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Abstract. Differential privacy algorithm is an effective technology to
protect data privacy, and there are many pieces of research about differ-
ential privacy and some practical applications from the Internet compa-
nies, such as Apple and Google, etc. By differential privacy technology,
the data organizations can allow external data scientists to explore their
sensitive datasets, and the data owners can be ensured provable pri-
vacy guarantees meanwhile. It is inevitable that the query results that
will cause the error, as a consequence that the differential privacy algo-
rithm would disturb the data, and some differential privacy algorithms
are aimed to reduce the introduced noise. However, those algorithms
just adopt to the simple or relative uniform data, when the data dis-
tribution is complex, some algorithms will lose efficiency. In this paper,
we propose a new simple ε-differential privacy algorithm. Our approach
includes two key points: Firstly, we used Laplace-based noise to dis-
turb answer to reduce the error of the linear computation queries under
intensive data items by workload-aware noise; Secondly, we propose an
optimized workload division method. We divide the queries recursively
to reduce the added noise, which can reduce computation error when
there exists query hot spot in the workload. We conduct extensive eval-
uation over six real-world datasets to examine the performance of our
approach. The experimental results show that our approach can reduce
nearly 40% computation error for linear computation when compared
with MWEM, DAWA, and Identity. Meanwhile, our approach can achieve
better response time to answer the query cases compared with the start-
of-the-art algorithms.
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1 Introduction

Among the data privacy protection technologies, existing research is based on the
solution from the following perspectives: anonymity-based methods, encryption-
based methods, noise-based method, and differential privacy-based method.
There have been many reliable encryption-based method technology, such as
DES [7], 3DES, Blowfish [23], RC5 [21], IDEA, RSA, etc. The advance of the
encryption technology is their security. However, the analyzability will be lost
due to the encryption. The anonymity-based methods to protect data privacy
can keep the data’s analyzability, the mainly anonymity-based technologies are
k-anonymity [24], L-diversity [3] and T-closeness [18]. However anonymity-based
methods have fatal weaknesses, and the anonymous data might suffer anti-
anonymity. For the data organizers, there exist security and privacy problems
on data collection and publishing. Among the data privacy attacks, differential
attack is a way that the attacker infers private data through statistical infor-
mation over two homogeneous datasets. For example, an attacker can infer a
person’s specific shopping goods by differential attacks via different queries. To
explore whether a person bought an object, the attacker can conduct two queries,
and one query obtains the count of persons that have bought the object, and
another query the count on the data set that excludes the person by the quasi-
identifier, such as timestamp, gender, region, age, etc. By the two query results,
the attack can infer whether the person bought the object.

To solve the differential attack, many differential privacy algorithms can be
used, such as matrix mechanism [17], DAWA algorithm [16], MWEM [13], and
RAPPOR [10], etc. The differential privacy technology can be used in many
fields [5,6,11,20,26]. Differential privacy was first defined by Dwork et al. [8,9],
and it protects the individual data by injecting noise to the results according
to the privacy budget. A number of ε-differential privacy algorithms have been
proposed [2,13,15–17], and some of them workload-aware and data-dependent
[2,13,16,17]. From the method of disturbing results view, ε-differential adopts
three ways: Laplace Mechanism [8], Exponential Mechanism [19], and Random-
ized Response [25]. Random response mechanism is an effective way to protect
the privacy of the frequency vector. The random response mechanism has been
used in privacy protection of collecting sensitive data since the 1960s. RAPPOR
[10] is ε-differential privacy technology that Google company has already used
in the browser, and it adopts the random response. MWEM [13] is classical
ε-differential privacy, and it is based on a combination of the Mechanism Expo-
nential Mechanism with the Multiplicative Weights update rule. The MWEM
algorithm selects and poses queries using the Exponential and Laplace Mech-
anisms, and it improves the approximation using the Multiplicative Weights
update rule. DAWA [16] is a data-dependent and workload-aware algorithm,
and it adds noise according to the input data and the given workload and it is a
two-stage mechanism for answering range queries under ε-differential privacy. In
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2016, Michael Hay et al. propose an evaluation framework for standardized eval-
uation of privacy, called DPBENCH [14]. In 2018, Dan Zhang et al. [27] propose
a programming framework and system called εktelo to implement the existing
algorithms. For the task of answering linear counting queries, εktelo allows both
privacy novices and experts to easily design algorithms, and the APEx [12] is
a novel differential privacy system that allows data analysts to pose adaptively
chosen sequences of queries along with required accuracy bounds.

Most of the algorithms are related to data distribution, especially when the
data items are sparse, i.e., there are a large number of items are empty, these
algorithms can effectively reduce the introduced errors. The same conclusion can
be reached in the paper [14,16]. While, these algorithms are not suitable for all
data situations, as in the situation the data items are intensive and the data
has complex distribution, and the conclusion is also shown in [14,16]. Current
ε-differential privacy algorithms will cause computation error for linear compu-
tations over the intensive data domain. Inspired by the partition of the data
domain, we propose a novel ε-differential privacy algorithm via Laplace-based
noise and optimized workload division to decrease the computation error in com-
plex data situation. We make the following contributions:

(1) We propose a novel ε-differential privacy algorithm in complex data situa-
tion. We used Laplace-based noise to disturb the query results. This distur-
bation can reduce the error of the linear computation queries under intensive
data items by workload-aware noise.

(2) We propose an optimized workload division method. We divide the queries
recursively to reduce the added noise. This division can effectively reduce
computation error when there exists a hot spot, i.e., some domain is fre-
quently queried in the workload.

(3) We conduct extensive experiments on six real-world datasets and conduct
a comparison with differential privacy algorithms (MWEM, DAWA, and
Identity). The evaluation results show that the proposed algorithm can effec-
tively reduce the computation error and has better efficiency relatively.

2 Approach Overview

We propose a ε-differential privacy algorithm for the linear computation queries.
The algorithm aims to reduce the results error in the case that the sensitivity of
workload is high and there exists frequency queried dom(B) item due to the hot
issue or statistical attack queries and the frequency count x is complex. In the
algorithm, we adopt Laplace Mechanism to disturb the query results. To reduce
the random added noise, we propose a novel perspective that the added noise
might be reduced by dividing the queries into several clusters and add Laplace-
base noise respectively. Furthermore, based on the Laplace division, we propose
a simple and effective recursion division for the query workloads and the privacy
budget. The method recursively divides the queries workload and privacy budget
into two parts when the expected noise is less than that before dividing. To sum
up, the algorithm can solve three problems: (1) The current ε-algorithms can
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reduce the error limitly, meanwhile, those algorithms will cost much computation
resources. (2) When the sensitivity of a query workload is large, the current
algorithms can’t reduce the noise obviously. This can be shown in [16]. (3) In the
situation that the data distribution is intensive, the current algorithms cannot
fit it and will cause much error for the answer to query workload.

The method we propose satisfies ε-differential privacy rigorously, and ε-
differential privacy is the privacy protection mechanism proposed by Dwork
in 2006 and regulates privacy protection. We will define ε-differential privacy
formally.

Definition 1 (ε-differential privacy). An algorithm M is a ε-differential pri-
vacy algorithm if for any neighboring database I and I ′ (|I − I ′| ≤ 1), and any
subset of output S satisfies the following formula:

Pr[M(I) ∈ S] ≤ exp (ε) × Pr[M(I ′) ∈ S]

The ε-differential privacy algorithm protects privacy data by disturbing the
answer and the attackers cannot distinguish the results over the neighboring
database I and I ′, and the parameter ε is the privacy budget and it determines
the privacy-preserving capacity. If the privacy budget is lower, the differential
algorithm will protect privacy more effectively. For the random algorithm M , if
the results over the two adjacent datasets I and I ′ are close to each other, and it
is difficult to infer whether a data item exists by M(X) and M(Y ). ε-differential
privacy has the following three primary properties.

Property 1. For the random algorithm εi-difference privacy M1, and function
M(X) is an arbitrary deterministic function: R → R′. Then M1(M(X)) still
satisfies ε differential privacy.

Property 2. For the random algorithm Mi and it satisfies εi-difference privacy.
Defining a random function M that it is a process of a random sequence of Mi.
The random function M satisfies

∑k
i=1 εi-difference privacy.

Property 3. The data set X make up of k data sets {X1, ...Xi, ...Xk}, and Mi(Xi)
satisfies ε-differential privacy, respectively. M(X) = {M1(X1), ...,Xk(Mk)} sat-
isfies max

εi

εi-differential privacy.

Our algorithm reduces the results error when answering the linear computa-
tion query under the ε-differential privacy, and we will define the linear com-
putation query. For a database instance I whose relational schema attributes
A = {A1, A2, ..., Al}. In A, each attribute data can be discrete or continu-
ous. For the continuous data, the data can be treated as discrete in the data
domain as well. The workload means a set of queries over the attributes
B = {B1, B2, ..., Bk},B ∈ A. For example, if the workload queries in a subset of
three-dimensional range query over attributes A1, A2, and A3, B = {A1, A2, A3}.
We then present a frequency vector x, and xi ∈ dom(B). For example, dom(B) =
{(1, 1, 1), (1, 1, 2), ...} and for each dom(B)i, xi is the frequency of tuples values
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dom(B)i. A linear computation query computes a linear combination of the fre-
quency in x, as described the following SQL query and we define the linear
computation query as follows definition formally.

Select count(∗) from R Where dom(B) = dom(B)i or... dom(B) = dom(B)k

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, xt =

⎡
⎢⎢⎢⎢⎢⎢⎣

2
3
4
1
0
9

⎤
⎥⎥⎥⎥⎥⎥⎦
, S = W · xt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
10
7
3
4
1
0
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Fig. 1. A sample of linear computation query workload, frequency vector, and answer
to the workload.

Definition 2 (Linear computation query). A linear computation query is a
length-n vector q = [q1, q2, ..., qn] , each qi ∈ {0,1}. The answer to a linear query
q on x is the vector product q · x = q1x1 + q2x2 + ...,+qnxn.

The linear computation can be called range count query, linear count query, and
point count query when the query q can be marked as range, length-n vector, or
a position in x.

In the data collection situation, calculating the frequency in x can be done
by the data organizers. And the data organizers has the capability to answer the
linear computation query over the frequency vector x. The workload W makes
up of a set of linear computation queries. If W is an m × n matrix, it means
m length-n linear computation queries and the query results can be computed
as the matrix product W · x. The linear computation query is one of the most
important and common queries in data mining and data analysis. The linear
computation can help the analyst understand the distribution information of
data and to make intelligent decisions and data prediction. Figure 1 shows a
workload W , frequency vector x, and the answer to W over x.

3 Laplace-Based Disturbation

Our algorithm adopts Laplace Mechanism to add noise, and we transform the
Laplace Machainsim [8] to fit the query workload and data distribution. To
ensure our algorithm satisfy ε-differential privacy, the algorithm adds random
noise rigorously conform to the Laplace distribution.
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3.1 Laplace Mechanism

The Laplace mechanism [8] is proposed by Dwork, and the key method of Laplace
Mechanism is to add noise that randomly generated through the Laplace dis-
tribution to the query results. The probability density function of the Laplace
distribution is described as following:

Lab (x; a, b) =
1
2b

exp
( |x − a|

b

)

(2)

The variance of a random variable that satisfies the Laplace distribution is
σ2 = 2b2. To make the algorithm satisfy ε-differential privacy, we can add ran-
dom noise from the Lap(x; a, 0), and we denote the Laplace distribution random
variable as Lap(a) in the following section. For different query or query workload,
the Laplace Mechanism adds noise differs against the sensitivity of the query or
workload.

Definition 3 (Sensitivity). Given a query q and the frequency vector x and
x′, the sensitivity of the query q is:

Δq = max ||q (x) − q (x′)||1 (||x − x′||1 ≤ 1)

It can be seen that the sensitivity of a query is the maximum change of the
answer to a query on the neighboring frequency vectors. When the sensitivity
of a query is high, the privacy data has a high probability to be attacked, and
the reason is that the presence or absence of certain data can greatly change the
result of the query, and it is more calculable to infer the certain sensitive data.
For a query workload W , we use an m × n matrix to represent W , as shown
in Fig. 2. According to the sensitivity of a query, the sensitivity of the query
workload W can be defined as the following:

ΔW = max ‖ Wxt − Wx′t ‖= max
j

‖
i=m∑

i=1

|Wij | , (‖ x − x′ ‖1≤ 1)

Given the definition of Laplace distribution and sensitivity, we can define the
Laplace mechanism as following formally.

Definition 4 (Laplace Mechanism). Given a workload W and a frequency
vector x, ML(x,W, ε) is ε-differential privacy, if it satisfies the following condi-
tion:

ML(x,W, ε) = W · xt + (Y1, . . . , Yk))

The random variable Yi is generated by Lap
(
ΔW · 1

ε

)
. The proof is presented

as the following, where database I and I differ at most one record, PI(s) is the
probability that the output for the query database I is s.
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pI (s)
pI′ (s)

=
k∏

i=1

⎛

⎜
⎜
⎝

exp
(

− ε |q(I)i−si|
∇q

)

exp
(

− ε|q(I′)i−zi|
∇q

)

⎞

⎟
⎟
⎠

=
k∏

i=1

⎛

⎜
⎜
⎝

exp
(

− ε |q(I)i−si|
∇q

)

exp
(

− ε |q(I′)i−si|
∇q

)

⎞

⎟
⎟
⎠

=
k∏

i=1

(

exp
(

ε (|q (I ′)i − si| − |f (I)i − si|)
∇q

))

≤
k∏

i=1

(

exp
(

ε (|q (I ′)i − q (i)i|)
∇q

))

≤ exp (ε )

(3)

3.2 Workload-Aware Noise

To reduce the noise, we will divide the queries in workload into several work-
loads. Meanwhile, the privacy budget ε will be divided into the same number
of privacy budgets. After dividing, different workloads will add corresponding
noise according to the divided privacy budget. Formally, for the workload W ,
we divide it as {W1,W2, ...,Wm}, For each divided workload Wi, the privacy
budget is also divided into ε = {ε1, ε2, ..., εm},and add random noise from
the distribution Lap(ΔWi

1/εi). That is, the answer to the workload is S =
[W1,W2, ...,Wm] · xt + [Lap(ΔW11/ε1), Lap(ΔW21/ε2), ... Lap(ΔWm

1/εm)]. It
can be proved that the algorithm satisfies ε-differential privacy as the property2,
and we can also prove it by the following process. For the neighboring database
I and I ′, that is, ‖ I − I ′ ‖1≤ 1. Let pI(s) represent the distribution probability
of query x on W , and s ∈ Rk:

pI (s)
pI′ (s)

=
k∏

i=1

⎛

⎜
⎜
⎝

exp
(

− εi|q(I)i−si|
∇qi

)

exp
(

− εi|q(I′)i−zi|
∇qi

)

⎞

⎟
⎟
⎠

=
m∏

j=1

∏

i∈Wj

⎛

⎜
⎜
⎝

exp
(

− εi|q(I)i−si|
∇qi

)

exp
(

− εi|q(I′)i−si|
∇qi

)

⎞

⎟
⎟
⎠

≤
m∏

j=1

exp (εj)

= exp (ε)

(4)
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We discuss the error change by the dividing for workload W =
{W1,W2, ...,Wm}, and privacy budget ε = {ε1, ε2, ..., εm}. We calculate the aver-
age L1 error for the answer to the workload. The excepted L1 error of the answer
before dividing and after dividing the workload is as follows:

E (| Lap(ΔW · 1/ε) |) = ΔWi
· 1
εi

E

(
1
k

m∑

i=1

| Lap(ΔWi
· 1/εi) | · | Wi |

)

=
1
k

m∑

i=1

ΔWi
· 1
εi

· | Wi |

4 Optimized Workload Division

Taking the above workload in Fig. 2 for example, the original workload and
divided workloads as following. When the workload W adopts 1-differential pri-
vacy by the Laplace Mechanism. The excepted L1 error is ΔW /ε = 4, and after
dividing the workload into W1 and W2, the privacy budget into ε1 = 0.58 and
ε2 = 0.42, the L1 error will be 3.4275.

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,W1 =

⎡
⎣
1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0

⎤
⎦ ,W2 =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

(5)

Fig. 2. A sample of dividing for workload.

Basing on the dividing for workload and privacy budget, we propose a specific
division in the data situation that the data is relatively large and the distribution
of data is complex. We take the mean square error of the frequency vector x to
discriminate the data distribution complexity. And in query workload, there
exist data domain queried with high frequency. To reduce the added Laplace-
based noise, we divide the privacy budget into two equal parts iteratively, and
the workload is divided according to the sensitivity, and the process can be
described in Algorithm 1.

The dividing in the algorithm will continue until the recursion finished. We
will discuss the rationality of the division. The dichotomy is used as the reason
that the query workload and privacy budget are divided into two parts W1, W2,
ε1, ε2, and for E (L1 ) = ∇W1

ε1
∗ |W1| + ∇W2

ε2
∗ |W2| , ε1 = ε2 is the minimum

extreme point of the function. As described in Algorithm 1, at first, we set the
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Algorithm 1. Workload dividing
1: procedure divideWorkload(W, ε)
2: ε1 = ε2 = ε/2.0
3: get the most frequent item in x as xi,
4: |W1| = (|W | + ∇W + g)/4
5: select randomly |W1| queries as W1 from W where xi is queried and the rest

queries as W2

6: noise = |W | ∗ ∇W , noise divided = |W1| ∗ ∇W1 + (|W | − |W1|) · ∇W2

7: if noise ≥ noise divided then � Stop dividing while noise doesn’t reduce
8: return (DIV IDEWORKLOAD(W1, ε/2), divideWorkload(W1, ε/2))

9: return W � return W while it is unnecessary to divide

data domain queried by high frequency as high-frequency items. For workload
W , its division is W1 and W2 and supposing that the sensitivity of W is the sum
of W1 and W2. The total expected noise under the ε-differential privacy is

E(noise(ε1, ε2,W1,W2)) =
ΔW1

ε1
∗ |W1| +

ΔW − ΔW1

ε2
∗ (|W | − |W1|) (6)

We can infer that (ε/2, ε/2,W1,W2) is a point of minimum, so we adopt ε1 =
ε2 = 2/ε. To get min E(noise(ε1, ε2,W1,W2)), we set ΔW1 = |W1|, and we can
compute that when |W1| = (W + ΔW ) /4, the E(noiseε1, ε2,W1,W2) will be
a minimal value. The parameter g can optimize the result as a consequence of
that for a workload W and its divisions W1,W2, ΔW > (ΔW1 + ΔW2), which is
not in accordance with our assumption. Therefore, we introduce the parameter
to regulate the result and the g can be estimation by the specific workload.

5 Experimental Evaluation

We now evaluate the performance of our approach on multiple datasets and
workloads and compare our algorithm with state-of-the-art differential privacy
algorithms. The main metric is average error, and we evaluate the metric on
differential datasets and workloads (Fig. 3).

In follow evaluation, we test our algorithm with the metric average L1 error
per query result of the given workload. The workloads we use are generated
randomly and the data set is from the real public database. To make the result
more convincing, we run 5 trials for each evaluation. Furthermore, we test the
time efficiency of our algorithm. The synthetic workload also is used by all the
comparison algorithms. In the experiment, we set the privacy budget varies in
{10.0,5.0,1.0,0.5,0.1}. In the following sections, we describe the datasets, work-
load, and the parameters in the experiment. In the above section, we have
described the properties of liner count query. When there are multiple attributes
in datasets, we can still use one-dimensional frequency vector x to represent the
datasets. In the experiment, we use one-dimensional data sets. We use six real
data sets. Adult comes from American statistical data [4]. The frequency vector
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x is built on the attribute “capital loss”, which is also used in the experiment
[13]. The Adult is sparse, and many frequency counts in x are zero. Income is
from IPUMS American community survey data from 2001–2011, and frequency
vector x is the count of personal Income [22], and Income is also used in DAWA
[16]. Patent is a citation network among a subset of US patents [16]. Fidaeta
is from census of fatal occupational injuries in the United States of American
labor statistics [1], and both Nw and Nw2 are from a survey of compensation
in the United States of American labor statistics [1], and they are the frequency
vector by setting unit as 1 and 2 in the continuous value attribute. We take the
length of x of the five datasets as 4096. The overview of datasets is described in
Table 1.

Fig. 3. Average error on the workload that the frequency count item is queried with
probability as p = 0.9

Table 1. Overview of the datasets in the experiments.

Datasets name Scale % Zero Count Mean value Variance

Adult 17665 97.998 4.31274 263.04404

Patents 27948226 6.20118 6823.29736 3532.42422

Income 20787122 44.971 5074.98095 47859.49063

Nw 32287151 0.268 7882.60522 60262.21603

Fidata 3519442 58.178 859.23880 18942.96715

Nw2 32678757 0.0 7978.21216 84866.75896
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Fig. 4. Average error on the workload that the frequency count item is queried with
probability as p = 0.6

For the query workload, we conduct the experiment on eight synthetic query
workloads W . For the frequently queried item in frequency vector x, we set prob-
ability of being queried p = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. A workload has
2000 queries, and each query q ∈ W randomly selected a center cluster, and the
frequency counts in x are randomly generated via the normal distribution with c
as the center and 10 as the variance. Furthermore, we compare three algorithms
with our algorithm. The Identity [8] algorithm adopts Laplace Mechanism that
the answer results are directly added Laplace distribution noise for disturbance.
MWEM [13] achieves differential privacy technology by obtaining an estimate
of x through Laplace Mechanism and Exponential Mechanism. DAWA [16] algo-
rithm adopts the partitioning method to achieve the differential privacy for range
count workload and linear count workload.

Among the experimental datasets, Adult is a “sparse” data set. The data
distribution is relatively even-distributed as shown in Table 1, and zero accounts
for more than 97% in the frequency vector x. The other four experimental data
sets are “complex” data sets with a large scale and complex data distribution.
Figure 4, 5, and 6 show the L1 average error for the parameter p as 0,9, 0.6 and
0.2. It can be seen that MWEM [13] and DAWA [16] will add more noise than the
Identity [8] algorithms, meanwhile, our algorithm always adds less noise than the
Identity. The results figures show that MWEM [13] and DAWA [16] algorithm
are datasets-aware and when facing different datasets, both algorithms perform
differently over the same workload. The MWEM is most erratic, and when the
data sets are simple or approximately even-distributed, the algorithm can add
less noise than the other algorithms, but not for the complex data. In Fig. 6, we
compare the discount of L1 average error by comparing it with the Identity [8].
In the experiment, we compare the different perforation with different parameter
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Fig. 5. Average error on the workload that the frequency count item is queried with
probability as p = 0.2

Fig. 6. The decrement of the average error by comparing our method with Identity.

p, which represents frequency of a certain dom(B)i in x. Figure 5 shows that in
the experiment sets, when p = 0.2, the algorithm can reduce more than 40% the
L1 error than the Identity.

6 Conclusions

The ε-differential privacy is an effect privacy-preserving technology for linear
computation. It can prompt data organizers to provide a secure third-party
interface for statistical query. In this paper, we propose a novel ε-differential
privacy algorithm, which uses Laplace-based noise and optimized workload divi-
sion to decrease the computation error in complex data distribution for linear
computations. The evaluation results show that our approach can reduce nearly
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40% computation error when compared with the start-of-the-art differential pri-
vacy algorithms MWEM, DAWA, and Identity. As further work, we plan to
extend our approach by optimizing the proposed work load division to reduce
the introduced error.
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