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Abstract. Simulating atomic evolution for the mechanics and struc-
ture of materials presents an ever-growing challenge due to the huge
number of degrees of freedom borne from the high-dimensional spaces
in which increasingly high-fidelity material models are defined. To effi-
ciently exploit the domain-, data-, and approximation-based hierarchies
hidden in many such problems, we propose a trilateration-based mul-
tilevel method to initialize the underlying optimization and benchmark
its application on the simple yet practical Lennard-Jones potential. We
show that by taking advantage of a known hierarchy present in this prob-
lem, not only a faster convergence, but also a better local minimum can
be achieved comparing to random initial guess.
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1 Introduction

Simulating interactions between atoms/molecules is particularly essential for
understanding materials properties in materials science, chemistry, and biology.
However, such problem presents an ever-growing challenge related to the huge
number of degrees of freedom borne from the high-dimensional spaces in which
increasingly high-fidelity material models are defined. One way is to simulate
the arrangement of atoms by minimizing the potential energy. Among various
mathematical models describing the interaction, the Lennard-Jones (LJ) poten-
tial [9] has attracted a lot of theoretical and computational attention due to its
mathematical simplicity yet practical importance of discovering low energy con-
figurations of clusters of atoms. There are two main difficulties in solving this
problem. First, the non-convexity and highly non-linearity of many variables
lead to a large number of local minima [3,13], and second, the intensive compu-
tational burden of many variables leads to slow convergence [3,6]. Therefore, an
acceleration of LJ potential with potentially better local minimum is desired.
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Given the domain-, data-, and approximation-based hierarchies present in
this problem, it is natural to exploit them to speedup the convergence of LJ
potential. One known property is that the Mackay icosahedron [4,10,19,20] dom-
inates the structures of LJ clusters at least in the size range of 10–150 atoms. In
this work, we observe similar property as icosahedronal packing by examining
the local minimum obtained by truncated-Newton method [12] using random
initial guess. This observation inspires us to adapt the successive refinement
[2,15] developed in traditional multigrid method to accelerate the LJ conver-
gence. Therefore, we propose a novel interpolation method as part of a successive
refinement framework so that a better initial guess can be obtained for a larger
system from the solution of a smaller system. We benchmark our method on
various sizes of systems and show that the proposed method can lead to a much
faster convergence. Furthermore, in our examples, we show that the proposed
hierarchical approach can potentially lead to an overall better local minimum
with a lower energy than using random initial guess.

2 Mathematical Model

Atoms arrange themselves spatially to minimize a potential that is an accumu-
lation of all the different kinds of attraction and repulsion at that scale. The
Lennard-Jones potential is a simplistic attempt to model such interaction.

Given a configuration of N atoms in a cluster V = {v1, . . . ,vN}, its potential
is given by

EN (V) = 4ε
∑

i<j

((
σ

d(vi,vj)

)12

−
(

σ

d(vi,vj)

)6
)

, (1)

where vi and vj are the locations of the ith and jth atoms, and d(vi,vj) is the
Euclidean distance between atoms vi,vj ∈ R

3. The physical constants ε and σ
are the depth of the potential well and inter-atom reaction limit, respectively,
both depending on the type of atom. Because of its importance in computational
chemistry, finding optimal configurations that locally minimize the potential
energy (1) remains an active research area. For example, Maranas et al. [11]
proposed an exotic optimization algorithm to find many stationary points, and
Asenjo et al. [1] studied the mapping of the basins of attraction for various
optimization algorithms. In this work, we follow the longstanding convention in
[8] and consider the reduced-unit optimization problem

min
V

EN =
∑

i<j

(
1

||vi − vj ||12 − 1
||vi − vj ||6

)
. (2)

The corresponding gradient is given by

∇EN (vi) = −
∑

i<j

(
12

||vi − vj ||14 − 6
||vi − vj ||8

)
(vi − vj). (3)
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To avoid unnecessary degrees of freedom, we fix atom 1 at the origin, atom
2 on the x-axis and atom 3 on the x-y plane. Figure 1 illustrates the classi-
cal Leonard-Jones potential E2. We can see that even minimizing the smallest
system can be challenging due to either the singularity as ‖vi − vj‖ → 0 or
stationary but not local minimum as ‖vi − vj‖ → ∞ . We can further extend
this visualization to E3, where we fix v1 at the origin and v2 on the y-axis at
the optimal distance of r∗ = 2

1
6 (discussed more in Sect. 3) from the origin, then

we examine the optimization performance by freeing v3 on x-y plane. Again,
through the paper, we use truncated-Newton method [12] to perform all opti-
mization procedure due to its robust performance. Figure 2a shows the number
of iterations (indicated by color intensity) needed for convergence at different
initial locations of v3 on x-y plane. Figure 2b shows the corresponding energy
(indicated by color intensity) obtained while optimization converges. Again, even
for the three atoms case, the basins of attractions are so rich in its complexity
that a good initial guess is desired for a fast optimization process.

Fig. 1. The LJ potential E2 by varying only v2.

3 Method

One standard practice for initialization of the minimization of EN is by using
random initial guess. The random locations of the atoms are obtained by uniform
sampling in a box of size 2

√
3r∗ [1]. As a side note, we compared it to another

practice where the box sizes vary as
(

N
0.8442

)1/3 [21] (0.8442 is a specific density
value). We observe that the fixed box has comparable performance for the range
of number of atoms we study, therefore we use it through the paper.

There is often visual modularity associated with the LJ minima. This fact
inspired many researchers to leverage the geometric principles of LJ minima to
generate good initial guesses (e.g., [17,22]). For example, for minimizing EN ,
instead of random initial guess, we initialize the iterate by simply adding an
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Fig. 2. Left: for E3 with only v3 can freely move on the x-y plane, the number of
iterations (indicated by color) needed for convergence for different initial location of v3.
The global minimum exists at approximately (0.56, 0.97), which can only be achieved
if the initial guess is placed near it. Right: the energy landscape (indicated by color)
of the final iterate when optimization converges. Notice that starting at the points in
yellow or green regions converges to the local but not global minimum. (Color figure
online)

atom randomly to a local minimum of EN−1. As we can see in Fig. 3, compared
to a random initial guess, using the initial guess built upon the local minimum of
EN−1 requires much fewer number of iterations to converge, without sacrificing
the quality of the local minimum. This observation prompts us to search for a
multilevel approach to the LJ optimization, where one could generate good initial
guesses by exploiting the hierarchical structure embedded in different systems,
i.e., by interpolating solutions from small systems to serve as initial guess for
large system, we could expect a more robust convergence.

Let us first consider the pairwise interaction between atoms vi and vj , which
is expressed by the following:

1
||vi − vj ||12 − 1

||vi − vj ||6 . (4)

It is easy to derive that the minimum of Eq. 4 is obtained when ||vi−vj || = r∗ =
21/6, where r∗ is the ideal distance of separation between two atoms. Therefore,
the global minima of E3 and E4 in 3D are equilateral triangle and tetrahedron,
respectively, with pairwise distance r∗.

For larger systems, we first define the neighboring atoms of the atom vi as
the ones connected with vi by edges of Delaunay triangulation [7]. Notice that
the optimal pairwise distance of r∗ is not maintained between all neighboring
atoms for N > 3 in 2D and N > 4 in 3D. Then an intuitive expectation is
that an arrangement of the atoms, where all the pairwise neighboring distances
are approximating r∗, can be a good initial guess. This motivates the main
idea we propose in this paper, which is to add new atoms to the boundary of a
coarser atomic configuration (i.e., a smaller system with fewer atoms) at its local
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Fig. 3. The number of iterations needed to find a local minimum for EN in 3D greatly
reduces when a local minimum of En−1 in addition to a random point is used as the
initial guess

minimum so that the distance between the new atom and its nearest neighbours
from amongst the existing atoms is r∗.

We employ the method generally known as trilateration to perform this
action. Simply speaking, in 2D, we choose two neighboring atoms (i.e., con-
nected by an edge in the Delaunay triangulation) and draw circles around them
with radius r∗, then the two intersection points of the circles provide two candi-
dates as the new atoms to be added. For example, given two atoms at (0, 0) and
(d, 0) where d ≤ 2r∗, respectively, then the intersection points of trilateration

are

(
d

2
,±

√
r∗2 − d2

4

)
. This idea is illustrated in Fig. 5 and can be extended

to 3D. This trilateration technique of circle-circle intersection in 2D or sphere-
sphere-sphere intersection in 3D has been used in various applications such as
surveying and GPS systems [5,14,23].

After performing trilateration on every edge on the boundary of the atomic
configuration, a list of candidate locations for the new atoms are obtained as
shown in Fig. 6. Each location is evaluated by adding an atom there and seeing
if the resulted system has smaller energy, since the energies of stable systems
should decrease as the number of atoms increase. If adding an atom at a location
increases the energy of the system, this location is discarded. For simplicity,
we summarize the detailed procedure (denoted as trilateration-based multilevel
method) in 2D as follows (Fig. 4),
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Fig. 4. Comparable potential energies obtained by the two different ways of initializa-
tion. The shaded area denotes the standard deviation. (Color figure online)

– Given a local minimum VN of EN (use the global minimum if it is available),
apply Delaunay triangulation on it to generate triangles (simplices in 3D).

– Generate the smallest convex hull which encloses all the N atoms, and identify
its corresponding edges.

– Selection of edges:

• Select edges that only have two atoms lying on it.
• If an edge on the convex hull has more than 2 atoms on it, divide that

edge into multiple edges comprising only of 2 atoms and select all the
edges thus formed.

• If the length of an edge is longer than 2r∗, identify the triangular simplex
that the edge belongs to. Select the other two edges in the triangular
simplex instead of the original edge. If any of the edges formed this way
have more than 2 atoms, divide it up into multiple edges with 2 atoms
and select them all.

– On each edge among the selected edges, use the trilateration method to find
candidate locations to place the new atoms.

– Take all the candidate locations found this way and add them one at a time to
the original system of atoms. If the corresponding potential energy decreases,
the new atom becomes part of the system. Otherwise, it is rejected.

– Once the new configuration is obtained with m atoms where m > N , it is
used as an initial guess for minimizing Em. One could also perform Delaunay
triangulation and the trilateration procedure again on the new system to get
a larger system of atoms.

– This process can be repeated until we reach a desired system size.
– Perform optimization on the final iterate giving us the generated initial guess

to find a minimum.
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Fig. 5. Using trilateration on the bottom edge to find two new locations at a distance
r∗ from both atoms on the bottom edge. One of the locations is already occupied by
an existing atom and thus only one new position is obtained (in green). (Color figure
online)

Fig. 6. Given existing atoms v1, v2, and v3, trilateration on all the edges is used to
find locations to place the new atoms (in green). The resulting structure, where the
dashed lines are the new edges, serves as an ideal initial guess for the minimum of E6.
(Color figure online)

If the user desires a minimum for a particular number of atoms, this method
can be applied to find a minimum for a system of size close to the desired
number. Then, the remaining few atoms can be added either randomly or using
trilateration as a heuristic. The resulted configuration can still serve as a good
initial guess as suggested by Fig. 3.

The selection of the edge for trilateration is a critical step. For example, trilat-
eration does not provide any points of intersection if the edge on the boundary
(obtained from the convex hull) is longer than 2r∗. If this fact is not taken
into consideration, eventually the interpolation will stagnate as shown in Fig. 8.
Therefore, in the proposed algorithm, we provide a threshold to carefully choose
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the right boundary for trilateration, i.e., if the boundary edge is too long (e.g.,
>2r∗), the algorithm opts into the concave boundary as suggested in Fig. 7. This
guarantees our method to be scalable and avoids problems as shown in Fig. 8
where the boundaries are too long for the algorithm to perform trilateration
anywhere.

In terms of the computational complexity added by the proposed multilevel
method, since the pairwise distance between all atoms is already available by
calculating the potential, it is trivial to perform the threshold criteria for edge
selection. The trilateration for each selected edge has a relatively simple analyt-
ical formula, therefore, this part of calculation is negligible as well. The main
cost then is on the generation of the convex hull and the Delaunay triangula-
tion which are O(N log N). Since these operations are one-time upfront cost, the
overall added complexity by the proposed trilateration-based multilevel method
for initialization is negligible comparing to one iteration cost of the underlying
optimization.

Fig. 7. The blue edge created by convex hull is too long for trilateration. Hence, our
algorithm chooses the concave green boundary obtained by Delaunay triangulation and
performs trilateration on the two edges that make it. (Color figure online)

4 Numerical Results

In this section, we demonstrate the performance of our proposed method for
various sizes of systems primarily in 2D, with a preliminary exploration on 3D.
Notice that in all experiments, we perform the optimization at the final step
when the number of atoms reaches a desirable number. For the optimization
step, we emphasize that any general-purpose optimization methods can be used
in conjunction with the multilevel approach proposed in this paper. For our illus-
tration purposes, we use the Truncated-Newton algorithm in the Scipy Python
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Fig. 8. Not selecting the edges carefully (i.e., simply choosing the boundary of the con-
vex hull) results in long edges of the convex hull enclosing all the atoms, and therefore
the stagnation of the proposed trilateration method due to no intersection points.

package [18]. Again, as for comparison, we evaluate the performance of our pro-
posed method against randomly initialized guesses which is a standard practice
for initialization.

Fig. 9. The multilevel process to extend a small system to a large system based on the
proposed trilateration approach.

4.1 The 2 Dimensional Case

Figure 9 demonstrates the iterates obtained at every step of the trilateration
process with the initial system as the global minimum of E3. In Fig. 10, we
compare the number of iterations needed for the convergence of the optimization
process for EN when the initial guess is chosen randomly versus if the initial
guess is obtained using the trilateration procedure. We see dramatic savings in
the number of iterations required.
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Fig. 10. The number of iterations needed for the convergence of the optimization
algorithm. Using an initial guess obtained by the trilateration method results in far
fewer iterations. The shaded area signifies the standard deviation in the random trials.

Fig. 11. The energy of the local minimum obtained by using the initial guess from the
trilateration process as opposed to taking a random initial guess.

The question that remains is if the minimum found using the initial guess
from trilateration is better than a random initial guess. Figure 11 shows that in
average, the minimum obtained by the proposed trilateration has a lower energy
than the one from averaged trials of random initial guesses.

4.2 The 3 Dimensional Case

We also demonstrate a preliminary extension of the proposed method to 3D. As
briefly shown in Fig. 12, the reduced number of iterations needed for convergence
by trilateration is maintained in the 3D case. In Fig. 13, we use the energy
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Fig. 12. The number of iterations needed for the convergence of the optimization
algorithm in 3D. The proposed method shows promise for speeding up the optimization
process with reduced number of iterations.

of the global minimum extracted from the online database [20] as a reference,
and compare it against the energies of the minima found by random initial
guesses and those found through the trilateration method, respectively. Due
to the increased geometric complexity in terms of locating the concave regions
arising in 3D, the edge selection criteria in 2D can not be trivially extended to

Fig. 13. The energy of the local minimum obtained by using the initial guess from the
trilateration process as opposed to taking a random initial guess in 3D.
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3D, therefore, we only show the results up to 35 atoms. We leave the development
of more optimal way for edge selection to the future.

5 Conclusion

Although computational resources have grown significantly over the last few
years, their growth alone will not suffice to address the volume and complexity
encountered in applications such as molecular dynamic simulations. Multilevel
methods presents one avenue for taking advantage of a known hierarchy to over-
come the intensive computational burden bearing in such problems.

In this work, we propose a trilateration-based multilevel method to speed
up the convergence by providing a better initial guess, and prototype its benefit
on the minimization of the Lennard-Jones potential. We exploit the hierarchies
embedded in the atomic configuration with different sizes so that a good initial
guess can be obtained by interpolating through trilateration from a local mini-
mum of a smaller system. We observe that for 2D, the interpolated initial guess
can save the number of iteration greatly comparing to random initial guess, with-
out sacrificing the quality of the minimum. Although only preliminary results
for 3D are shown for limited sizes of system, it is promising that the proposed
method can be scaled to practical use. However, a more careful design of the
framework is needed, for example, how to more optimally choose the edge to
perform trilateration is critical for the scalability of the proposed method.

Although the current work can not immediately address the challenge of
finding global minimum, one simple way to take advantage of our trilateration-
based multilevel method is to plug in to a more complicated framework for global
optimization such as the one proposed in [3]. For example, the random initial
guess can be simply replaced by the proposed method in this work. Alternatively,
one can utilize multistart framework for global optimization (e.g, [16]) with
the proposed trilateration-based multilevel method for each subproblem. One
could also investigate better interpolation strategy to combine trilateration with
physics to guarantee a better local minimum. We leave these questions to be the
focus for the future.
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