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Abstract. A practical and simple stable method for calculating Fourier inte-
grals is proposed, effective both at low and at high frequencies. An approach
based on the fruitful idea of Levin, which allows the use of the collocation
method to approximate the slowly oscillating part of the antiderivative of the
desired integral, allows reducing the calculation of the integral of a rapidly
oscillating function (with a linear phase) to solving a system of linear algebraic
equations with a triangular or Hermitian matrix.
The choice of Gauss-Lobatto grid nodes as collocation points let to increasing

the efficiency of the numerical algorithm for solving the problem. To avoid
possible numerical instability of the algorithm, we proceed to the solution of a
normal system of linear algebraic equations.
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1 Introduction

The initial formulation of the method of numerical integration of highly oscillating
functions by Levin and his followers suggests a possible ambiguity in finding the
antiderivative: any solution to the differential equation without boundary (initial)
conditions can be used to calculate the desired value of the integral.

Levin’s approach [1] to the integration of highly oscillating functions consists in the
transition to the calculation of the antiderivative function from the integrand using the
collocation procedure in physical space. In this case, the elements of the degenerate [2]
differentiation matrix of the collocation method [3] are a function of the coordinates of
the grid points, the matrix elements are calculated using very simple formulas. In books
[3, 4] various options for the implementation of this method are considered, many
applied problems are solved.

The method proposed by Levin both in the one-dimensional and in the multidi-
mensional case was published by him in articles [1, 9], and then he was thoroughly
studied in [10]. The method is presented in great detail in the famous monograph [4],
which describes the evolution of numerical methods for integrating rapidly oscillating
functions over the past fifteen years.
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There are a large number of works using various approaches in order to propose
fast and stable methods for solving systems of linear algebraic equations (SLAE) that
arise when implementing the collocation method. However, many of them [5–7]
encounter difficulties in solving the corresponding systems of linear equations.

In particular, the use in specific implementations of the Levin collocation method in
the physical space of degenerate Chebyshev differentiation matrices, which also have
eigenvalues differing by orders of magnitude, makes it impossible to construct a stable
numerical algorithm for solving the resulting SLAEs. The approach to solving the
differential equation of the Levin method, described in [5, 6, 8], is based on the
approximation of the solution, as well as the integrand phase and amplitude functions
in the form of expansion into finite series in Chebyshev polynomials. Moreover, to
improve the properties of the algorithms, and hence the matrices of the corresponding
SLAEs, three-term recurrence relations are used that connect the values of Chebyshev
polynomials of close orders. However, these improvements are not enough to ensure
stable calculation of integrals with large matrix dimensions.

In our work, we consider a method of constructing a primitive, based on the
spectral representation of the desired function.

We propose increasing the efficiency of the algorithm by reducing the corre-
sponding system of linear equations to a form that is always successfully solved using
the LU-decomposition method with partial selection of the leading element.

Consider the integral that often occurs in Fourier analysis - in applications related to
signal processing, digital images, cryptography and many other areas of science and
technology.

Ix f½ � ¼
Z b

a
f xð Þeixg xð Þdx ð1Þ

In accordance with the Levin method, the calculation of this integral reduces to
solving an ordinary differential equation

p0 xð Þþ ixg0 xð Þp xð Þ ¼ f xð Þ; x 2 a; b½ � ð2Þ

As argued in [1], the system (2) has a particular solution which is not rapidly
oscillatory, and we shall look for an approximation to this particular solution by
collocation with ‘nice’ functions, e.g. polynomials. If the unknown function p(x) is a
solution of Eq. (2), then the result of integration can be obtained according to the
formula

Ix f ; gð Þ ¼
Z b

a
p0 xð Þþ ixg0 xð Þp xð Þð Þeixg xð Þdx ¼ p bð Þeixg bð Þ � p að Þeixg að Þ: ð3Þ

Below we will consider the special case of integration of a highly oscillating
function with a linear phase, reduced to the standard form
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Ix f½ � ¼
Z 1

�1
f xð Þeixxdx ¼ p 1ð Þeix � p �1ð Þe�ix: ð4Þ

This can be justified, in particular, by the fact that in many well-known publications
[7, 11, 12] stable transformations are discussed in detail, which make it possible to
proceed from a general integral with a nonlinear phase to an integral in standard form
(on the interval [−1, 1]) with a linear phase.

In the paper by Levin [1], to automatically exclude the rapidly oscillating com-
ponent ce�ixx of the general solution p xð Þ ¼ p0 xð Þþ ce�ixg xð Þ, it is proposed to search
for a numerical solution (2) based on the collocation method, using its expansion in a
basis of slowly oscillating functions, rather than using difference schemes (or methods
of the Runge-Kutta type).

In this case, the following statement is true [2]:

Statement. The solution of Eq. (2) obtained using the Levin collocation method is a
slowly oscillating function O x�1ð Þ for x � 1.

2 Approximation of the Antiderivative. Calculation Method

Let us consider in more detail the problem of finding the antiderivative integrand, or
rather, the approximating polynomial p xð Þ, satisfying condition (2) in a given number
of points on the interval [−1, 1]. Consider the spectral method of finding an approxi-
mating function in the form of expansion in a finite series

p xð Þ ¼
Xn

k¼0
ckTk; x 2 �1; 1½ � ð5Þ

in the basis of Chebyshev polynomials of the first kind Tk xð Þf g1k¼0, defined in the
Hilbert space of functions on the interval [−1, 1].

The application of the collocation method to solve the problem p0 xð Þþ ixp xð Þ ¼
f xð Þ leads to the need to fulfill the following equalities for the desired coefficients
ck; k ¼ 1; . . .; n

Xn

k¼0
ckT

0
k xj
� �þ ix

Xn

k¼0
ckTk xj

� � ¼ f xj
� �

; j ¼ 0; . . .; n ð6Þ

at the collocation points x0; x1; . . .; xnf g.
The last statement is equivalent to the fact that the coefficients ck; k ¼ 0; . . .; n

should be a solution to the system of linear algebraic equations of the collocation
method:

p0 x0ð Þþ ixp x0ð Þ ¼ f x0ð Þ;
p0 x1ð Þþ ixp x1ð Þ ¼ f x1ð Þ:

. . .
p0 xnð Þþ ixp xnð Þ ¼ f xnð Þ:

8><
>: ð7Þ
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We represent the values of the derivative of the desired function (polynomial) at the
collocation points in the form of the product Dp ¼ p0 of the matrix D by the vector of
values of p. Recall that the Chebyshev differentiation matrix D has the standard rep-
resentation in the physical space [3]

Dkj ¼
rk
rj

�1ð Þkþ j= xk � xj
� �

k; j ¼ 0; . . .n; k 6¼ j

�Pn
l¼0;l 6¼k Dkl k ¼ j;

(
ð8Þ

where rj ¼ 2 j ¼ 0; n
1 1; . . .; n� 1:

�
Substituting p0 ¼ Dp into Eq. (7) we reduce it to a system of linear algebraic

equations

Dþ ixEð Þp ¼ f: ð9Þ

Here E is an identity matrix, f is a vector of values of the amplitude function on the
grid. Denote by B the differentiation matrix in the frequency (spectral) space [13],
whose coefficients are explicitly expressed as

Bij ¼ 1=rj
� �

2j if j[ i; iþ j odd
0 otherwise

�
ð10Þ

where 0� i; j� n and ri ¼ 2 i ¼ 0
1 i[ 0:

�
Denote by T the Chebyshev matrix of mapping a point (vector) from the space of

coefficients to the space of values of the function [14]. Given that p ¼ Tc is the vector
of values of the desired function (also in physical space), the components of the
derivative vector can be written as Dp ¼ TBc [14]. As a result, we obtain the system of
linear algebraic equations equivalent to system (9),

TBcþ ixTcð Þ ¼ f ð11Þ

which is valid for an arbitrary grid on the interval [−1, 1]. We write Eq. (11) in detail

T00 T10 T20 ..
.

Tn0

T01 T11 T21 ..
.

Tn1

T02 T12 T22 ..
.

Tn2

. . . . . . . . . . .
.

. . .

T0n T1n T2n ..
.

Tnn

2
666666664

3
777777775

0 1 0 3 ..
.

0 4 0 ..
.

0 6 ..
.

. .
. ..

.

0

2
66666664

3
77777775
þ ixE

0
BBBBBBB@

1
CCCCCCCA

c0
c1
c2
. . .
cn

2
66664

3
77775 ¼

f0
f1
f2
. . .
fn

2
66664

3
77775

ð12Þ

where to reduce the formulas we used the notation Tkj ¼ Tk xj
� �

; k; j ¼ 0; . . .; n.
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The product of a non-degenerate matrix T by a non-degenerate triangular matrix
Bþ ixE is a non-degenerate matrix. Therefore, the system of linear algebraic Eqs. (12)
has a unique solution.

Statement 1. The solution of this system of linear algebraic equations with respect to
the coefficients c ¼ c0; c1; . . .; cnð Þ allows us to approximate the antiderivative function
in the form of a series (5) and calculate the approximate value of the integral by
formula (4).

3 Modification of the Calculation Method

System (12) is valid for an arbitrary grid on the interval [−1, 1]. However, consider-
ation of the collocation problem on a Gauss-Lobatto grid allows significant simplifi-
cation of this system of linear algebraic equations. First, we multiply the first and last
equations from (12) by 1=

ffiffiffi
2

p
to obtain an equivalent “modified” system with a new

matrix ~T (instead of T), which is good because it has the property of discrete
“orthogonality” and, therefore, is non-degenerate. Therefore, multiplying it on the left
by its transposed one gives the diagonal matrix:

~TT ~T ¼

n 0 0 ..
.

0

0 n=2 0 ..
.

0

0 0 n=2 ..
.

0

. . . . . . . . . . .
.

. . .

0 0 0 ..
.

n

2
666666664

3
777777775

We use this property and multiply the reduced (modified) system (12) on the left by
the transposed matrix ~TT , thereby reducing it to the upper triangular form. Indeed, the
matrix of the resulting system is calculated as the product of the diagonal matrix by the
triangular matrix, which, in turn, is the sum of the Chebyshev differentiation matrix in
the spectral space and the diagonal matrix.

Since the matrix ~TT is non-degenerate, the new system of linear algebraic equations
is equivalent to system (12) and has a unique solution.

Taking into account the specific values of the Chebyshev polynomials on the
Gauss-Lobatto grid [15], simplifies the system, bringing it to the form
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Ac ¼

ix 1 0 3 ..
.

n ¼ 1

0 ix 2 0 ..
.

0

0 0 ix 3 ..
.

n� 1

0 0 0 ix ..
.

0

. . . . . . . . . . . . . .
.

n� 1

0 0 0 0 ..
.

ix

2
66666666664

3
77777777775

c0
c1
c2
c3
. . .
cn

2
6666664

3
7777775
¼

~f0=2
~f1
~f2
~f3
. . .
~fn=2

2
6666664

3
7777775

ð13Þ

where ~fj ¼ 1
n

P00
k¼0;n Tj xkð Þf xkð Þ; j ¼ 0; . . .; n and symbol

P00 denotes a sum in which
the first and last terms are additionally multiplied by 1/2.

By the Kronecker-Capelli theorem, the system of linear algebraic Eqs. (13) with a
square matrix and a non-zero determinant is not only solvable for any vector of the
right-hand side, but also has a unique solution.

Statement 2. For xj j[ 2n the SLAE (13) has a stable solution.

Statement 3. To solve system (13), no more than (� n2=4) operations of
addition/subtraction and multiplication/division with a floating point are required.

4 Efficient Method for Solving the Problem

Algorithms for solving systems of linear equations such as the Gauss method or the
LU-decomposition work well when the matrix of the system has the property of
diagonal dominance. Otherwise, standard solution methods lead to the accumulation of
rounding errors.

A stable solution to the system may be provided by the LU-decomposition method
with a partial choice of a leading element. For the triangular matrix (13), there is no
forward pass (in which the leading element is selected) of the LU-decomposition, and
the back pass of the method is always implemented without the selection of leading
element.

A solution to system (13) can still be unstable in the case when ixj j � 2n. Passing
to the solution of the normal system, that is, to the problem of minimizing the residual

Ac� ~f
�� ��2, multiplying the system of Eqs. (13) on the left by the Hermitian conjugate
matrix

A�Ac ¼ A�~f ð14Þ

we transform the matrix of the system (13) to the Hermitian form.
Although the system of linear equations became more filled, since instead of upper

triangle three-diagonal matrix a system of linear equations with all matrix elements
filled appeared, its computational properties are cardinally improved. The resulting
matrix of a system of linear algebraic equations is Hermitian, its eigenvalues are real,
and the eigenvectors form an orthonormal system. The method of LU-decomposition
with a partial choice of the leading element, due to the properties of the resulting

34 L. A. Sevastianov et al.



matrix, provides [17] the stability of the numerical algorithm for finding the only
solution to the system.

5 Description of the Algorithm

Let us describe the sequence of operations of the presented algorithm for calculating
the integral of a rapidly oscillating function of the form (1) with a linear phase.

Input data preprocessing.

1. If the integral is given on the interval a; b½ �, we pass to the standard domain of
integration �1; 1½ � by changing the variables x ¼ b�a

2 tþ bþ a
2 ; t 2 �1; 1½ �.

2. Fill by columns the Chebyshev transformation matrix T from (12) using only one
pass of the recursive method for calculating the values of Chebyshev polynomials
of the first kind of the n-th order.

Antiderivative algorithm

3. Calculate the vector of the right-hand side of system (13).
4. Fill in the elements of the sparse matrix (13), which depend only on the dimension

n and the phase value x.
5. If xj j[ 2n, then go to step 6. Otherwise go to step 7.
6. The matrix of system (13) is a matrix with a diagonal dominance and can be stably

solved. The solution values at the boundary points are used to determine the desired
antiderivative values. Go to step 8.

7. Multiply relation (13) on the left by the conjugate matrix to obtain a Hermitian
matrix (14) with diagonal dominance. In this case, to determine the values of the
antiderivative at the boundary points the normal solution is stably determined using
the LU-decomposition with a partial choice of the leading element.

8. We calculate the values of the antiderivative at the ends of the interval using the
formulas p 1ð Þ ¼ Pn

j¼0 cj; and p �1ð Þ ¼ Pn
j¼0;j�even cj �

Pn
j¼0;j�odd cj. The desired

value of the integral is obtained using the formula I f ;xð Þ ¼ p 1ð Þeix � p �1ð Þe�ix.

6 Numerical Examples

Example 1. We give an example of calculating the integral when, for a good poly-
nomial approximation of a slowly oscillating factor of the integrand, it is necessary to
use polynomials of high degrees.

Ix
1

xþ 2

� �
¼

Z 1

�1

1
xþ 2

eixxdx ð15Þ

This integral is given by Olver ([16], p. 6) as an example of the fact that the GMRES
method allows one to calculate the integral much more accurately than the Levin
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collocation method. However, in his article, solving the resulting system of linear
algebraic equations requires O n3ð Þ operations, as in the Levin collocation method using
the Gaussian elimination algorithm (Table 1).

A comparison of our results at 40 interpolation points with the results of [16] shows
a significant gain in accuracy: the deviation from the exact solution is of the order of
10�17 compared with the deviation of the order of 10−7 in Olver’s article. The proposed
algorithm to achieve an accuracy of 10−13 in the calculation of the integral uses no
more than 30 points (n� 30Þ for x = 1,…, 100.

Example 2. As a second example, we consider the integral

Z 1

�1

1
x2 þ 1

eixsin xþ 1=4ð Þdx ð16Þ

from [16], where the results of calculating the integrals depending on the number of
approximation points are illustrated on Fig. 1 [16].

Table 1. The following table shows the values of the integral calculated by us for various values
of the parameter x with an accuracy of 17 significant digits.

x Real part Image

x = 1 0.9113301035062809891 −0.1775799622517861791
x = 10 −0.07854759997855625023 −0.04871911238563061052
x = 50 −0.00665013790168713 0.0129677770647216
x = 100 −0.00667389328931381 0.00580336592710437

1.E-20

1.E-18

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06
10 15 20 25 30 35 40

Re
sid

ua
ls,

 lo
g 

sc
al

e

Number of points

ω=1

ω=10

ω=50

ω=100

Fig. 1. The error in approximating integral (15) for n = 10–40 and for different choices of x
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To reduce this integral to the (standard form of the Fourier integral) form of integral
with the linear phase, we change the variables y ¼ sin xþ 1

4

� �
. Then dx ¼ 1ffiffiffiffiffiffiffiffi

1�y2
p dy,

x ¼ arcsin yð Þ � 1=4, the integration limits are changed to � sin 3
4

� �
; sin 5

4

� �
and the

integral can be written as:

Z sin 5
4ð Þ

�sin 3
4ð Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
ð arcsin yð Þ � 1

4

� �2 þ 1Þ
eixydy ð17Þ

Let us consider the calculation of this integral for various values of the parameter x
using an algorithm that takes into account the linearity of the phase function (Table 2).

The proposed algorithm to achieve an accuracy of 10�16 when calculating the
integral uses no more than 90 points (n � 90) with x = 0.1, …, 100. A significant
gain in the number of addition/subtraction and multiplication/division operations is
achieved when the frequency value is greater than the number n, which ensures the
diagonal dominance of the system of linear algebraic equations in the matrix (13)
(Fig. 2).

It is useful to compare the algorithm we developed for finding the integrals of
rapidly oscillating functions with the results of [5], which presents various and care-
fully selected numerical examples for various classes of amplitude functions.

Example 3. Consider the calculation of the integral with an exponential function as the
amplitude

I a;xð Þ ¼
Z 1

�1
ea x�1ð Þeixxdx; a ¼ 16; 64;x ¼ 20; 1000: ð18Þ

The exact value of the integral can be calculated by the formula I a;xð Þ ¼ 2�e�asinh aþ ixð Þ
aþ ixð Þ

[5]. The plot of the deviation of the integral calculated by us from the exact one
depending on the number of collocation points (absolute error) is shown in Fig. 3.

Table 2. The table shows the values of the integral for various values of the parameter x.

x Re Int Im Int

x = 0.1 1.5687504317409 0.0337582105322438
x = 1 1.3745907842843 0.305184104407599
x = 3 0.311077689499021 0.339612459676631
x = 10 0.00266714972608754 0.180595659138141
x = 30 0.00706973992290492 0.0455774930833239
x = 50 −0.00620005944852318 0.0155933115982172
x = 100 0.00460104072965418 −0.00790563176002816
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Comparison with the results of [5] shows that the accuracy of calculating the
integrals practically coincides with that of [5]. Our advantage is the much simpler form
of the matrix of a system of linear equations. In the best case, when |x| > n matrix of
the system is a triangular matrix with a dominant main diagonal. If n > |x|, then the
transition to the search for a normal solution to a system with a positively defined
Hermitian matrix allows us to create a numerically stable solution scheme.

1.E-17

1.E-15

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03
10 20 30 40 50 60 70 80 90

Re
sid

ua
ls,

 lo
g 

sc
al

e

Number of points

ω=0.1
ω=1
ω=3
ω=10
ω=30
ω=50
ω=100

Fig. 2. The figure shows the absolute error in approximating integral (17) for n = 10–90 and for
different choices of x: 0.1, 1, 3, 10, 30, 50, 100.

1.E-20

1.E-18

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02 10 20 30 40 50 60 70

α=  16, ω=  20
α=  64, ω=  20
α=  16, ω=  1000
α=  64, ω=  1000

Fig. 3. Plot of the absolute error of the approximation of the integral (18) with a = 16.64; at
x = 20 and x = 1000 depending on the number of nodes of the collocation method. Logarithmic
scale.
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Example 4. In this example [5], the rapidly oscillating function ei2pax is considered as
the amplitude one. It is clear that in this case, to achieve the same accuracy in cal-
culating the integral as in the previous example, a larger number of collocation points
will be required (Fig. 4).

I a;xð Þ ¼
Z 1

�1
ei2paxeixxdx; a ¼ 5; 10;x ¼ 20; 1000: ð19Þ

Example 5. The example demonstrates the calculation of the integral in the case when
the amplitude function is the generating function of the Chebyshev polynomials of the
first kind.

I a;xð Þ ¼
Z 1

�1

1� a2

1� 2axþ a2
eixxdx; a ¼ 0:8; 0:9;x ¼ 20; 1000: ð20Þ

The behaviour of the amplitude function should lead to an almost linear dependence
of the approximation accuracy on the number of points for various values of the
parameters a and x. Numerical experiments carried out confirm this assertion (Fig. 5).

1.E-21

1.E-19

1.E-17

1.E-15

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03 10 20 30 40 50 60 70 80 90 100 110

Number of points

α=  10, ω=  20
α=  10, ω=  1000
α=  5, ω=  20
α=  5, ω=  1000

Fig. 4. The graph of the absolute error of the approximation of the integral (19) with a ¼
5; 10;x ¼ 20; 1000 depending on the number of nodes of the collocation method. Logarithmic
scale.
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Moreover, the accuracy of calculating the integrals is not inferior to the accuracy of
the methods of [5].

Example 6. Amplitude is a bell-shaped function

I a;xð Þ ¼
Z 1

�1

1
x2 þ a2

eixxdx; a ¼ 1=4; 1=8;x ¼ 20; 1000: ð21Þ

The example is rather complicated for interpolation by Chebyshev polynomials. To
achieve acceptable accuracy (10�18), the deviation of the calculated value of the
integral from the exact one requires about 300 approximation points both for small
values of x ¼ 20 and for large x ¼ 1000 (Fig. 6).

1.E-20

1.E-18

1.E-16

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02
10 60 110 160 210 260 310

α=  0.8, ω=  20
α=  0.9, ω=  20
α=  0.8, ω=  1000
α=  0.9, ω=  1000

Fig. 5. The plot of the absolute error of approximation of the integral (22) with a = 0.8, 0.9;
x = 20,1000 depending on the number of nodes of the collocation method. Logarithmic scale.

1.E-21
1.E-19
1.E-17
1.E-15
1.E-13
1.E-11
1.E-09
1.E-07
1.E-05
1.E-03 10 60 110 160 210 260 310

α= 1/4, ω=  20
α=  1/8, ω=  20
α=  1/4, ω=  1000
α=  1/8, ω=  1000

Fig. 6. Plot of the absolute error of approximation of the integral (21) with a = 1/4, 1/8;
x = 20,1000 depending on the number of nodes of the collocation method. Logarithmic scale.
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Example 7. We give an example of integration when the amplitude function has
second-order singularities at both ends of the integration interval

I xð Þ ¼
Z 1

�1
1� t2
� �3=2

eixxdx;x ¼ 20; 1000: ð22Þ

The value of this integral can be calculated in an analytical form: f xð Þ ¼
3pJ2 xð Þ=x2. We present the numerical values of the integral for various values of the
frequency: I 20ð Þ ¼ �0:00377795409950960, I 1000ð Þ ¼ �2:33519886790130	 10�7

(Fig. 7).

Similar to the previous example, to achieve good accuracy in calculating the inte-
gral, it is necessary to consider a large number of collocation points. However, for this
type of amplitude functions, the method presented in the article works reliably both in
the case of low and high frequencies.

The given examples demonstrate that the dependence of the solution on the number
of approximation points is similar to the dependence demonstrated in Olver [17] and
Hasegawa [5]. The advantage of our approach is the simplicity of the algorithm and the
high speed of solving the resulting very simple system of linear algebraic equations. If
it is necessary to repeatedly integrate various amplitude functions at a constant fre-
quency, multiple gains are possible due to the use of the same LU-decomposition
backtracking procedure.

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04
10 60 110 160 210 260 310

ω= 20 ω=1000

Fig. 7. The plot of the absolute error of the approximation of the integral (22) with x ¼
20; 1000 depending on the number of nodes of the collocation method. Logarithmic scale.
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7 Conclusion

A simple, effective, and stable method for calculating the integrals of highly oscillating
functions with a linear phase is proposed. It is based on Levin’s brilliant idea, which
allows the use of the collocation method to approximate the antiderivative of the
desired integral. Using the expansion in slowly oscillating polynomials provides a
slowly changing solution of the differential equation.

The transition from a solution in physical space to a solution in spectral space
makes it possible to effectively use the discrete orthogonality property of the Cheby-
shev mapping matrix on a Gauss-Lobatto grid. With this transformation, the uniqueness
of the solution of the studied system is preserved, and its structure from a computa-
tional point of view becomes easier.

There are a large number of works using various approaches aimed to offer fast and
effective methods for solving SLAEs that arise when implementing the collocation
method. However, many methods [5, 6] encounter instability when solving the cor-
responding systems of linear equations. When using Chebyshev differentiation matrices
in physical space, instability is explained primarily by the degeneracy of these matrices
and the huge spread of eigenvalues of the matrix of the collocation method system. The
approach to solving the differential equation based on the representation of the solution,
as well as the phase and amplitude functions, in the form of expansion in finite series
by Chebyshev polynomials and the use of three-term recurrence relations [5, 6, 8] also
does not provide a stable calculation for n > |x|. To overcome instability, various
methods of regularizing the systems under study are proposed.

In our work, we propose a new method for improving computational properties by
preconditioning of the system in the spectral representation and by searching for its
pseudo-normal solution. The proposed method has been reduced to solving a SLAE
with a Hermitian matrix. A number of numerical examples demonstrates the advan-
tages of the proposed effective stable numerical method for integrating rapidly oscil-
lating functions with a linear phase.
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