. These techniques reveal which
objects or regions in the input that are contributing to the prediction. However,
they do not provide the knowledge of importance distribution over the pixels
[90, 124]. The third type of visualisation marks the receptive field, the areas on
the original input image that indicate what regions that activate most a target
unit [123, [24]. This gives an insight into how neurons in NNs and filters in
CNNs work.

Visualisations on an input image methods, such as Grad-CAM, can be used
to increase the transparency as well as uncover some potential biases that the
model has. Figure [6] shows an example of such a case. We trained a ResNet18
neural network to predict if a patch from a WSI of skin contains a tumour.
ResNet18 contains four residual blocks, units consisting of several layers. It is
connected with the previous block with a skip connection [39]. We used the Grad-
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CAM technique to visualise each of the four blocks. The resulting heatmaps
show which pixels that are most important for the prediction. This provides an
overview of how the attention of an NN is changing through the layer blocks when
the image is classified. The model predicted that there is no tumour, but the
patch does contain tumour cells in the lower part of the image. The Grad-CAM
method uncovers a potential bias: the model uses fat tissue as an indication of
the absence of the tumour cells, which could be caused by an over-representation
of fat tissue in patches without a tumour in the training data set.

All methods described so far aim to provide a deeper understanding of an
NN trained to do classification. However, Al is not only used for classification
tasks. Wu and Song [I16] has proposed how to improve the interpretability of a
CNN trained for object detection. They create an architecture of an NN based
on R-CNN that provides not only the classification score but also the bounding
box on the region of interest (the target object). Furthermore, XAl visualisation
on the input image can increase the interpretability of the segmentation task.
Kwon et al. [59] have used a technique for estimating uncertainty first described
by Kendall and Gal [50] and created heatmaps of uncertain regions of the seg-
mentation. A large area of uncertain regions can warn a user that the NN is
making a poorly informed guess.

Showing by example The methods in this group are diverse but share the
foundation that their explanations are based on presenting and discussing exam-
ples, either from the original data or from auxiliary data. This is a small group
of methods so far, but it has great potential as some research claims that this
type of explainability may be the most intuitive for a human user [70].

The first subgroup of methods uses examples from the original data set in
order to understand an NN better. Lapuschkin et al. [61] provide a visualisation
of clustering input images that an NN determined to be from the same class. The
clustered images reveal potential rationale for how an NN assigns samples to a
certain class. For example, such exploration may reveal that an image is classified
as containing a horse if there is a white fence, if there is a person in a certain
position or if there is a clearly visible horse head. Similar results are achieved
in work by Kevin et al. [5I] where authors grouped WSIs of neuropathological
tissue that an NN perceived to be similar. Moreover, at each layer of an NN, we
can compare the representations of the input image to the representations of all
other images in the data set and see what labels have the £ most similar other
images [85]. This may help to detect out-of-distribution images. Alsallakh et al.
[3] explore a confusion matrix produced by an algorithm in order to determine
which classes that are causing most trouble and the possible reason for the
confusion.

Other methods show examples that do not come from the original data set.
Seah et al. [94] proposed an idea that if we generate the most similar image
to the original one but that would be classified to a different class by an NN,
we could compare these images and understand which parts or differences are
used by the NN to predict the correct class. Figure [7] illustrates such a method
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Fig. 7. Cycle-GANs transform a WSI patch with tumour to a synthetic healthy patch.
Such counterfactual examples could boost pathologists’ confidence that a tumour pre-
diction is correct. The illustration consists of 25 pairs of patches: to the left are original
patches with tumour and to the right are their respective transformation that illus-
trates how the patch could look if it were healthy. The percentage shows how confident
the target NN is that the left patch contains tumour and the right patch is healthy,
respectively.

used on a tumour classifier. We trained a Cycle-GAN [126] to transform patches
that contain tumour cells to healthy ones. The score in the left corner of each
image shows the prediction score for each patch by the NN under scrutiny; the
high confidence of the NN proves that the transformation was successful. Such
counterfactual illustrations could capture and convey complex explanations of
diagnostic predictions.

Furthermore, some researchers explore if human-comprehensible concepts,
such as striped patterns, gender, or a tie, are influencing an NN [I0] [54]. These
methods require a separate data set that contains the images with the concepts
of interest. They can show which images of a certain concept that are most
relevant to a chosen class that an NN is predicting. Also, they can reveal which
particular images in the original data set that are influenced by the concept
most. For example, they can show images with the striped patterns (from the
concepts data set) that are most related to a Chief Enterprise Officer (CEO)
class in an NN and which images labelled CEO (from the original data set)
are mostly influenced by the stripe patterns. This knowledge could potentially
alleviate biased predictions in an AI solution.

Auxiliary measures This subsection provides an overview of various measures
that have been developed for understanding an NN better. They do not neces-
sarily have anything in common apart from the main aim to make an NN more
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transparent. However, all of them explore an important way of representing the
results: providing an informative score or measure.

Uncertainty measures give insight into how much we can trust the outcome
of an Al solution. These measures can be used i) to construct prediction intervals
that show how much the prediction could vary [87], ii) to create heatmaps as
discussed in Section above, iii) to create plots illustrating uncertainty [7], or
iv) to be presented as a score to the user [33].

Other scores provide a measure of importance that helps to understand how
an NN makes the prediction. For example, Koh and Liang [57] assigns an impor-
tance score for each training image by exploring how the predictions of the target
NN would change if the particular image would be removed from the training
data.

3.3 Technical approach

This subsection gives an insight into how the explainability methods work tech-
nically. Thus, the categorisation is probably more relevant for readers with a
technical background. Knowing what strategies that have been commonly ap-
plied in acquiring the visualisations or the scores may provide a good starting
point for identifying what technical approaches that have not yet been explored.
It is important to note that we do not aim to describe the technical details of
each method thoroughly, instead, we provide a general overview of what kind of
techniques researchers have used so far.

Activation optimisation All methods in this subsection use an optimisation
algorithm on the activations of the target NN in order to create their visualisa-
tions. There are two distinct ways of how optimisation in the context of neural
network understandability may be used. Some techniques aim to explore the
inner workings of an NN by finding the patterns that maximise the activation of
a chosen neuron or a combination of neurons. The main idea can be illustrated
by the following optimisation problem:

x* = argmaxh; ; (0, x) + regulariser, (1)
x

where h; ; is the activation of the target neuron with indices ¢, j, that has been
computed from the input sample x.

0 is the set of parameters used for computing the activation and x* is the
estimated sample that maximises the output the neuron at 4,j. This objec-
tive is usually achieved using gradient descent, and most proposed activation
maximisation methods mainly differ in what regulariser they propose to use
[17, 28, [79, [81], [T1]].

Optimisation techniques are also used for inverting NNs. Mahendran and
Vedaldi [68] proposed a method to reconstruct the original image from the acti-
vations of a chosen layer of an NN. Given that a neural network is some composite
function @y = P(xp) with input image z, they acknowledge that finding an in-
verse of @q is difficult; neural networks are composed of many non-invertable
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functions. Hence, this method aims to find an image whose representation best
matches the target input image by reducing the loss between @(z) of some input
x and the target @y. There are a few other efforts where model inversion tools
also are proposed to achieve a better understanding of an NN [23] [67].

Back-projection to input space Back-projection methods reflect a prediction
score of an NN or activation of a target neuron back to the input space. They
generate the patterns that triggered the neuron or create sensitivity maps over
the input pixels. We describe this category by highlighting two representative
approaches, deconvolution and saliency map.

Deconvolution is a technique that inverts the direction of the information flow
in an NN [I20]. In a higher layer a target neuron is chosen and the activations
of all the other neurons in that layer are set to 0. Then, the activation of the
target neuron is passed back through the layers to the input space. In order
to invert the max pooling layers which are normally non-invertable, Zeiler and
Fergus [120] propose to compute so-called switches during the forward pass: they
record which positions that contained the maximum value within each pooling
region. The resulting signal in the input layer is used to construct an image
which shows what patterns that triggered the activation of the target neuron.
Guided Backprop [103] is another method also built on this approach.

Saliency map is a technique that uses Taylor expansion in order to back-
project a prediction score to the input space. The technique is based on the
idea that the prediction of a neural network can be approximated by a linear
function:

S.(z) =wlz +0b, (2)

where S, is the class score, w and b are the weight vector and bias of the model,
respectively, and z is the input image. Then the first-order Taylor expansion is
used to determine the approximation for a weight vector w”. The approximated
w7 reflects how much each pixel in the input contributed to the final score [100].
There are a few other XAI methods that achieve back-projection to input space
by using Taylor expansions [, [73] or other linear approximations that distribute
the target score among the input pixels [95] [125].

Input perturbations Explainability can be achieved by inducing variations
of the input. Methods in this category use perturbations on the input images
in order to determine the important pixels for a prediction, or to estimate the
uncertainty. It is important to note that the methods under this category may
or may not analyse each perturbation separately. An example of such an al-
gorithm is Local Interpretable Model-agnostic Explanations (LIME) [00]. The
target input image is split into k superpixels. A Ridge regression is then trained
on k perturbed images (each time only one superpixel is non-black) to predict
the black-box classifier’s prediction score of that particular input. The parame-
ters of the Ridge regression are used to determine which superpixel is the most
important for the correct prediction.
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Another method is using Shapley values for the explanation of a classifier
[65]. Normally, these are computed by rerunning the classifier as many times
as we have features (pixels in our case) and excluding one feature at a time.
This provides an insight to which features that are important for the classifi-
cation. However, such a procedure becomes very expensive with deep learning,
hence the authors have offered several approximations for computing Shapley
values for image classification. Similar use of perturbations or approximations of
perturbations can be found in other XAI methods [7), 20] 30, [127].

Interpretable network design Another approach to explainability is to mod-
ify the architecture of an NN in order to arrive at models that produce more
interpretable feature maps. This means that visualising them may give an in-
sight into what objects a unit of an NN is detecting when making a classification
decision.

Interpretable CNNs [123] is a method modifying the CNN filters; a special loss
function is introduced that enforces the filters to capture human-interpretable
objects better. The idea is that visualising the receptive field of such filters
could reveal behaviour of NN units, such as using cat head depictions to label
the image as a cat. Another example is Interpretable R-CNN [I16]. Here, an
architecture of an NN based on Faster R-CNN is created that provides not only
the classification score but also the bounding box on the region of interest (the
target object). This is achieved by introducing a new layer in the model called
terminal-node sensitive feature maps that is based on graph theory.

Frequentist techniques The methods in the group of frequentist techniques
are built for standard neural networks. Therefore, applying such techniques
usually does not require heavy modifications to the algorithm or the training
pipeline. The methods are based on frequentist statistical theory and there are
three main techniques commonly used: ensembles, bootstrapping and quantile
regression.

Ensemble methods use multiple learning algorithms to obtain a better pre-
dictive performance compared to the learning algorithms alone. Recently it has
been proposed to generate the prediction intervals via ensembles of NNs [60, [87],
i.e. utilising the variation between different models as a measure of uncertainty.

Bootstrapping is a technique that uses random sampling with replacement in
order to approximate the population distribution with the sample distribution.
This provides means to estimate statistical measures such as standard error, bias,
variance, and confidence intervals [25]. Osband et al. [82] developed an efficient
and scalable method that enables generation of bootstrap samples from a deep
neural network to estimate the uncertainty.

Finally, quantiles in statistics are dividing the range of the probability dis-
tribution or the sample distribution into continuous intervals that have equal
probabilities [TT9]. Quantile regression, methods for estimating quantiles, can be
used to build confidence intervals around the target variable (for example, the
prediction of the NN) which enables estimation of the uncertainty. Tagasovska
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and Lopez-Paz [I09] have proposed to implement an additional output layer
called Simultaneous Quantile Regression for any deep learning algorithm. Si-
multaneous Quantile Regression would be trained on a special loss function that
learns the conditional quantiles of a target variable.

It is also worth mentioning that while some of the methods described in this
section are developed for regression problems, it is also possible to adapt them
for classification tasks.

Bayesian neural networks Bayesian Neural Networks (BNNs) are designed
to incorporate uncertainty about the networks’ parameters, weights and biases.
Unfortunately, BNNs are computationally more complex than conventional NNs,
require a different training pipeline, and may not scale well to big data sets nor
deep architectures that are required for state-of-the-art performance [86]. While
it is out of scope for this survey to rigorously describe the research on BNNs, we
next provide a brief overview of some key approaches.

Many researchers have worked on producing approximations of the intractable
posterior distributions of BNNs — approximations that can be used in practise.
This includes, among others, applying Markov chain Monte Carlo methods [77]
and variational Bayesian methods [I2]. Another challenge in training BNNs is
performing the backpropagation, as there is a large number of possible values of
the parameters. A few of the efforts have focused on improving the backpropaga-
tion algorithm for BNNs by introducing alternative algorithms, namely proba-
bilistic backpropagation [40], Bayes by Backprop [12], and natural-gradient algo-
rithms [52]. Essential work has been done on determining the best way of finding
a good prior as it strongly influences the quality of the uncertainty measurement
[38]. Finally, some work focused on specifically developing Bayesian convolutional
neural networks [32] [99], while others developed ways to distribute the estimated
uncertainty between epistemic and aleatoric parts in BNNs [211 50, [59].

Bayesian approximations Bayesian theory can be applied also to standard
NNs to estimate uncertainty. In this way, uncertainty awareness can be intro-
duced without having to tackle the shortcomings of BNNs. They use derivations
and modifications to a standard NN training in order to incorporate the Bayesian
inference.

Pearce et al. [86] showed how to add a Bayesian prior via regularization of the
parameters and train an ensemble of standard NNs in order to approximate the
posterior distribution. Postels et al. [89] proposed to reduce the computational
complexity of ensembles and other resampling-based methods by adding noise
to the parameters of an NN during training. Some researchers focused on how
to derive Bayesian inference approximations using some common techniques in
modern NN training, such as dropout [33] and batch normalisation [T12]. Finally,
Ritter et al. [91] applied a Laplace approximation to obtain uncertainty estimates
after an NN is trained.
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Other techniques A number of methods base the generation of explanations
on techniques that do not fall into any of the previous categories. Some meth-
ods use Generative Adversarial Networks (GANs) as part of their XAI solution
[78, ©94] (similar to Figure . Moreover, uncertainty estimates can be based
on conformal prediction; a technique that determines the confidence of a new
prediction based on the past experience [84] 85]. The training data set can be
explored using influence functions, a classic technique from statistics, which help
to detect the points most contributing to a given prediction [57]. Linear binary
classifiers and binary segmentation algorithms have also been used to determine
to what concepts (defined by a separate data set) a target NN is responding
[10, 54]. Finally, techniques for dimensionality reduction, such as t-distributed
Stochastic Neighbour Embedding (t-SNE) [66], makes it possible to reduce the
dimensionality of feature representations of an NN and highlight which input
images the model is perceiving to be similar [51]. It is also possible to extract
information on how different NNs relate to each other by considering the weights
of a large number of trained models [27].

3.4 XAI methods in medical imaging

In this final subsection of the XAI method overview, we highlight some previous
efforts of XAI techniques specifically addressing the medical imaging domain.

Palatnik de Sousa et al. [83] explored an AT algorithm that classifies lymph
node metastases by creating heatmaps of the area in the input patch that con-
tributed most to the prediction. The authors found that deep learning algo-
rithms trained for this task have underlying ‘reasoning’ behind their predictions
similar to human logic. Similar findings are reported in a study on classifying
Alzheimer’s disease [110]. Huang and Chung [46] addressed the need for an in-
formed decision by training a CNN model to predict the presence of cancer for
a given WSI. At the test time of this algorithm, XAI methods that explain the
predictions by creating visualisations on the input are used to detect the areas
of the tissue that are unhealthy. It provides ‘evidence’ why this WSI should
be classified as unhealthy as well as localises the cancerous cells. The authors
showed that the detected areas closely correlated with the pathologists labelling.
Therefore, it provides a meaningful intuition of why AI categorised the whole
slide as containing a tumour.

Incorporating uncertainty measures in Al solutions for digital pathology
could help to increase transparency as well. Kwon et al. [59] has shown that
the highly uncertain regions in ischemic stroke lesion segmentation often corre-
late with the pixels that are incorrectly labelled by the algorithm. This means
that uncertainty measures provides means for a doctor to spot possibly wrong
predictions and understand when he or she should be cautious of the Al deci-
sion. Fraz et al. [3] fulfilled this idea by incorporating an uncertainty measure in
their model, and showed that the quality of microvessel segmentation did indeed
improve.

These results are inspiring and demonstrate the potential of XAI techniques
in medical imaging. Nevertheless, the current body of work is still quite limited.
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There is a need for more in-depth research on applied XAI methods in the
domain, and particularly so in digital pathology, as will be further discussed in
the next section.

4 Open Problems

There are several open problems arising with XAI application for digital pathol-
ogy. The stakeholders involved in XAI development and usage should be aware
of the potentially misleading explanations as well as the lack of ways to evaluate
different XAI methods.

The first problem is caused due to the design of the explanations and their
user interactions. To increase human understanding, it is important to formu-
late causal explanations, that is, why the AI algorithm made that prediction.
Holzinger et al. [43] argue that analysing how an AT solution arrived to the pre-
diction may not always result in a satisfactory explanation as a more thorough
understanding of how humans interpret and use explanations is needed. This
point is also highlighted by Mittelstadt et al. [70], further detailing that expla-
nations may become damaging if they are phrased confusingly or do not match
the users’ expected format.

Another pitfall is if the explanation designer has a certain agenda. As there
may be a strong incentive to promote trust in the AI predictions, explanation
design runs the risk of being more persuasive than informative, as demonstrated
in the work by Kaur et al. [49]. This could have especially severe consequences in
XAT solutions developed for digital pathology, as overconfidence in them could
result in patient hazards, as well as in a setback for the needed development of
AT assistance to improve diagnostics.

Even though X AT tools could increase the understandability of an Al solution,
so far we lack a solid scientific evaluation framework that would allow us to
understand when they work well and what limitations they have. This challenge
arises due to the fact that usually the ‘ground truth’ is unknown for most of
the outputs by any XAI technique. There are a few works attempting to answer
these questions with some studies showing alarming results that the assessed
methods do not always live up to the expectations [2], 29, 80, O3, [102]. The
question marks about the performance and evaluation of XAI methods remain
for both the general case and specifically for digital pathology.

It is often stated that AI algorithms are black boxes that need to become
transparent. While this is an illustrative metaphor, it is also necessary to care-
fully consider what type of transparency that is meaningful and effective in
different scenarios and for different stakeholders. In summary, there is strong ra-
tionale for XAI advances tailored for digital pathology, however the challenge of
constructing meaningful explanation and evaluating the performance of a chosen
XAT method still remains.
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5 Future outlook

Our analysis of the overview presented in the previous sections has led to sev-
eral key findings that can be informative for future research in XAI for digital
pathology. A first insight is that the comprehensive list of identified explain-
ability scenarios points to the fact that there are many techniques to consider
when developing X AT solutions in the domain. X AT is also an important concept
that needs to be incorporated for decision support — due to the potentially high
costs of errors in healthcare, pathologists are concerned about using black-box
algorithms in their daily practices and call for an increased transparency [72].
Moreover, there is a substantial heterogeneity both in terms of the desired bene-
fits that AT tools should bring, and the types of prediction tasks to be performed.
Thus, it appears clear that even within this niche a multi-faceted XAI toolbox
will be needed.

In order for the XAI researcher to navigate the digital pathology landscape,
it is valuable to consider the three usage scenarios: development, QA, and diag-
nostic work. For example, for the model developer, all of the explanation types
would be relevant, whereas the inner workings of the neural network ought to
be of little relevance for QA or diagnostics. Understanding training data quality
is probably unnecessary for diagnostic work but may be quite important for the
QA specialist to assess limitations of the model at the specific lab.

Similar mappings can be done with respect to result representation. A likely
difference between usage scenarios here is that synthetic visualisations would
only be valuable to the model developer. There may, however, be exceptions.
Mittelstadt et al. [70] argue that counterfactual and contrastive explanations
are suitable for intuitive human understanding. The synthesised counterfactual
image proposed by Seah et al. [04] is an interesting direction, combining the
synthesis and showing by example explanations. It is our expectation that com-
binations of XAl techniques will be needed in order to be sufficiently effective in
most digital pathology applications.

Finally, this survey sheds some light on the role of uncertainty in relation
to XAIL Whereas uncertainty estimation sometimes is seen as a separate topic,
the survey indicates that uncertainty is an integral part of the XAI scope when
seen from an end-user perspective. Our review lists some useful existing methods
for performing and evaluating uncertainty estimation. There is, however, ample
room for further research efforts, not the least directed towards imaging diagnos-
tics applications. Moreover, we argue that Al solutions for clinical routine need
to have some level of uncertainty awareness. While this is not part of bread-and-
butter AT development today, we hope that incorporating uncertainty soon will
be the standard, which in turn will have a direct positive impact for broad XAI
deployment.
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A Reviewed Methods

Method Explains Result representation |Technical approach
Quantile Regression Irreducible Auxiliary measures Frequentist techniques
Forests [69] uncertainty

Conformal Prediction [84]

Reducible uncertainty

Auxiliary measures

Other techniques

Activation
maximisation [28]

Inner workings

Synthetic visualisations

Activation optimisation

Saliency maps [100] Predictions Visualisations on the input|Back-projection to
input space

DeconvNet [120] Predictions Synthetic visualisations Back-projection to
input space

Guided Backprop [103] Predictions Synthetic visualisations Back-projection to

of NN input space

Object detectors in Prediction; Visualisations on the input|Input perturbations

Deep Scene [124] Inner workings

Layer-wise relevance Predictions Visualisations on the input|Back-projection to

propagation [§]

input space

Probabilistic
backpropagation [40]

Reducible uncertainty

Auxiliary measures

Bayesian neural
networks

Inverting Deep Image
Representations [67]

Inner workings

Synthetic visualisations

Activation optimisation

BCNN with Bernoulli

Reducible uncertainty

Auxiliary measures

Bayesian neural
networks

approximations [32]
[118]

Deep visualization

Inner workings

Synthetic visualisations

Activation optimisation

Bayes by Backprop [12]

Reducible uncertainty

Auxiliary measures

Bayesian neural
networks

Bootstrapped DQN [82]

Reducible uncertainty

Auxiliary measures

Frequentist techniques

Multifaceted Feature
Visualization [79)

Inner workings

Synthetic visualisations

Activation optimisation

Inverting feature
representations [23]

Inner workings

Synthetic visualisations

Activation optimisation

Class activation
mapping (CAM) [125]

Prediction

Visualisations on the input

Back-projection to
input space

Dropout as Bayesian
approximation [33]

Reducible uncertainty

Auxiliary measures

Bayesian
approximations

Disco nets [13]

Irreducible uncertainty

Auxiliary measures

Bayesian approximations

Deep generator
networks [78]

Inner workings

Synthetic visualisations

GANs methods

Distinct class Prediction Visualisations on the input|{Back-projection to
saliency maps [98] input space
LIME [90] Prediction Visualisations on the input|{Input perturbations

Uncertainty with
deep ensembles [60]

Reducible uncertainty;
Irreducible uncertainty
of NN

Auxiliary measures

Frequentist techniques

Deep Taylor Predictions Visualisations on the input|{Back-projection to
decomposition [73] input space
SHAP [65] Predictions Visualisations on the input|{Input perturbations
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PatternNet and Predictions Visualisations on the input|Back-projection to
PatternAttribution [55] input space
Integrated Gradients [107] |Predictions Visualisations on the input|{Back-projection to

input space

Network Dissection [10]

Inner workings

Showing by example

Other techniques

Grad-CAM [05)]

Predictions

Visualisations on the input

Back-projection to
input space

Uncertainties in Bayesian
deep learning [50]

Reducible uncertainty;
Irreducible uncertainty

Auxiliary measures

Bayesian neural
networks

Meaningful
Perturbation [30]

Predictions

Visualisations on the input

Input perturbations

SmoothGrad [101] Predictions Visualisations on the input|Back-projection to
input space

Real Time Image Predictions Visualisations on the input|Input perturbations

Saliency [20]

Prediction Difference

Analysis [127] Predictions Visualisations on the input|Input perturbations

Influence Functions [57] Predictions Auxiliary measures Other techniques

Interpretable CNNs [123] |Predictions Visualisations on the input|Interpretable design

Generative Visual

Rationales [94] Predictions Synthetic visualisations GANSs methods

Weight-perturbation

Reducible uncertainty

Auxiliary measures

Bayesian neural

in ADAM [52] networks
Uncertainty in Bayesian Reducible uncertainty; |Auxiliary measures Bayesian neural
Deep Learning [21] Irreducible uncertainty networks

Monotone composite
quantile regression NN [16]

Irreducible uncertainty

Auxiliary measures

Frequentist techniques

Deep k-Nearest
Neighbors [85]

Predictions;
Reducible uncertainty

Showing by example;
Auxiliary measures

Other techniques

Laplace approximation for
estimating uncertainty [91]

Reducible uncertainty

Auxiliary measures

Bayesian approximations

TCAV 54|

Inner workings

Showing by example

Other techniques

Bayesian uncertainty in
batch normalized NN [112]

Reducible uncertainty

Auxiliary measures

Bayesian approximations

Excitation Backprop [12]]

Predictions

Visualisations on the input

Back-projection to
input space

Prediction Intervals for
Deep Learning [87]

Irreducible uncertainty

Auxiliary measures

Frequentist techniques

Bayesian Ensembling [86]

Reducible uncertainty

Auxiliary measures

Bayesian approximations

Blocks [81] Inner workings Synthetic visualisations  |Activation optimisation
Class Hierarchy
in CNNs [3] Inner workings Showing by example Other techniques

Data augmentation for
uncertainty estimation [7]

Irreducible uncertainty

Auxiliary measures

Input perturbations

Visualization and Anomaly
detection using t-SNE [51]

Inner workings;
Reducible uncertainty

Showing by example

Other techniques
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Uncertainty via noise
contrastive priors [38]

Reducible uncertainty

Auxiliary measure

Bayesian neural
networks

FullGrad [104] Prediction Visualisations on the input|Back-projection to
input space
SpRAy [61] Inner workings Showing by example Other techniques

Influence-directed
explanations [62]

Predictions;
Inner workings

Showing by example

Other techniques

Bayesian CNN with

Reducible uncertainty

Auxiliary measures

Bayesian neural

variational inference [99] networks
Uncertainty quantification [Reducible uncertainty; |Auxiliary measures Bayesian neural
in Bayesian NN [59] Irreducible uncertainty networks

Dissecting the weight
space of NN [27]

Inner workings

Auxiliary measures

Other techniques

Table 1: List of methods and their categorisations, ordered by the year
of publishing.
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