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Abstract. In this paper, the identification of context-free grammars
based on the presentation of samples is investigated. The main idea of
solving this problem proposed in the literature is reformulated in two dif-
ferent ways: in terms of general constrains and as an answer set program.
In a series of experiments, we showed that our answer set programming
approach is much faster than our alternative method and the original
SAT encoding method. Similarly to a pioneer work, some well-known
context-free grammars have been induced correctly, and we also followed
its test procedure with randomly generated grammars, making it clear
that using our answer set programs increases computational efficiency.
The research can be regarded as another evidence that solutions based
on the stable model (answer set) semantics of logic programming may
be a right choice for complex problems.

Keywords: Grammatical inference · Answer set programming ·
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1 Introduction

In grammatical inference [9], a learning algorithm La takes a finite sequence
(usually strings) of examples as input and outputs a language description (usu-
ally grammars). There are two main types of presentations: (i) A text for a lan-
guage L is an infinite sequence of strings x1, x2, . . . from L such that every string
of L occurs at least once in the text; (ii) An informant for a language L is an infi-
nite sequence of pairs (x1, d1), (x2, d2), . . . in Σ∗ × B such that every string of
Σ∗ occurs at least once in the sequence and di = true ⇐⇒ xi ∈ L. The infer-
ence algorithms that use type (ii) of information are said to learn from positive
and negative examples. From the Gold’s results [7], we know that the class of
context-free languages (and even regular languages) cannot be identified from
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presentation (i), but can be identified using presentation (ii). However, de la
Higuera [8] showed that it is computationally hard.

In this work, the following informant learning environment is exploited. Sup-
pose that the inferring process is based on the existence of an Oracle, which can
be seen as a device that:

1. Knows the language and has to answer correctly.
2. Can answer equivalence queries. They are made by proposing some hypothesis

to the Oracle. The hypothesis is a grammar representing the unknown lan-
guage. The Oracle answers Yes in the positive case. In the negative case,
the Oracle has to return the shortest string in the symmetric difference
between the target language and the submitted hypothesis.

Then the following procedure can be applied. Start from a small1 sample S
and k = 1. The parameter k denotes the number of non-terminal symbols in
the target grammar. Run an answer set program (or another exact method).
Every time it turns out that there is no solution that satisfies all of the con-
straints, increase k by 1. As long as the Oracle returns a pair (x, d) in response
to an equivalent query, add (x, d) to S and run the answer set program again (or
respectively another exact method). Stop after the answer is Yes. Unfortunately,
there is no guarantee that the procedure will terminate in a polynomial number
of steps, even when the target language is regular [1]. The equivalence checking
may be done by random sampling. The positive answer could be incorrect, but
this probability decreases if the sampling is repeated.

A very similar procedure for the induction of context-free grammars was
proposed by Imada and Nakamura [11]. However, for the exact searching of
k-variable grammar, they used Boolean formulas and applied an SAT solver. We
took over their main Boolean variables, treating them as predicates, and then
constructed a new encoding founded on answer set programming. In an alter-
native approach, we used general constraints of Gurobi Optimizer2 instead of
ASP.

1.1 Related Work

The most closely related work to CFG identification is by Imada and Nakamura
[11]. They proposed a way to synthesize CFGs from positive and negative samples
based on solving a Boolean satisfiability problem (SAT). They translated the
learning problem for a CFG into a SAT, which is then solved by a SAT solver.
The result of the SAT solver satisfying the SAT contains a minimal set of rules
(it can be easily changed to a minimal set of variables) that derives all positive
samples and no negative samples.

They used one derivation constraint and two main types of Boolean variables:

1 We are aware of this imprecision. The number of words and their lengths should
allow of executing a program in a reasonable amount of time. In experiments, we
took two words: one example and one counter-example.

2 https://www.gurobi.com/.

https://www.gurobi.com/
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Derivation variables. A set of derivation variables represents a relation
between nonterminal symbols and substrings (in other words, derivation or
parse tree) of each (positive or negative) sample w as follows: for any substring
x of w and p ∈ V , the derivation variable T p

x represents that the nonterminal
p derives the string x.

Rule variables. A set of rule variables represents a rule set as follows: for any
p, q, r ∈ V , a ∈ Σ, a variable Rp

qr (or Rp
a) determines whether the production

rule p → q r (or p → a) is a member of the set of rules or not.

The derivation constraint is a set of following Boolean expressions for any string
a1 · · · an (n > 1) and nonterminal p ∈ V .

T p
a1···an

↔
n−1∨

i=1

∨

q∈V

∨

r∈V

(
Rp

qr ∧ T q
a1···ai

∧ T r
ai+1···an

)
.

Nakamura et al. have been working on another approach for incremental
learning of CFGs implemented in the Synapse system [15]. This approach is based
on rule generation by analyzing the results of bottom-up parsing for positive
samples and searching for rule sets. Their system can also learn similar CFGs but
does it only from positive samples. Both methods synthesized similar rule sets
for each language in their experiments. They reported that the computation time
by the SAT-based approach is rather shorter than Synapse in most languages.

1.2 Our Contribution

The purpose of the present proposal is to investigate to what extent the power
of an ASP solver makes it possible to tackle the context-free inference prob-
lem for large-size instances and to compare our approach with the original one.
Because of the possibility of future comparisons with other methods, the Python
implementation3 of our winning method is given via GitLab.

The main original scientific contributions are as follows:

– the formulation of the induction of a k-variable context-free grammar in terms
of logical rules with answer set semantics;

– the formulation of the induction of a k-variable context-free grammar in terms
of general constraints;

– the construction of an informant learning algorithm based on ASP, CSP, and
SAT solvers;

– the conduct of an appropriate statistical test in order to determine the fastest
CFG inference method.

This paper is organized into five sections. In Sect. 2, we present neces-
sary definitions and facts originating from formal languages and declarative

3 The Python scripting language is used only for generating appropriate AnsProlog
facts.
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problem-solving. Section 3 describes our inference algorithms: (a) based on solv-
ing an answer set program, and (b) based on solving a constraint satisfaction pro-
gram, including general constraints such as AND/OR. Section 4 shows the exper-
imental results of our approaches in comparison with the original one. Conclud-
ing comments are made in Sect. 5.

2 Preliminaries

We assume the reader to be familiar with basic context-free languages theory,
e.g., from [10], so that we introduce only some notations and notions used later
in the paper.

2.1 Words and Languages

An alphabet is a finite, non-empty set of symbols. We use the symbol Σ for
the alphabet. A word is a finite sequence of symbols chosen from the alphabet.
We denote the length of the word w by |w|. The empty word ε is the word with
zero occurrences of symbols. Let x and y be words. Then xy denotes the cate-
nation of x and y, that is, the word formed by making a copy of x and following
it by a copy of y. As usual, Σ∗ denotes the set of words over Σ. The word w is
called a prefix of the word u if there is a word x such that u = wx. We call it
a proper prefix if x �= ε. The word w is called a suffix of the word u if there is
a word x such that u = xw. It is a proper suffix if x �= ε. A factor (or subword)
is a prefix of a suffix. A set of words, all of which are chosen from some Σ∗,
where Σ is a particular alphabet, is called a language.

2.2 Context-Free Grammars

A context-free grammar (CFG) is defined by a quadruple G = (V,Σ, P, v0),
where V is an alphabet of variables (or sometimes non-terminal symbols), Σ
is an alphabet of terminal symbols such that V ∩ Σ = ∅, P is a finite set of
production rules in the form A → α for A ∈ V and α ∈ (V ∪ Σ)∗, and v0 is
a special non-terminal symbol called the start symbol. For simplicity’s sake, we
write A → α1 | α2 | · · · | αk instead of A → α1, A → α1, . . . , A → αk. We call
the word x ∈ (V ∪ Σ)∗ a sentential form. Let u, v be two words in (V ∪ Σ)∗

and A ∈ V . Then, we write uAv ⇒ uxv, if A → x is a rule in P . That is, we
can substitute the word x for symbol A in a sentential form if A → x is a rule
in P . We call this rewriting a derivation. For any two sentential forms x and
y, we write x ⇒∗ y, if there exists a sequence x = x0, x1, x2, . . . , xn = y of
sentential forms such that xi ⇒ xi+1 for all i = 0, 1, . . . , n − 1. The language
L(G) generated by G is the set of all words over Σ that are generated by G; that
is, L(G) = {x ∈ Σ∗ | v0 ⇒∗ x}. A language is called a context-free language if it
is generated by a context-free grammar. Assume that G is the unknown (target)
CFG to be identified. An example (a positive word) of G is a word in L(G), and
a counter-example (a negative word) of G is a word not in L(G).
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A normal form for context-free grammars is a form, for which any grammar
can be converted to the respective normal form version. Amongst all normal
forms for context-free grammars, the most useful and the most well-known one
is the Chomsky normal form (CNF). A grammar is said to be in Chomsky normal
form if each of its rules is in one of two possible forms:

(a) X → x, x ∈ Σ, X ∈ V , or
(b) X → Y Z, X, Y, Z ∈ V .

2.3 Answer Set Programming

We will briefly introduce the idea of answer set programming (ASP). Those who
are interested in a more detailed description of the topic, alternative definitions,
and the formal specification of this kind of logic programming are referred to
handbooks [3,6], and [12].

A variable or constant is a term. An atom is a(t1, . . . , tn), where a is a pred-
icate of arity n and t1, . . . , tn are terms. A literal is either a positive literal p or
a negative literal ¬p, where p is an atom.

A rule r is a clause of the form

a0 ← a1 ∧ · · · ∧ ak ∧ ¬ak+1 ∧ · · · ∧ ¬am m ≥ 0, (1)

where a0, . . . , am are atoms. The atom a0 is the head or r, while the conjunction
a1 ∧ · · · ∧ ak ∧ ¬ak+1 ∧ · · · ∧ ¬am is the body of r. By H(r), we denote the head
atom, and by B(r) the set {a1, . . . , ak,¬ak+1, . . . ,¬am} of the body literals.
B+(r) (B−(r), resp.) denotes the set of atoms occurring positively (negatively,
resp.) in B(r). A program (also called ASP program) is a finite set of rules.
A ¬-free program is called positive. A term, atom, literal, rule, or a program is
ground if no variables appear in it.

Let P be a program. Let r be a rule in P, a ground instance of r is a rule
obtained from r by replacing4 every variable X in r by constants occurring in
P. We denote the set of all the ground instances of the rules occurring in P by
ground(P).

An interpretation I for P is a set of ground atoms. A ground positive literal
A is true (false, resp.) w.r.t. I if A ∈ I (A �∈ I, resp.). A ground negative literal
¬A is true (false, resp.) w.r.t. I if A �∈ I (A ∈ I, resp.).

Let r be a ground rule in ground(P). The head of r is true w.r.t. I if H(r) ∈ I.
The body of r is true w.r.t. I if all body literals of r are true w.r.t. I (i.e.,
B+(r) ⊆ I and B−(r) ∩ I = ∅) and is false w.r.t. I otherwise. The rule r is
satisfied (or true) w.r.t. I if r head is true w.r.t. I or r body is false w.r.t. I.

A model for P is an interpretation M for P such that every rule r ∈
ground(P) is true w.r.t. M .

4 This process can be done efficiently, because many ground instances can be discarded;
see Chapter 4 of [6].
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Given a program P and an interpretation I, the reduct PI is the set of
positive rules defined as follows:

PI = {H(r) ←
∧

B+(r) | r ∈ ground(P) and B−(r) ∩ I = ∅}. (2)

I is an answer set of P if I is the ⊆-smallest model for PI .
Over the last years, answer set programming has emerged as a declara-

tive problem-solving paradigm. It is a programming methodology rooted in
research on artificial intelligence and computational logic, and researchers use it
in many areas of science and technology. For experiments we took advantages
of clingo—one of the most efficient and widely used answer set programming
system available5 today. In addition to standard definitions, clingo allows to
define constraints, i.e., rules with the empty head, for instance

← a(t) (3)

By adding this constraint to a program, we eliminate its answer sets that contain
a(t). Adding the ‘opposite’ constraint

← ¬a(t) (4)

eliminates those answers that do not contain a(t). A constraint can be translated
into a normal rule. To this end, the constraint

← a1 ∧ · · · ∧ ak ∧ ¬ak+1 ∧ · · · ∧ ¬am (5)

is mapped onto the rule

x ← a1 ∧ · · · ∧ ak ∧ ¬ak+1 ∧ · · · ∧ ¬am ∧ ¬x (6)

where x is a new atom.

Example. Suppose we have three numbered urns and two distinguishable balls.
Every ball has been put to an urn, maybe to the same. An ASP program to code
this knowledge is as follows:

urn(1) ← (7)
urn(2) ← (8)
urn(3) ← (9)
ball(q) ← (10)
ball(r) ← (11)
contains(U,B) ← urn(U) ∧ ball(B) ∧ ¬not in(U,B) (12)
not in(U,B) ← urn(U) ∧ urn(V ) ∧ U �= V ∧ ball(B) ∧ contains(V,B) (13)
in(B) ← urn(U) ∧ ball(B) ∧ contains(U,B) (14)
← ball(B) ∧ ¬in(B) (15)

5 https://potassco.org/.

https://potassco.org/
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Please notice that as usual in logic programming, identifiers with initial upper-
case letters are assigned to variables. Rules 7–11 are simple facts concerning urns
and balls. Rules 12 and 13 define predicates that tell whether a ball is inside in
a particular urn. Inequality U �= V is only used during grounding to eliminate
some ground instances of rule 13. It is worth mentioning that grounding systems
do not make unnecessary replacements, for example, 1 for U . Rules 14 and 15
ensure that every ball is exactly in one urn.

Suppose now that we have discovered that urn 2 is empty and we want to
know possible configurations. It is enough to add two facts:

not in(2, q) ← (16)
not in(2, r) ← (17)

and find all answer sets. A possible answer set is: ball(q), ball(r), urn(1),
urn(2), in(r), not in(2, q), not in(2, r), not in(3, q), not in(3, r), contains(1, q),
in(q), urn(3), contains(1, r), which describes the placement of both balls into
the first urn.

clingo also allows using choice constructions, for instance:

{p(U,B) : urn(U)} = 2 ← ball(B) (18)

describes all possible ways to choose which two of the atoms p(1, q), p(2, q),
p(3, q) and which two of the atoms p(1, r), p(2, r), p(3, r) are included in
the resultant model. Before and after an expression in braces, we can put inte-
gers, which express bounds on the cardinality of the stable models described by
the rule. The number on the left is the lower bound (0 is default), and the number
on the right is the upper bound (unbounded is default).

3 Proposed Encodings for the Induction of CFGs

Our translation converts CFG identification into an ASP program (the main
approach) and CSP model (an alternative approach, constraint satisfaction prob-
lem). Suppose we are given a sample composed of examples, S+, and counter-
examples, S−, over an alphabet Σ, and a positive integer k. We want to find
a k-variable CFG G = (V,Σ, P, v0) such that S+ ⊆ L(G) and S− ∩ L(G) = ∅.

3.1 Using Logic Programming with Answer Set Semantics

Let F be the set of all factors (excluding the empty word) of S+ ∪ S−. Let us
now see how to describe the rules for the relationship between a grammar G and
a sample S+ ∪ S− in terms of ASP. There are three main predicates: y(I, J, L),
which indicates the presence of I → J L in P ; w(I,Q), which indicates that
I ⇒∗ Q, where Q represents a factor; and z(I,A), which indicates the presence
of I → A.
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1. We have the following domain specification, our facts.

variable(i) ← for i = 0, 1, . . . , k − 1 (19)
factor(f) ← for all f ∈ F (20)
terminal(a) ← for all a ∈ Σ (21)
positive(s) ← for all s ∈ S+ (22)
negative(s) ← for all s ∈ S− (23)
compose(f, b, c) ← for such f, b, c ∈ F that f = bc (24)

2. The next rules ensure that in a grammar G a factor can or cannot be derived
from a specific variable and ensure that in the grammar there is a subset of
all possible productions.

{w(I, F )} ← variable(I) ∧ factor(F ) (25)
{z(I,A)} ← variable(I) ∧ terminal(A) (26)
{y(I, J, L)} ← variable(I) ∧ variable(J) ∧ variable(L) (27)
w(I,A) ← variable(I) ∧ terminal(A) ∧ z(I,A) (28)
z(I,A) ← variable(I) ∧ terminal(A) ∧ w(I,A) (29)

3. All examples should be accepted, and no counter-example can be accepted.

← positive(F ) ∧ ¬w(0, F ) (30)
← negative(F ) ∧ w(0, F ) (31)

4. For every f ∈ F for which |f | ≥ 2 and for every pair (b, c) (b, c ∈ F ) of such
factors that bc = f , f can be derived from a non-terminal I if there are two
non-terminals, J and L, such that b can be derived from J , c can be derived
from L, and there is a production I → J L.

w(I, F ) ← variable(I) ∧ variable(J) ∧ variable(L)
∧ compose(F, B, C) ∧ y(I, J, L) ∧ w(J,B) ∧ w(L,C) (32)

5. On the other hand, if I ⇒∗ f , then at least one such pair (J, L) should exist,
that I → J L is in P and J ⇒∗ b and L ⇒∗ c.

← variable(I) ∧ factor(F ) ∧ ¬terminal(F ) ∧ w(I, F )
∧ {y(I, J, L) : variable(J) ∧ variable(L)

∧ compose(F,B,C) ∧ w(J,B) ∧ w(L,C)} = 0 (33)

3.2 Using General Constraints

This time, instead of predicates, w, y, and z are binary variables. We use the fol-
lowing constraints

w0s = 1 for all s ∈ S+ (34)
w0s = 0 for all s ∈ S− (35)
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and

wif ↔
∑

j,l∈K, bc=f

yijl ∧ wjb ∧ wlc + (zif if f ∈ Σ) (36)

for each (i, f) ∈ K × F , where α ↔ β means if α = 0 then β = 0 and if α = 1
then β ≥ 1, and K = {0, 1, . . . , k − 1}.

4 Experimental Results

In this section, we describe some experiments comparing the performance
of our approaches implemented6 in Python, using clingo (ASP) and using
Gurobi Optimizer, with our implementation of Imada et al. algorithm [11] using
the PicoSAT solver (SAT), when positive and negative words are given. For
these experiments, we use a set of 40 samples: partly based on randomly gener-
ated grammars (33 samples) and partly based on the set of fundamental CFGs
appearing in grammatical inference research (the last 7 samples).

4.1 Benchmarks

For testing the learning power for general CFGs, we randomly generated 33
CFGs and prepared positive and negative samples with lengths no longer than
14 exhaustively enumerated for them. The grammars are in Chomsky normal
form with 6 to 12 rules on the alphabet {a, b}. In every sample, positive words
constitute not less than 20% of the total.

The last seven samples are also with lengths no longer than 14 exhaustively
enumerated, but they were generated based on the following descriptions:

(a) The set of palindromes over {a, b}.
(b) The parentheses language: the set of strings consisting of equal numbers of

a’s and b’s such that every prefix does not have more b’s than a’s.
(c) The set of strings consisting of b’s twice as many as a’s.
(d) The set of strings of a’s and b’s not of the form ww.
(e) The complement of the language (b).
(f) {anbn | n ≥ 1}.
(g) The set of strings consisting of equal numbers of a’s and b’s.

4.2 Performance Comparison

In all experiments, we used Intel Xeon CPU E5-2650 v2, 2.6 GHz (single-core
out of eight), under Ubuntu 18.04 operating system with 60 GB available RAM.
Algorithm 1 shows the process for synthesizing a grammar (the set of production
rules with v0 being always the start symbol) from positive and negative words.
In the algorithm, S+ and S− represent the set of positive and negative words

6 https://gitlab.com/answer-set-programming/asp4cfg.

https://gitlab.com/answer-set-programming/asp4cfg
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Algorithm 1. Synthesize CFG G from examples and counter-examples
Require: S+ positive words, S− negative words, Σ a set of terminal symbols
Ensure: G a context-free grammar consistent with S+ and S−

S′
+ ← {the shortest word from S+}

S′− ← {the shortest word from S−}
k ← 1
loop

R ← Convert(S′
+, S′−, Σ, k)

find a stable model M for R by the solver
while R has no stable model M do

k ← k + 1
R ← Convert(S′

+, S′−, Σ, k)
find a stable model M for R by the solver

end while
P ← Extract(M)
G ← ({v0, v1, . . . , vk−1}, Σ, P, v0)
X ← S+ \ L(G)
Y ← S− ∩ L(G)
if X = ∅ and Y = ∅ then

return G
else

add appropriately the shortest word from X ∪ Y to S′
+ or to S′−

end if
end loop

as an input. The variables S′
+ and S′− hold sets of samples to be covered in

the next loop iteration. The algorithm picks up a word from S+ or S− that is
not covered by the inferred grammar G, and add it to S′

+ or S′−. The function
Convert translates the problem into a set of ASP rules R (or Gurobi general
constraints or a Boolean expression). If the ASP solver (or Gurobi Optimizer
or the SAT solver) finds a stable model M , the function Extract returns a set
of production rules by analyzing the presence of particular y(i, j, l) and z(i, a)
atoms. The algorithm repeats this process—increasing k to relaxe the limit on
the number of non-terminals—until G covers the all given S+ and S−.

The results are listed in Table 1. In order to determine whether the observed
CPU time differences between ASP’s runs and the remaining methods’ runs did
not occur by chance, we use the Wilcoxon signed-rank test [17, pp. 915–916]
for ASP vs SAT and ASP vs Gurobi. The null hypothesis to be tested is that
the median of the paired differences is negative (against the alternative that
it is positive). As we can see from Table 2, p-value is high in both cases, so
the null hypothesis cannot be rejected, and we may conclude that using our
ASP encoding is likely to improve CPU time performance for most of this kind
of benchmarks.
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Table 1. Execution times of exact solving CFG identification in seconds

Language |V | ASP SAT Gurobi

1 3 51.70 48.65 56.42

2 6 646.39 21049.22 >21050

3 4 74.31 189.85 143.76

4 5 75.90 347.84 >2000

5 4 27.91 64.82 18.36

6 5 75.96 335.98 10.33

7 4 68.35 61.87 >2000

8 4 57.14 118.25 28.85

9 3 45.17 94.86 73.03

10 5 211.33 568.12 568.06

11 5 62.48 166.65 >2000

12 3 21.50 58.12 33.28

13 6 112.69 705.80 >2000

14 6 943.02 4807.32 >4808

15 7 19358.09 252290.70 >252291

16 4 49.01 111.22 103.05

17 7 2921.44 8035.44 >8036

18 5 361.52 1369.22 >2000

19 5 63.47 238.71 186.10

20 2 12.96 5.64 3.88

21 5 96.68 512.83 671.62

22 2 11.38 12.02 10.54

23 3 11.84 43.03 9.92

24 4 109.98 159.73 176.49

25 3 22.65 22.40 29.65

26 5 38.74 271.30 420.11

27 5 94.76 295.81 >2000

28 5 216.61 625.07 >2000

29 5 271.88 324.43 >2000

30 6 228.98 412.16 >2000

31 2 10.97 15.29 19.84

32 5 62.17 293.98 105.74

33 3 10.42 18.30 13.15

34 5 31.13 49.28 32.83

35 3 12.84 20.97 12.86

36 4 118.17 76.98 73.74

37 6 173.66 191.42 >2000

38 4 29.33 54.63 36.71

39 4 4.12 21.00 9.02

40 3 66.71 50.65 40.40
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Table 2. Obtained p-values from the Wilcoxon signed-rank test

ASP vs SAT ASP vs Gurobi

0.999999647 0.999987068

4.3 ASP-Based CFG Induction on Bioinformatics Datasets

Our induction method can also be applied to other data, that are not taken
from context-free infinite languages. We tried its classification quality on two
bioinformatics datasets: WALTZ-DB database [4], composed by 116 hexapep-
tides known to induce amyloidosis (S+) and by 161 hexapeptides that do not
induce amyloidosis (S−) and Maurer-Stroh et al. database from the same domain
[14], where the ratio of S+/S− is 240/836.

We chose a few standard machine learning methods for comparison: BNB
(Naive Bayes classifier for multivariate Bernoulli models [13, pp. 234–265]), DTC
(Decision Trees Classifier, CART method [5]), MLP (Multi-layer Perceptron
[16]), and SVM (Support Vector Machine classifier with the linear kernel [18]).
In all methods except ASP and BNB, an unsupervised data-driven distributed
representation, called ProtVec [2], was applied in order to convert words (protein
representations) to numerical vectors. For using BNB, we represented words as
binary-valued feature vectors that indicated the presence or absence of every pair
of protein letters. In case of ASP, the training set was partitioned randomly into
n parts, and the following process was being performed m times. Choosing one
part for synthesizing a CFG and use rest n − 1 parts for validating it. The best
of all m grammars—in terms of higher F-measure—was then confronted with
the test set. For WALTZ-DB n and m have been set to 20, for Maurer-Stroh n
has been set to 10 and m to 30. These values were selected experimentally based
on the size of databases and the running time of the ASP solver.

To estimate the ASP’s and compared approaches’ ability to classify unseen
hexapeptides repeated 10-fold cross-validation (cv) strategy was used. It means
splitting the data randomly into 10 mutually exclusive folds, building a model
on all but one fold, and evaluating the model on the skipped fold. The proce-
dure was repeated 10 times and the overall assessment of the model was based
on the mean of those 10 individual evaluations. Table 3 summarizes the perfor-
mances of the compared methods on WALTZ-DB and Maurer-Stroh databases.
It is noticable that the ASP approach achieved best F-score for smaller dataset
(Maurer-Stroh) and an average F-score for the bigger one (WALTZ-DB), hence
it can be used with a high reliability to recognize amyloid proteins. BNB is
outstanding for the WALTZ-DB and almost as good as ASP for Maurer-Stroh
database.
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Table 3. Performance of compared methods on WALTZ-DB and Maurer-Stroh
databases in terms of Precision (P), Recall (R), and F-score (F1)

Method WALTZ-DB Maurer-Stroh

P R F1 P R F1

ASP 0.38± 0.09 0.58± 0.12 0.45± 0.07 0.58± 0.12 0.66± 0.18 0.61± 0.12

BNB 0.51± 0.09 0.69± 0.14 0.59± 0.10 0.61± 0.11 0.60± 0.13 0.60± 0.11

DTC 0.43± 0.11 0.59± 0.26 0.46± 0.11 0.36± 0.20 0.74± 0.39 0.48± 0.26

MLP 0.49± 0.20 0.57± 0.27 0.46± 0.10 0.43± 0.09 0.90± 0.07 0.58± 0.10

SVM 0.37± 0.06 0.69± 0.07 0.48± 0.06 0.24± 0.21 0.51± 0.44 0.32± 0.28

5 Conclusion

In this paper, we proposed an approach for learning context-free grammars from
positive and negative samples by using logic programming. We encode the set of
samples, together with limits on the number of non-terminals to be synthesized
as an answer set program. A stable model (an answer set) for the program
contains a set of grammar rules that derives all positive samples and no negative
samples. A feature of this approach is that we can synthesize a compact set of
rules in Chomsky normal form. The other feature is that our learning method
reflects future improvements on ASP solvers. We present experimental results on
learning CFGs for fundamental context-free languages, including a set of strings
composed of the equal numbers of a’s and b’s and the set of strings over {a, b}
not of the form ww. Another series of experiments on random languages shows
that our encoding can speed up computations in comparison with SAT and CSP
encodings.

References

1. Angluin, D.: Negative results for equivalence queries. Mach. Learn. 5(2), 121–150
(1990). https://doi.org/10.1007/BF00116034

2. Asgari, E., Mofrad, M.R.K.: Continuous distributed representation of biological
sequences for deep proteomics and genomics. PLoS ONE 10(11), 1–15 (2015).
https://doi.org/10.1371/journal.pone.0141287

3. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solv-
ing. Cambridge University Press, New York (2003)

4. Beerten, J., et al.: WALTZ-DB: a benchmark database of amyloidogenic hexapep-
tides. Bioinformatics 31(10), 1698–1700 (2015)

5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth and Brooks, Monterey (1984)

6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Morgan & Claypool Publishers, San Rafael (2012)

7. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
8. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Mach.

Learn. 27(2), 125–138 (1997). https://doi.org/10.1023/A:1007353007695

https://doi.org/10.1007/BF00116034
https://doi.org/10.1371/journal.pone.0141287
https://doi.org/10.1023/A:1007353007695


58 W. Wieczorek et al.

9. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York (2010)

10. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 2nd edn. Addison-Wesley, Reading (2001)

11. Imada, K., Nakamura, K.: Learning context free grammars by using SAT solvers.
In: Proceedings of the 2009 International Conference on Machine Learning and
Applications, pp. 267–272. IEEE Computer Society (2009)

12. Lifschitz, V.: Answer Set Programming. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-24658-7

13. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

14. Maurer-Stroh, S., et al.: Exploring the sequence determinants of amyloid structure
using position-specific scoring matrices. Nat. Methods 7, 237–242 (2010)

15. Nakamura, K., Matsumoto, M.: Incremental learning of context free grammars
based on bottom-up parsing and search. Pattern Recognint. 38(9), 1384–1392
(2005). https://doi.org/10.1016/j.patcog.2005.01.004

16. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

17. Salkind, N.J.: Encyclopedia of Research Design. SAGE Publications Inc., London
(2010)

18. Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification
by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)

https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1016/j.patcog.2005.01.004

	Grammatical Inference by Answer Set Programming
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Words and Languages
	2.2 Context-Free Grammars
	2.3 Answer Set Programming

	3 Proposed Encodings for the Induction of CFGs
	3.1 Using Logic Programming with Answer Set Semantics
	3.2 Using General Constraints

	4 Experimental Results
	4.1 Benchmarks
	4.2 Performance Comparison
	4.3 ASP-Based CFG Induction on Bioinformatics Datasets

	5 Conclusion
	References




