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Abstract. The challenge of influence maximization in social networks is
tackled in many settings and scenarios. However, the most explored vari-
ant is looking at how to choose a seed set of a given size, that maximizes
the number of activated nodes for selected model of social influence. This
has been studied mostly in the area of static networks, yet other kinds
of networks, such as multilayer or temporal ones, are also in the scope of
recent research. In this work we propose and evaluate the measure based
on entropy, that investigates how the neighbourhood of nodes varies over
time, and based on that and their activity ranks, the nodes as possible
candidates for seeds are selected. This measure applied for temporal net-
works intends to favor nodes that vary their neighbourhood highly and,
thanks to that, are good spreaders for certain influence models. The
results demonstrate that for the Independent Cascade Model of social
influence the introduced entropy-based metric outperforms typical seed
selection heuristics for temporal networks. Moreover, compared to some
other heuristics, it is fast to compute, thus can be used for fast-varying
temporal networks.

Keywords: Social networks · Influence maximization · Entropy · Seed
selection · Temporal networks

1 Introduction

Social influence maximization is a research topic that has been posed in 2003
by Kempe et al. [16]. Assuming a static social network and a given influence
model, typical social influence maximization task is to choose a set of k nodes
that will result with the highest influence (number of activations) across all
methods. As presented in Related Work, this area has been investigated at the
beginning for the case of static networks. However, recently researchers extended
their interest to other kinds of networks, including multilayer [18] or temporal
networks [11,23]. This is caused by the fact, that for some applications these
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networks are more suitable for representing several types of processes, especially
related to information diffusion. Here, an aggregated graph is not capable to
represent the ordering of events, crucial for studying these processes. This is the
reason why temporal networks are the model chosen in the case of modelling
diffusion processes. Following this direction, the researchers exploring influence
maximization area also started to investigate temporal networks [39].

In this work, we propose a method based on entropy for influence maxi-
mization in temporal networks. Entropy as a measure of diversity is capable of
providing information about diversity - in this case how the neighbourhood of the
nodes changes over time in a temporal network. This feature can be considered
important in the area of information spreading, since a node - when activated
- by changing its neighbourhood is increasing the chances of activating other
nodes. Otherwise, if the neighbourhood of a node will be the same, this node
usually would not contribute to the spreading process anymore after contacting
its neighbours at the beginning.

The purpose of this work is to compare introduced entropy-based seed selec-
tion method against other heuristics commonly used in the area of social influ-
ence maximization. To do so, we studied the performance of the proposed method
of seed selection for Independent Cascade Model of social influence using real-
world datasets representing temporal networks of different kind and dynamics.

The work is organized as follows. In the next section we shortly describe the
related work in the area covered by this research. Next, in Sect. 3, we present
the experimental setting. Section 4 presents and discusses the results, while in
Sect. 5 summary and future work directions are presented.

2 Related Work

Information spreading processes within social networks attract attention of
researchers from various fields. It resulted with new sub-disciplines and research
areas like network science [1]. In the background, they use theoretical models,
network evolution mechanisms, multilayer and dynamic structures, methods for
community detection, modeling and analysis of ongoing processes. While infor-
mation spreading processes within complex networks are observed in various
areas, many studies focus on their modeling and analysis.

One of the key topics is related to influence maximisation and selection of
starting nodes for initialisation of spreading processes. It was defined with main
goal to increase the coverage within the network with properly selected seed
nodes [16]. Due to the difficulty of finding the exact solution, several heuristics,
with the most effective greedy approach [16] and its extensions with adjustable
computational performance [9] were proposed trough the course of last years.
Apart from that, other seed selection methods were explored, including heuris-
tics based on centrality measures [32], community seeding [38], k-shell decompo-
sition [17], genetic algorithms [34,35] and other solutions [10]. One of their goals
is avoiding overlapping the regions of influence and increase the distance between
seeds. It was a key concept behind Vote-Rank method [36] and the studies with
its extensions.
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Initial works in the area of information diffusion were related to static net-
works, and later evolved towards temporal networks. They focused on seed selec-
tion in dynamic networks and comparison of different approaches [20]. They also
focused on links, changing topologies and nodes availability [14]. Recent stud-
ies focused on topological features of temporal networks figured out temporal
versions of static centrality measures [26,30,31] and they can be used for seed
selection. As a generalization of the closeness centrality for static networks, Pan
and Saramäki define the temporal closeness centrality [25]. Takaguchi proposed
method to represent the importance of a temporal vertex defined as temporal
coverage centrality [29]. Beside the topological features, recent studies high-
lighted the dynamics of temporal networks as significant factor of information
diffusion [12]. They showed that dynamics-sensitive centrality in temporal net-
works performed seeds selection much better than topological centrality. In [2]
temporal sequence of retweets in Twitter cascades was used to detect a set of
influential users by identifying anchor nodes. It is also worth mentioning that
in parallel to temporal networks, recently information cascades in multilayer
networks are also studied [4,13,22].

At this point, it is also important to mention that social influence is a process
that is difficult to observe and measure. Individual decisions of the members of
a social networks are distributed over time and rarely it is possible to observe
them, as they are often internal and not directly bound with actions. This is why
we often models are often used to represent the process and their parameters are
often derived either based on data [8] or a number of small scale experiments
conducted in real world [5,6].

The approach presented in this study is based on Shannon’s entropy [27]
that measures the amount of information. As such, the application of entropy is
not a new concept in the area of complex network analysis. Most of the stud-
ies, however, focused on the predictive capabilities or global quantification of
the dynamics of the network. For instance, Takaguchi et al. evaluated the pre-
dictability of the partner sequence for individuals [28]. In [37] authors proposed
entropy-based measure to quantify how many typical configurations of social
interactions can be expected at any given time, taking into account the history
of the network dynamic processes. Shannon entropy has been also used in order
to show how Twitter users are focusing on topics comparing to the entire sys-
tem [33]. Another work is using measures based on entropy for analyzing the
human communication dynamics and demonstrating how the complex systems
stabilise over time [19]. The results presented in the last work are important to
understand that the implications of stabilisation are significantly affecting the
diffusion. In the case when our social circles do not change, information has less
possibilities to reach different areas of the network. As a consequence, if infor-
mation has limited chances to appear in some parts of the network, the same
would apply to social influence. This observation was the inspiration of our work
in which we wanted to find the nodes that have the most-varying neighbour-
hood, thus the highest chances to spread information to others. This resulted
with a entropy-based measure that looks at the variability of neighbourhood,



280 R. Michalski et al.

but also takes into account the overall number of different neighbours the nodes
has contacted over time.

3 Entropy-Based Measure of Variability

The proposed measure for quantifying the variability of neighbourhood is using
the entropy to calculate the diversity of neighbours of a given node vi across
neighbouring time windows in a temporal network. Introduced measure is focus-
ing on finding the nodes that have the highest exchange in the neighbourhood
over consecutive time windows and the values of it can be considered as a diver-
sity of a node. However, to not to fall into specific cases, some additional factors
have to be considered as well - these are discussed after introducing the definition
of this measure.

The proposed entropy-based measure is expressed in the following way:

V ar(vi) = −
√

|eij |
N−1∑
n=1

p(NBvi,n,n+1) ln(p(NBvi,n,n+1)), (1)

where eij is the number of all unique edges originating at node vi and NBvi,n,n+1

is the neighbourhood of a node in windows that are next to each other. Defined
this way, the measure promotes the nodes that vary the neighbourhood over
subsequent windows and incorporates also the size of the neighbourhood itself.

For directed networks, the neighbourhood is expressed as outgoing links,
for undirected ones as all links. The last factor is promoting the variability of
neighbours in such a way that the set of neighbours should be the widest, since
without this element only varying the neighbours across windows next to each
other would be enough to maximize the measure.

After calculating this measure for all nodes for given network settings, it has
been used as the utility score for choosing seeds - top k percent of nodes have
been selected as seeds and activated during window TN/2+1.

It is worth underlining that the measure is computed at the node-level and
only looks at the neighbourhood of nodes, similarly to the degree-based measures.
As a consequence, it has similar computational complexity that is much lower
than for betweenness centrality. This makes the measure still applicable for large
graphs.

4 Experimental Setting

4.1 Datasets

The experiments have been conducted using two datasets: manufacturing com-
pany email communication [24] consisting from emails sent between employees
of a manufacturing company over a course of nine months and a Haggle dataset
representing contacts between people measured by carried wireless devices [3].
The statistics of the datasets presented in Table 1 indicate that albeit similar in
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size, the datasets differ in a number of factors contributing to information diffu-
sion, e.g. in an average degree or power law exponent. These datasets have been
then converted into a temporal social network according to the model presented
in the next subsection. Resulting temporal networks also significantly differ in
terms of how nodes and events distribute over windows showing different nature
of datasets.

Table 1. Properties of evaluated datasets - manufacturing company emails and Haggle.
The statistics have been computed to the aggregated networks.

Property Manufacturing Haggle

Individual type Employee Person

Event type Email Contact

Format Directed Undirected

Edge weights Multiple unweighted Multiple unweighted

Size 167 vertices 274 vertices

Volume 82,927 edges 28,244 edges

Average degree (overall) 993.14 edges/vertex 206.16 edges/vertex

Maximum degree 9,053 edges 2,092 edges

Largest connected component 167 vertices 274 vertices

Power law exponent (estimated) 4.6110 (dmin = 53) 1.5010 (dmin = 1)

Gini coefficient 61.9% 84.2%

Clustering coefficient 5.412664 × 10−1 5.66 × 10−1

Diameter 5 edges 4 edges

90-percentile effective diameter 2.50 edges 2.79 edges

Mean shortest path length 1.96 edges 2.42 edges

Preferential att. exponent 1.2284 (ε = 2.4955) 1.1942 (ε = 7.8302)

4.2 Temporal Social Network

The temporal social network is based on time windows. For all the evaluated
datasets, the periods they cover have been split into n windows of equal time [11].
Then, all the events within a particular window have been a source for building
a temporal social network snapshot Tn = (V,E), n ∈ 1 . . . N consisting from the
set of nodes V and the set of directed edges E. The edge weights are defined
according to the following formula:

wij =
∑

eij∑
ei

, (2)

where
∑

eij is the total number of contacts originated at node i to node j
and

∑
ei is the total number of contacts originated at node i. All self loops were
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removed. Each snapshot Tn can be then considered as a static graph where events
do collapse into same time frame, but since the snapshots are time-ordered, tem-
poral aspects are preserved at a certain level of granularity. The reasons why
this temporal network model was used is that it enables using established seed
selection heuristic and diffusion model known for static networks. An exemplary
temporal network consisting from five time windows has been shown in Fig. 1.
The evaluated values of N have been the following: 8, 16, 32, 64. Half of the win-
dows has been used for training purposes - building rankings of nodes based on
evaluated methods - and half for evaluation. In case of this experiment, training
purposes mean building the seed set based on the information about behaviour
of nodes in the training windows and evaluating their performance is interpreted
as a total number of nodes activated at the end of the influence process.

In order to verify whether the datasets chosen for evaluation are different, we
investigated the number of unique nodes and number of unique events - Fig. 2
shows how these values evolve over subsequent time windows. It can be observed
that whilst for the manufacturing temporal network the number of nodes in each
window is relatively stable, this is not the case for Haggle network, since this
value undergoes bigger changes. This also impacts the number of events.

Fig. 1. A visualisation of a temporal network model based on windows used for exper-
iments.

It should be noted that the introduced measure in this form gives more impor-
tance to the nodes that are present in consecutive time windows. Otherwise the
NBvi,n,n+1 of Eq. 1 will be contributing to decreasing the value of the measure
for nodes that are not present on subsequent time windows. The reason why
it is important to look at the presence of nodes in time windows that are next
to each other is depicted in Fig. 3. Here one can see that with the increasing
number of windows the number of nodes that exist in all the windows starts to
drop significantly after reaching certain critical value.
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(a) Number of nodes variability (b) Number of events variability

Fig. 2. Number of nodes and number of events for each time window for evaluated
datasets: manufacturing company and Haggle for 32 windows.

Fig. 3. The number of nodes existing in the all time windows dependent of the number
of windows (the granularity of the split) for the manufacturing dataset.

4.3 Social Influence Model

The model chosen for social influence is Independent Cascade Model (IC) [7].
This model assumes that a node has a single chance of activating its neighbour
expressed as a probability p. If the node will succeed, this neighbour will become
activated and will be attempting to activate its neighbours in the following
iterations. As the basic version of this model was proposed for static networks,
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in the temporal setting we added to modifications to the model: (i) exhaustion
of spreading capabilities - in every snapshot Tn the iterations follow until no
further activations are possible, (ii) single attempt of activation - if a node failed
to activate its neighbour, in the subsequent snapshots it would not be able to
try again. These extensions to the base IC model allow to adequately spread
activations over the span of evaluation time windows, but at the same time -
restrict from reaching all the nodes too early.

The evaluated independent cascade probabilities have been the following:
0.05, 0.1, 0.15, 0.2, whilst the seed set was the fraction of 5%, 10%, 15% of nodes
that appeared in the training set. As the IC model is not deterministic, for
each parameter combination we run a 1,000 simulations of the diffusion process.
Moreover, in order to make results comparable, we followed the coordinated
execution procedure introduced in [15] - the results of drawings have been the
same for all the runs.

4.4 Baseline Seeding Strategies

As a reference, we did use the following baseline strategies: in-degree, out-
degree and total degree centrality, closeness for the largest connected component,
betweenness and random (100 drawings - averaged) seed set [1]. These measures
have been computed over an aggregated graph for all events in the training set.

All the experimental parameters are presented in Table 2.

Table 2. Configuration space of the experiment

Parameter Combinations Evaluated values

Dataset - d 2 Manufacturing, Haggle

Propagation probability - p 4 0.05, 0.1, 0.15, 0.2

Number of windows - k 4 8, 16, 32, 64

Number of seeds per window - j 3 5%, 10%, 15%

Seeding strategies - h 7 Entropy-based, in-degree,
out-degree, total degree,
closeness, betweenness,
random (100 runs, averaged)

5 Results

In total, we did evaluate 672 combination of all parameters - 96 per measure, as
shown in Table 2. Results presented in Fig. 4 show how the measures performed
relatively to the entropy-based measure being a reference. As a measure of per-
formance we compare the number of nodes activated at the end of the seeding
process - this is a typical approach for comparing different heuristics for social
influence.
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What is observed, the proposed method outperforms the others and the out-
degree approach is the second leading one. The second position of out-degree is
linked to two factors. Firstly, to the structure of typical social networks. Usually
they follow the preferential attachment, so in the case of high degree nodes, these
are linked to other nodes with high degree and so on. Secondly, the Independent
Cascade Model, as name suggests, compared to some other models like linear
threshold does not require any fraction of nodes for activating the neighbours,
so the cascades can spark independently of each other. That is why choosing
nodes with high outdegree maximizes the chances of starting in the central part
of the typical social network.

Regarding the variability measure proposed in this work, it also contains the
factor promoting the nodes with high number of neighbours (see Eq. 3), however
also requires these nodes to vary its neighbours over windows. This, in turn,

Fig. 4. The performance of evaluated measures relative to the number of activations of
the entropy-based measure. Overall, the entropy-based measure has been outperforming
others in 41.5% of cases, the second best-performing heuristic was out-degree with
16.5%. Next: betweenness (13.7%), closeness (12.05%), in-degree (7.7%), total degree
(6.7%) and random (2.2%).
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increases to the possibility of reaching other areas of the directed network that
could not have been potentially activated by other seeding strategies.

The differences in terms of number of activated nodes between particu-
lar seeding strategies, three seeding strategies: entropy-based, out-degree and
betweenness have been performing on average 5–7% better then other degree-
based methods. However, among these three, the differences were smaller, on
average ranging from 2.5–7% in most cases. This part of experimental analysis
shows that the entropy-based measure is capable of generating well-performing
seed sets.

One of the research questions we wanted to find answer on is how the seed
sets differ. This would indicate whether are there similarities against the seed
sets meaning that the nodes also share similar properties in terms of measures.
To do so, we compared all the seed sets built by each evaluated heuristics by
using the Jaccard index defined as follows:

Jaccard(hi, hj) =
|V hi ∩ V hj |
|V hi ∪ V hj | , i �= j, (3)

where hi and hj are the heuristics that are being compared by the seed sets
they generated, V hi and V hj , respectively. Seed sets for each heuristic have been
compared pairwise with seed sets of other heuristics for all the experimental

Fig. 5. The similarity of seed sets generated by different heuristics evaluated in this
work, including proposed entropy-based one. The metric used for computing the simi-
larity of seed sets is the Jaccard index.
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parameters (see Table 2) and then the results have been averaged pairwise. Since
the random heuristic did not provide coherent results for each run, it has not
been compared against others. The results demonstrating the similarity of seed
sets generated by different heuristics are presented in Fig. 5. This analysis indi-
cates that there is only a partial similarity between seed sets generated by differ-
ent heuristics and the introduced entropy-based measure is the most similar to
outdegree (0.51) and betweenness (0.41). However, in general, it is observed that
the similarity of seed sets is only partial and different nodes are selected for initial
activation.

6 Conclusions and Future Work

In this work we proposed a method based on entropy that can be used for seed
selection in temporal social networks. The method is basing on the variability
of neighbourhood that leads to increasing the spread of influence in the social
network. The evaluation of the method demonstrates that in many cases the
results for the introduced method outperform other heuristics. Moreover, com-
paring to some other heuristics that require computing shortest paths in a graph,
such as betweenness or closeness, introduced entropy-based measure is simple to
compute.

However, it must be noted that this method of influence maximization is
suited mostly for models such as Independent Cascade that do not require a
committed neighbourhood for activations. Nevertheless, many real-life diffusion
cascades are actually following the independent cascade schema, since members
of many social networks decide upon adoption of an idea based shortly afterwards
observing activities of others. This is often observed in social media where people
decide whether to share a content just after being exposed to it. On the other
hand, in the case of more complex decisions, these decisions could follow other
models. This is why it is a necessity to understand which models apply for certain
situations before deciding on the social influence seed selection method.

In the case of temporal networks, one needs to remember that there are
new factors that substantially impact the process compared to static network
scenario [21]. One of the most important ones relates to the seed set. Contrary
to static networks, not all nodes selected for initial activation can appear in
the subsequent time windows. This means that a part of the budget can be
wasted if some nodes would not appear. Another aspect is the fact that some
of the time windows could potentially contain a limited number of edges or, in
the worst case, no edges at all. This will impact the dynamics of the spreading
process. This is why when considering developing heuristics for social influence
in networks, one needs to consider these factors by appropriately looking at the
historical behaviour of nodes and the temporal network itself.

Regarding the future work directions, it is planned to follow a number of
them. Firstly, we would like to investigate in detail how the nodes selected by the
entropy-based method penetrate different areas of the network compared to other
heuristics. Next, as results indicate, the seed sets provided by different heuristics
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only partially overlap, yet some heuristics still produced well-performing seed
sets. The idea is to propose a combined mixture-based measure that will take
advantage of different properties of nodes in order to be even more successful in
activating others. The third direction requires investigating how the proposed
measure performs for other models of social influence, e.g. linear threshold.

Acknowledgments. This work was supported by the National Science Centre,
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