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Abstract. We investigate a residual minimization (RM) based stabi-
lized isogeometric finite element method (IGA) for the Stokes problem.
Starting from an inf-sup stable discontinuous Galerkin (DG) formulation,
the method seeks for an approximation in a highly continuous trial space
that minimizes the residual measured in a dual norm of the discontinu-
ous test space. We consider two-dimensional Stokes problems with man-
ufactured solutions and the cavity flow problem. We explore the results
obtained by considering highly continuous isogeometric trial spaces, and
discontinuous test spaces. We compare by the Pareto front the resulting
numerical accuracy and the computational cost, expressed by the number
of floating-point operations performed by the direct solver algorithm.
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1 Introduction

The Isogeometric Analysis (IGA) [1] bridges the gap between the Computer
Aided Design (CAD) and Computer Aided Engineering (CAE) communities.
The idea of IGA is to apply B-spline basis functions [2] for finite element method
(FEM) simulations. The ultimate goal is to perform engineering analysis directly
to CAD models without expensive remeshing and recomputations. IGA has mul-
tiple applications in time-dependent simulations, including phase-field models
[3,4], phase-separation simulations with application to cancer growth simula-
tions [5,6], wind turbine aerodynamics [7], incompressible hyper-elasticity [8],
turbulent flow simulations [9], transport of drugs in cardiovascular applications
c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12138, pp. 197–211, 2020.
https://doi.org/10.1007/978-3-030-50417-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50417-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-50417-5_15


198 M. �Loś et al.

[10], or the blood flow simulations and drug transport in arteries simulations
[11,12].

The stability of a numerical method based on Petrov-Galerkin discretiza-
tions of a general weak form relies on the famous discrete inf-sup condition (see,
e.g., [13]): “Babuška-Brezzi condition” (BBC) developed in years 1971–1974 at
the same time by Ivo Babuśka, and Franco Brezzi [14–16].

Let U,V denote two Hilbert spaces. For a given variational formulation of
the form:

Find u ∈ U, such that b(u, v) = l(v), ∀ v ∈ V, (1)

with b : U × V → R being a bilinear form, and l : V → R being a linear form,
the BBC condition states that the problem is stable if there exists a positive
constant γ > 0, such that:

sup
v∈V,v�=0

|b(u, v)|
‖v‖V ≥ γ ‖u‖U, ∀ u ∈ U. (2)

The inf-sup condition in the above form concerns the abstract formulation where
we consider all the test functions from v ∈ V and look for solution at u ∈ U.
The above condition is satisfied also if we restrict to a conforming space of trial
functions Uh ⊂ U. This is,

sup
v∈V,v�=0

|b(wh, v)|
‖v‖V ≥ γ ‖wh‖Uh

, ∀wh ∈ Uh. (3)

However, if we consider test functions from a finite dimensional test space Vh

(not necessarily conforming), there is not guarantee that the inf-sup condition
is realized on the discrete level.

There are many methods constructing test functions providing better stabil-
ity of the method for a given class of problems [17–20]. In 2010 the Discontinuous
Petrov-Galerkin (DPG) method was proposed, with the modern summary of the
method described in [21,22]. The key idea of the DPG method is to construct the
optimal test functions “on the fly”, element by element. The DPG automatically
guarantee the numerical stability of difficult computational problems, thanks to
the automatic selection of the optimal basis functions. The DPG method is
equivalent to the residual minimization method [21]. The DPG is a practical
way to implement the residual minimization method when the computational
cost of the global solution is expensive (non-linear).

There is consistent literature on residual minimization methods, especially
for convection-diffusion problem [23–25], where it is well known that the lack of
stability is the main issue to overcome. In particular, the class of DPG methods
[26,27] aim to obtain a practical approach to solve the mixed system by breaking
the test spaces (at the expense of introducing a hybrid formulation).

Recently, in [28] a new stabilized finite element method based on residual
minimization was introduced. The method consider first an adequate discontin-
uous Galerkin formulation. Then, the wanted solution is obtained by solving a
residual minimization problem in terms of a dual discontinuous Galerkin norm.
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As in DPG methods, the method delivers a stable approximation and an error
estimator to guide the adaptivity. However, its main attractive relies in that it
allows to obtain a solution in a conforming sub space with the same quality
of those ones obtained with the discontinuous Galerkin formulations. Last is
evidenced by the authors considering standard Lagrange FEM polynomials.

In this paper, we explore the extension of [28] to IGA. We investigate the
possibility of considering highly-continuous B-splines spaces as trial and broken
B-spline spaces as test. We focus on the stationary Stokes problem, that requires
special stabilization effort (see [29–33]). Due to the large range of subspaces
that can be considered as trial spaces, we perform experimentations considering
different setups of conforming trial spaces contained in a given broken B-spline
space of degree 4. We solve the global system calling the MUMPS solver [34–
36], and we compare the obtained results in terms of computational cost and
accuracy of the obtained solution.

2 Discontinuous Galerkin Based Isogeometric Residual
Minimization (DGIRM)

In this section we briefly discuss, in an abstract setting, the main idea behind
the discontinuous Galerking based residual minimization method introduced in
[28] in the isogeometric context.

Assume that we want to obtain an approximation uh, of the continuous prob-
lem (1), in a given discrete space Uh ⊂ U (eg., a highly continuous B-spline
space). The residual minimization method is constructed as follows: First, a
broken B-spline polynomial space Vh, containing Uh, is considered. Next, as
starting point, is considered a discontinuous Galerkin variational formulation
for problem (1) of the form:

Find uDG
h ∈ Vh, such that bh(uDG

h , vh) = lh(vh), ∀ vh ∈ Vh, (4)

the bilinear form bh is inf-sup stable with respect to a given discrete norm ‖·‖Vh

of Vh. This is, there exists a positive constant Csta, independent of the mesh
size, such that:

sup
0 �=vh∈Vh

bh(wh, vh)
‖vh‖Vh

≥ Csta ‖wh‖Vh
, ∀ vh ∈ Vh. (5)

Finally, instead of solving the square problem (4), the wanted solution is obtained
by solving the following residual minimization problem:

Find uh ∈ Uh, such that uh = arg min
wh∈Uh

1
2
‖lh − Bhwh‖2V′

h
, (6)

where V′
h denotes the dual space of Vh, the operator Bh : Vh → V′

h is defined
as:

< Bhwh, vh >V′
h×Vh

:= bh (wh, vh) , (7)
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and, for φ ∈ V′
h, the dual norm ‖ · ‖V′

h
is defined as:

‖φ‖V′
h

:= sup
0 �=vh∈Vh

< φ, vh >V′
h×Vh

‖vh‖Vh

. (8)

Considering the Riesz operator:

RVh
: Vh � vh → (vh, .)Vh

∈ V′
h, (9)

where (·, ·)Vh
denotes the inner product inducing the discrete norm ‖ · ‖Vh

=
(·, ·)1/2

Vh
, and defining the residual representative:

rh := R−1
Vh

(lh(vh) − bh(uh, vh)) = R−1
Vh

bh(uDG
h − uh, vh), (10)

with R−1
Vh

being the inverse of the Riesz operator RVh
, and uDG

h being the solu-
tion of the DG problem (4), problem (6) can be equivalently written as the
following saddle-point problem: Find (rh, uh) ∈ Vh × Uh, such that:

(rh, vh)Vh
+ bh(uh, vh) = lh(vh), ∀ vh ∈ Vh,

bh(wh, rh) = 0, ∀wh ∈ Uh.
(11)

The main attractive of the discrete saddle-point problem (11) is that it delivers
automatically a stable approximation uh ∈ Uh enjoying of desired properties for
the solution, such as high-continuity, and a residual representation rh ∈ Vh that
can be used as error indicator to guide an adaptive mesh refinement. Indeed,
in [28] the authors proved that, under the standard assumptions for the Discon-
tinuous Galerkin problem (4): a) inf-sup stability (see Eq. (5)), b) boundedness
and c) consistency (see [37] or [28] for definitions), problem (11) is well-posed.
Additionally, it delivers an approximation uh with the same quality, in terms
of the norm Vh, of the one obtained by solving problem (4). Moreover, the
residual representative r is an efficient error estimator that, under an adequate
saturation assumption is satisfied (see Assumptions 4 and 5 in [28]) the residual
representative is also reliable.

Therefore, roughly speaking, the following two ingredients are required to
perform the discontinuous Galerkin based isogeometric residual minimization:

a) A well-posed discontinuous Galerkin formulation of the form (4), satisfying
the inf-sup property (5).

b) A conforming, in U, subspace Uh ⊂ Vh as trial space.

3 The Stokes Problem

Let Ω ⊂ R
2 be a open bounded polygon with outer normal n, and denote by

∂Ω its boundary. Without loss of generality, we consider Ω = (0, 1)2. The Stokes
problem with no-slip boundary condition reads:
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Find u, p such that:
−Δu + ∇ p = f, in Ω,

∇ · u = 0, in Ω,
u = 0, on ∂Ω,

(12)

where u := (u1, . . . , ud) : Ω → R
2 denotes the velocity field, p : Ω → R the

pressure and f := (f1, . . . , fd) ∈ [
L2(Ω)

]2 a given forcing term. The solution
of (12) is unique for the pressure p up to a constant, therefore, problem (12) is
complemented with the following extra condition for p:

∫

Ω

p = 0. (13)

3.1 Weak Variational Formulation

We consider the following Hilbert spaces: L2(Ω) = {v : Ω → R :
∫

Ω
v2 <

+∞}, H1(Ω) = {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]2} and H1
0 (Ω) = {v ∈ H(Ω) :

v = 0 on ∂Ω}. Defining U :=
(
H1

0 (Ω)
)2 as the space for the velocity field and,

as consequence of condition (13), the space P := L2
0(Ω), with L2

0(Ω) = {p ∈
L2(Ω) :

∫
Ω

p = 0} for the pressure, the weak variational formulation of the
strong problem (12)–(13) reads:
Find (u, p) ∈ U × P , such that:

a(u,v) + b(v, p) = (f, v)Ω , ∀v ∈ U,
−b(u, q) = 0, ∀q ∈ P,

(14)

where

a(u,v) =
∫

Ω

∇u : ∇v :=
2∑

i,j=1

∫

Ω

∂jui∂jvi,

b(v, p) = −
∫

Ω

p∇ · v,

(15)

and (·, ·)Ω denotes the inner product of L2(Ω). It is well known that problem (14)
is well-posed (see, eg. [37] or [13]) so we skip here the mathematical details.

3.2 An Equal-Order Discontinuous Galerkin Formulation

In this section we briefly introduce, in the isogeometric context, a discontinuous
Galerkin formulation proposed by Cockburn et al. in [38] allowing to consider
equal-order discontinuous spaces for the velocity and the pressure. A detailed
discussion of alternative discontinuous Galerkin methods for the Stokes problem
can be found in [37].

For a given mesh size h, denote by Ωh a conforming isogeometric discretiza-
tion of Ω [1]. Denote by Fh the set of all faces of Ωh, and by F 0

h ⊂ Fh the set of
internal faces. Over Fh, we define nF as a predefined normal over each F being
coincident with n when F is a boundary face. We denote by hF the diameter
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of the face being the length of the edge in 2D, and equal to 20.5∗ length of the edge

in 3D. We denote by Sp1,...,pd

c1,...cd
the space, defined over Ωh, of splines functions of

degree pi ≥ 1, and continuity ci = −1 ≤ pi −1 in the xi coordinate. Over Fh, for
any function vh ∈ Sp1,...,pd

c1,...cd
, we denote by [vh] the jump operator, and by {vh}

the average operator, defined as follows:

[vh] |F =

{
v−h − v+h , if F ∈ F 0

h ,
vh, if F ∈ Fh \ F 0

h ,
{vh} |F =

{
1

2
(v−h + v+h ), if F ∈ F 0

h ,

vh, if F ∈ Fh \ F 0
h ,

(16)
with v−

h and v+
h denoting the left and right traces respectively, with respect to the

predefined normal nF . Finally, for a given p ≥ 1, define Wh :=
[
Sp,...,p

−1,···−1

]2 as the
space for the discontinuous velocity, Qh = Sp,...,p

−1,...,−1, and Q0,h := Qh ∩L2
0(Ω) as

the space for the discontinuous pressure. The equal-order velocity and pressure
discontinous Galerkin formulation reads:

Find (uDG
h , pDG

h ) ∈ Wh × Q0,h, such that:

ah(uDG
h ,vh) + bh(vh, pDG

h ) = (f,vh)Ω , ∀vh ∈ Wh,

−bh(uDG
h , qh) + sh(pDG

h , qh) = 0, ∀ qh ∈ Q0,h,
(17)

with

ah(wh,vh) =
∑

i=1,...,d

(
∑

K∈Ωh

∫

K

∇wh,i · ∇vh,i −
∑

F∈Fh

∫

F

{∇wh,i} · nF [vh,i]

−
∑

F∈Fh

∫

F

[wh,i] · {∇vh,i} · nF +
∑

F∈Fh

∫

F

η

hF
[wh,i][vh,i]

)

,

(18)
being the discretization of the diffusive term,

bh(vh, qh) = −
∑

K∈Ωh

∫

K

qh∇ · vh +
∑

F∈Fh

∫

F

[vh] · nF {qh}, (19)

is the discretization of the pressure-velocity coupling term, and

sh(ph, qh) =
∑

F∈F 0
h

hF

∫

F

[ph][qh], (20)

an extra stabilization term allowing to consider equal-order discrete spaces.
In (18), η > η denotes a user-defined stabilization parameter that has to be
considered large enough to guarantee the inf-sup stability (see eg. Lemma 4.12
in [37]). Notice that, by identifying Vh = Wh × Q0,h, uDG

h = (uDG
h , pDG

h ), and
vh = (vh, qh), problem (17) can be equivalently written of the form (4), with
lh(vh) = (f, vh)Ω and

bh(uDG
h , vh) := ah(uDG

h ,vh) + bh(vh, pDG
h ) − bh(uDG

h , qh) + sh(pDG
h , qh). (21)
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Moreover, the bilinear form (21) satisfies the inf-sup condition (5) (see Lemma
6.13 in [37]) with the following norm:

|||(vh, qh)|||2 =
∑

i=1,...,d

(
∑

K∈Th

‖∇vh,i‖2L2(K) +
∑

F∈Fh

η

hF
‖[vh,i]‖2L2(F )

)

+ ‖qh‖2L2(Ω) +
∑

F∈F 0
h

hF ‖[qh]‖2L2(F ).

(22)

Remark 1 (Discarding the zero-mean value restriction). Following Remark 6.14
from [37], in practice we can ignore the zero mean-value constrain (13) in the
spaces for the pressure, and call MUMPS with pivoting. Then, a zero mean-value
solution can be recovered by post-processing the solution as p = p − 1

|Ω|
∫

Ω
p.

3.3 Trial Spaces for the Residual Minimization Problem

The subspace condition for the trial space give a wide range of possibilities.
In this paper, we focus in the two dimensional case. For a given polynomial
degree p, we denote by Vh = Sp,p

−1,−1 × Sp,p
−1,−1 the test space for the velocity,

and by Qh = Sp,p
−1,−1 the test space for the pressure (see Remark 1). Denoting

by Vh ⊂ Wh the trial space for the velocity, and by Ph ⊂ Qh the trial space for
the pressure, we consider the following conforming couples of spaces:

a) Raviart-Thomas type:
Vh := Sp,p−1

c,c−1 × Sp−1,p
c−1,c , Ph := Sp−1,p−1

c−1,c−1 , with p ≥ 2 and 1 ≤ c ≤ p − 1.

b) Second order Nédélec type:
Vh := Sp,p

c,c−1 × Sp,p
c−1,c, Ph := Sp−1,p−1

c−1,c−1 , with p ≥ 2 and 1 ≤ c ≤ p − 1.

c) Taylor-Hood type:
Vh := Sp,p

c,c × Sp,p
c,c , Ph := Sp−1,p−1

c,c , with p ≥ 2 and 0 ≤ c ≤ p − 2.

d) Equal-order type:
Vh := Sp,p

c,c × Sp,p
c,c , Ph := Sp,p

c,c , with p ≥ 1 and 0 ≤ c ≤ p − 2.

We notice that couple of spaces a), b) and c) are stable in the classical isogeo-
metric case (see [39]), while the couple d) is not.

4 Numerical Results

In this section, we explore the results obtained considering (as starting point)
the equal-order discontinuous Galerkin formulation defined in Sect. 3.2, with
Wh = S4,4

−1,−1 × S4,4
−1,−1 and Qh = S4,4

−1,−1 as the discontinuous spaces for the
velocity and pressure respectively, and performing the discontinuous Galerkin
based residual minimization method (see Sect. 2) with the several options of
conforming trial spaces defined in Sect. 3.3.
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Table 1. Taylor-Hood type trial with minimum and maximum continuity respectively.

Trial spaces ‖u − uh‖L2 ‖p − ph‖L2 ‖div(u − uh)‖L2 flops

V = S4,4
0,0 × S4,4

0,0 , P = S3,3
0,0 1.72e−06 5.69e−05 5.28e−06 3.96537e+12

V = S4,4
2,2 × S4,4

2,2 , P = S3,3
2,2 1.59e−05 0.000232 2.14e−05 9.52712e+10

Table 2. Raviart-Thomas type trial with minimum and maximum continuity respec-
tively.

Trial spaces ‖u − uh‖L2 ‖p − ph‖L2 ‖div(u − uh)‖L2 flops

V = S4,3
1,0 × S3,4

0,1 , P = S3,3
0,0 0.00019 0.000132 7.05e−06 4.40153e+11

V = S4,3
3,2 × S3,4

2,3 , P = S3,3
2,2 0.000493 0.000235 1.65e−06 2.7742e+10

4.1 A Smooth Analytical Solution

We consider the Stokes problem (12), defined over the 2D domain Ω = [0, 1]2,
and we define the source term f in such a way that the analytical solution is
given by u = (u1, u2) and p, with (cf. [40]):

u1(x, y) = 2ex(−1 + x)2x2(y2 + y)(−1 + 2y),

u2(x, y) = − ex(−1 + x)x(−2 + x(3 + x))(−1 + y)2y2,

p(x, y) = (−424 + 156e + (y2 − y)(−456 + ex(456 + x2(228 − 5(y2 − y))+

2x(−228 + (y2 − y)) + 2x3(−36 + (y2 − y)) + x4(12 + (y2 − y))))).
(23)

In Tables 1, 2, 3 and 4 we show the L2-error in the approximation of the
functions u, p and divu, obtained by considering a fixed mesh of size 20 × 20,
and the extreme allowed continuities for the Taylor-Hood type, Raviart-Thomas
type, second order Nédélec type, and equal-order type trial spaces respectively.
We also show the number of flops required for the resolution of the corresponding
saddle-point problem (see Equation (11)). As expected, all the selected trial
spaces deliver good approximations for the measured quantities. Moreover, there
is no a significative difference in the approximation when considering a highly-
continuous trial space, while the total number of flops is reduced in almost two
orders of magnitude, when compared with its C0-trial equivalent, and the highly-
continuous equal order type trial is the one that delivers a better balance between
accuracy and computational cost. Last can be also appreciated in Fig. 1, where
we plot the Pareto front for the previous results (see [41]), considering the the
number of floating-point operations (as performed by the MUMPS direct solver)
as the vertical axis, and the numerical error measured in the |||(·, ·)|||-norm,
defined in Equation (22), as the horizontal axis.

Finally, in Fig. 2, we plot the error |||(u − uh, p − ph)||| (real), and the error
of the residual estimation |||(ru

h, rp
h)||| (estimated), where ru

h, rp
h are the residual
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Table 3. Second-order Nédélec type trial with minimum and maximum continuity
respectively.

Trial spaces ‖u − uh‖L2 ‖p − ph‖L2 ‖div(u − uh)‖L2 flops

V = S4,4
1,0 × S4,4

0,1 , P = S3,3
0,0 1.72e−06 5.69e−05 5.27e−06 9.09917e+11

V = S4,4
3,2 × S4,4

2,3 , P = S3,3
2,2 1.72e−05 0.000232 2.27e−05 5.00601e+10

Table 4. Equal-order type trial with minimum and maximum continuity respectively.

Trial spaces ‖u − uh‖L2 ‖p − ph‖L2 ‖div(u − uh)‖L2 flops

V = S4,4
0,0 × S4,4

0,0 , P = S4,4
0,0 1.64e−06 8.29e−05 5.27e−06 2.85826e+12

V = S4,4
3,3 × S4,4

3,3 , P = S4,4
3,3 1.79e−05 9.13e−05 2.28e−05 3.86971e+10

10−5 10−4 10−3

1010

1011

1012

1013

V = S4,4
0,0 × S4,4

0,0 , P = S3,3
0,0

V = S4,4
1,0 × S4,4

0,1 , P = S3,3
0,0

V = S4,4
3,3 × S4,4

3,3 , P = S4,4
3,3

V = S4,3
3,2 × S3,4

2,3 , P = S3,3
2,2

Fig. 1. Pareto front for different setups of trial spaces defined in Sect. 3.3. The vertical
axis denotes the computational cost expressed in terms of the number of floating-point
operations performed by MUMPS solver. The horizontal axis denotes the error in the
|||(·, ·)|||-norm (see (22)) for the smooth analytical problem.

associated with the velocity and pressure respectively, obtained when consider-
ing Vh = S4,4

c,c × S4,4
c,c , Ph = S4,4

c,c , with c = 0, 1, 2, 3 respectively, as trial spaces.
As can be appreciated in the figures, increasing the continuity reduces the dis-
tance between the real and the estimated errors, implying that the error bound
becomes sharper when increasing the continuity.
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Fig. 2. Comparison of residual and error for different mesh dimensions, 4 × 4, 8 × 8,
16× 16 and 32× 32 considering as test the space Wh = S4,4

−1,−1 ×S4,4
−1,−1, Qh = S4,4

−1,−1,

and as trial the space Vh = S4,4
c,c ×S4,4

c,c , Ph = S4,4
c,c , with c = 0, 1, 2, 3 respectively (from

left to the right).

Fig. 3. Left panel: The formulas of the Dirichlet boudnary conditions for the velocity
field. Right panel: The singularities at the pressure solution.
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Table 5. Velocity (u1, u2) and pressure p on a series of uniformly adapted meshes.

4.2 The Lid-Cavity Flow Problem

With the spirit of exploring the behavior of the method when the solution is non-
smooth, as second example we consider the well-known lid-cavity flow problem
(see eg. [42]).

The problem models a plane flow of an isothermal fluid in a square lid-driven
cavity of size (0, 1)2 (cf. [43]). The pressure solution in the problem exhibits two
singularities at the corners, as presented on right panel in Fig. 3. For the numeri-
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cal simulation, we enforce the Dirichlet boundary conditions for the velocity field
in terms of a small parameter ε > 0, to obtain a solution with Dirichlet trace
belonging to H1/2 (see left panel in Fig. 3). For the pressure, we fix its value
at one point, which is numerically equivalent to setting the condition (13). We
set a homogeneous force f = 0. We consider the spaces Wh = S4,4

−1,−1 × S4,4
−1,−1

and Qh = S4,4
−1,−1 for as test for the velocity and pressure respectively, and

the spaces Vh = S4,4
3,3 × S4,4

3,3 , Ph = S4,4
3,3 as trials for the velocity and pressure

respectively, that we recall it is not stable in the classical isogeometric sense
(cf. [39]). In Table 5, we plot the components of the discrete velocity field, and
the discrete pressure field obtained considering several uniform meshes. As can
be appreciated from the figures, also in this scenario the method delivers stable
and accurate approximations, even if a highly-continuous space is chosen as trial,
evidencing the performance of the method.

5 Conclusions

We investigated a Discontinuous Galerkin (DG) based residual minimization
(RM) stabilization for isogeometric analysis (IGA) simulations of the station-
ary Stokes problem. We explore the results obtained when considering a fixed
DG-type test space and several types of conforming trial spaces. The higher
continuity spaces result in a lower computational effort of the solver due to the
reduction of the number of degrees of freedom, without affecting significantly
the approximation. Moreover, the upper error bound constant is reduced when
the continuity is increased, leading to a sharper estimation of the error in terms
of the analytical solution. The method is also able to capture singularities even
is considering a highly-continuous trial space, as evidenced with the well-known
lid-cavity flow problem in the numerical section.

As future work, we plan to extend the analysis to other kind of mixed formu-
lations, such as the Ossen and Maxwell equations [44–46], as well as exploring
parallelization techniques for the resolution of the saddle-point problem [47],
and localized adaptive mesh refinement techniques based on the residual esti-
mator (10). The future work will also involve incorporating of the DG method
mixed with residual minimization formulation within adaptive finite element
code [42,48].
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Galerkin formulation of the stokes problem accomodating equal- order interpola-
tions. Comput. Methods Appl. Mech. Eng. 59, 85–99 (1986)

31. Jansen, K.E., Collis, S.S., Whithing, C., Shakib, F.: A better consistency for low-
order stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 174,
153–170 (1997)

32. Maniatty, A.M., Liu, L., Klaas, O., Shephard, M.S.: Stabilized finite element
method for viscoplastic flow: formulation and a simple progressive solution strat-
egy. Comput. Methods Appl. Mech. Eng. 190, 4609–4625 (2001)

33. Matuszyk, P.J., Boryczko, K.: A parallel preconditioning for the nonlinear stokes
problem. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.)
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