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Abstract. Reversible circuits are one of the technologies that can pro-
vide future low energy circuits. The synthesis of an optimal reversible
circuit for a given function is an np-hard problem. The meta-heuristic
approaches are one of the most promising methods for these types of
optimization problems. In this paper, a new approach for ACO reversible
synthesis is presented. Usually, authors build an ACO system with the
use of truth table or permutation representation of the reversible func-
tion. In this work, a Walsh spectral representation of a Boolean function
is used. This allows dividing search spaces into smaller “promising” areas
with well-defined transition operations between them. As a result, we
can minimize the enormous search space and generate better solutions
than obtained by ACO synthesis with classical reversible function repre-
sentation. The proposed approach was applied to benchmark reversible
functions of 4,5 and 6 variables and compared to other meta-heuristic
results and best-known solutions.

Keywords: ACO · Reversible circuits · Synthesis · Spectral methods ·
Walsh spectrum

1 Introduction

One of the most important requirements for the development of new electronic
devices is power consumption. With rapid minimization and growing demand
for computation power, the low-power design is under constant research. It is
well-known that with any loss of information the energy is dissipated [15]. On
that base, the reversible circuits, i.e the circuits that do not lose information dur-
ing computation, are recognized as one of the promising alternatives for future
low-power design [3,10]. It should be mentioned that reversible logic is strictly
connected with another promising technology - quantum computing.

Reversible circuits can be synthesized with the use of basic gates like not,
cnot, Toffoli. However, this synthesis is very different from the synthesis of clas-
sical circuits [23]. Many heuristic methods of reversible synthesis have been pro-
posed in the literature, to name a few: transformation based algorithm [19,20],
cycle-based algorithm [24], decision diagram based algorithms [28]. Most of the
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known methods are very redundant or can be applied to a reversible func-
tion with a small number of inputs [14]. Some of the authors proposed also
the use of meta-heuristic methodologies like genetic algorithms [11,27], parti-
cle swarm optimization [4,18], and ant colony optimization [17]. All presented
meta-heuristic approaches use truth-table or permutation representation of a
reversible function, in this paper a new ant colony optimization approach that
uses the spectral representation of a reversible function is used.

The paper is organized as follows. In Sect. 2 basic concepts connected
to reversible logic are introduced. Section 3 contains a description of Walsh-
Hadamard spectral methods. Section 4 is devoted to the general ACO system
while in Sect. 5 a detailed description of the algorithm is presented. Section 6 con-
tains a discussion of the results obtained. The concluding remarks are included
in the last Sect. 7.

2 Reversible Logic

In this Section, the basic definitions and ideas connected to reversible logic are
presented for the convenience of the reader.

Definition 1 (Balanced function). A Boolean function f : {0, 1}n → {0, 1}
is called balanced if it takes the value 1 the same number of times as 0.

Definition 2 (Reversible function). A mapping f : {0, 1}n → {0, 1}n is
called a reversible function if it is bijective.

Definition 3 (Component function). A reversible function f(x), x ∈ {0, 1}n

can be considered as a vector of Boolean functions f = (f1, f2, ..., fn), each of
these functions fi will be called component functions.

Table 1. Truth table of an exemplary 3 ∗ 3 reversible function f , the columns in/out
uses decimal signal encoding, while two middle ones represent signals encoded as a
binary string.

In x1 x2 x3 f1 f2 f3 Out

0 0 0 0 0 0 1 1

1 0 0 1 0 1 0 2

2 0 1 0 0 0 0 0

3 0 1 1 1 1 1 7

4 1 0 0 1 0 1 5

5 1 0 1 0 1 1 3

6 1 1 0 1 1 0 6

7 1 1 1 1 0 0 4
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Any reversible function can be represented in many ways for example as a
truth table, binary decision diagram, additionally, every reversible function is
bijective onto, and as such, it can be written as a permutation of input signals.
From the truth table representation of a reversible function (Table 1), we can
see that the function F is a bijection, every input signal appears once as an
output. Every output f(1) = f(001) = 010 = 2 is an element of a set of all
possible inputs, that is why the function can be represented as a permutation
[1, 2, 0, 7, 5, 3, 6, 4]. All of these representations are equivalent. The component
functions f1, f2, f3 are connected to appropriate columns in the truth table.

A reversible circuit is a circuit that realizes a reversible function, i.e. it per-
forms a bijective mapping of an n-bit input signal onto an n-bit output signal, the
mapping is defined by a given reversible function. The circuit can be reversible
if all internal operations are reversible, which means all building blocks of a
reversible circuit have to be reversible themselves. The classical digital circuits
are based on gates like AND and OR, these gates are not reversible, moreover,
their functions are not balanced, this implies that these gates cannot be used in
a reversible circuit. Additionally, in reversible circuit fan-outs are forbidden, this
implies that a reversible circuit is a cascade of reversible gates [22]. The most
often used library of basic reversible gates is known as multiple control Toffoli
gates (MCT) and contains three types of gates: not, cnot, Toffoli.

1. T1(s) - not gate, negates the signal on line s,
2. T2(k; s) - controlled not gate, negates the signal on line s if the signal on

control line k is equal to 1,
3. T3(k, l; s) - Toffoli gate, negates the signal on line s if the signals on controlled

lines k and l are equal to 1,
4. Tm(k1, ..., km−1; s) - generalized Toffoli gate, negates the signal on line s if

the signals on all m − 1 controlled lines k1, ..., km−1 are equal to 1,

Each of the MCT gates is self-inverse. It is known that any n ∗ n reversible
function can be implemented with the use of the gates from the MCT library.
Moreover, the number of different gates one can use to synthesize n∗n reversible
circuit increase with the number n of input binary variables, for example for
4 * 4 reversible domain, there are 32 available MCT gates: 4 * T1, 12 * T2 and
T3, 4 * T4.

2.1 Gate Cost

The simplest approach to evaluate the quality of a circuit is a gate count (GC),
this measure, however, treats all gates in the same way. It is rather obvious that
different gates will have different implementation cost, this implementation cost
can differ for technology used. The MCT gate library contains many different
gates, from the simplest ones T1 (not gate) to a very complex like T5 (generalized
Toffoli gate with 5 input lines and 4 lines are control ones). In the literature,
there are a few approaches to describe the sophistication of reversible gates. The
most recognized measures of gate costs are the so-called quantum cost (QC) [2]
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and T-count [1,21]. All these measures are connected to the representation of
reversible gates in quantum gates. QC and T-count measures grow rapidly with
the growth of the number of control lines. For gates used in the paper: T1, T2
have QC = 1, T-count = 0, T3: QC = 5, T-count = 7, T4: QC = 13, T-count = 16.
In this paper, quantum cost measure is used as it has similar behavior comparing
to T-count and has a nonzero cost to two basic gates not and cnot. The following
synthesis procedure is designed to optimize the QC of obtained circuits.

The process of reversible synthesis of a given function f is a task of gen-
erating the optimal sequence of reversible gates, that transforms input signals
into outputs with the agreement with function f . In this paper, the optimal
sequence means the sequence with the lowest total quantum cost. However the
meta-heuristic methodology is used and by default part of the solutions can be
suboptimal, the goal of the presented approach is to find solutions as near to
optimal as possible.

3 Walsh-Hadamard Transform

In the previous section two different representation of reversible function was
mentioned (truth table and permutation). In this paper, an additional - spectral
representation is used. In the domain of Boolean functions a few generalized
Fourier type transforms are well-known, i.e. Reed-Muller, Arithmetic, and Walsh
[26]. Each of these transforms can be used to define spectral representation
with different properties and was used for some time in the theory of Boolean
functions. In this paper the Walsh transform in Hadamard order is used, called
also Walsh-Hadamard transform.

Definition 4 (Walsh transform). In n variable Boolean domain the Walsh-
Hadamard transform is defined by the Kronecker product ⊗ of basic Walsh matrix

W (n) =
⊗

n

W (1), where W (1) =
(

1 1
1 −1

)
. (1)

To apply Walsh-Hadamard transform to a Boolean function, we have to apply
integer encoding of Boolean function.

Definition 5 (Integer encoding). Integer encoding of a Boolean value x is
defined as follows:

x →
{

1 when x = 0
−1 when x = 1.

(2)

Definition 6 (Walsh spectrum). The Walsh-Hadamard spectrum of n vari-
able Boolean function f(x1, x2, ..., xn) is represented as a vector of integer values
Sf defined as:

Sf = W (n)fc. (3)

where: fc is a column truth-vector of function f in integer encoding.
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Example 1 Let f = (0, 0, 1, 1, 0, 1, 0, 1)T be a truth-vector, then a vector of the
form fc = (1, 1,−1,−1, 1,−1, 1,−1)T represents integer encoded version of f .
In 3 variable domain Walsh-Hadamard transform W (3) have the form:

W (3) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Walsh-Hadamard spectrum Sf of function f is Sf = (0, 4, 4, 0, 0,−4, 4, 0)T .

The elements of spectral vector Sf are often called Walsh coefficients of
function f in Hadamard order. In the Walsh domain of three variables, these
coefficients are often designated as Sf = (S0, S3, S2, S23, S1, S13, S12, S123)T .
These spectral coefficients represent the correlation of function values with input
variables. The zero-order coefficient S0 represents the difference of the number
of occurrence of 0 and 1 values in a truth table column, for balanced functions
S0 is always 0. The first order coefficients {S1, S2, S3} represent the correlation
of function values with the values of input variables x1, x2, x3 respectively. The
second-order coefficients {S12, S13, S23} are connected with the correlation of
values of the function f and xor products: x1 ⊕ x2, x1 ⊕ x3, x2 ⊕ x3. The third-
order coefficient S123 represents the correlation of function f and x1 ⊕ x2 ⊕ x3.

In the general case we can write properties of Walsh coefficients:

– all coefficients s have an integer value, −2n ≤ s ≤ 2n,
– a sum of absolute values of any two coefficients cannot exceed 2n,
– S0 - is connected to a constant part of the function, this coefficient is equal

to 0 for balanced functions,
– Si represents the correlation of the function in consideration with the value

of variable xi,
– Sij represents the correlation of the function and xor product xi ⊕xj , where

i �= j 1 ≤ i, j ≤ n,
– Sij...m represents the correlation between the function and xor product xi ⊕

xj ⊕ ... ⊕ xm.

Definition 7 (Reverse Walsh transformation). From Walsh-Hadamard
spectrum Sf an original integer encoded Boolean function fc can be obtained
by reverse Walsh-Hadamard transform in the form:

fc = W−1(n)Sf , where: W−1(n) = 2−nW (n). (5)

As reversible function can be treated as a vector of component functions, one
can always derive Walsh transformation of a reversible function by application
of Walsh transform to each of component functions independently.
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Definition 8 (Walsh spectrum of reversible function). The Walsh spec-
trum of n∗n reversible function F can be obtained by application of Walsh matrix
to integer encoded function F c

SF = W (n)F c. (6)

It should be noted that the spectral form SF = Sf1 , Sf2 , ...Sfn
of a reversible

function F = (f1, f2, ...., fn) is a vector of spectral columns of component func-
tions, i. e. Sfi

= W (n)fc
i .

3.1 Spectral Invariant Operations

Definition 9 (Spectral invariant operations). An operation on Boolean
function f that preserve absolute values of Walsh spectral coefficients of the
function is called a spectral invariant

The set of spectral invariant operations have been used in Boolean logic
for many years [9,12,13,16]. The set of invariant operations is built from the
following function transformations:

1. negation of the function - changes sign of all spectral coefficients,
2. negation of an input variable - changes the sign of spectral coefficients con-

nected with this variable (for example when x2 → x2 then first-order coeffi-
cient change sign S2 → −S2, and similarly appropriate second-order coeffi-
cients S12, S13 and so on,

3. permutation of input variables - exchanges the coefficients connected with
appropriate variables,

4. replacement of a variable xi with xi ⊕ xj for i �= j,
5. replacement of the function truth vector f with f ⊕ xi.

All invariant operations can be implemented by application of appropriate
reversible gates, T1 gates implement operations 1 and 2 while using T2 gates one
can build operations 4 and 5. The operations 3 can be implemented by a so-called
swap gate, swap gate can be build from three T2 gates. The presented relations
divide the set of all reversible gates into a set of spectral invariant operations
(these gates have a quantum cost equal to 1) and the rest of reversible gates
that can modify the spectrum of the function in consideration.

3.2 Walsh-Hadamard Spectrum and Reversible Gates Operation

As was shown above, the simplest reversible gates T1 and T2 are connected to
spectral invariant operations. That means the rest of the reversible gates have
to modify the spectrum of a Boolean function. Every reversible function can
be represented as a permutation matrix, in particular, any reversible gate is
connected to a permutation matrix. Suppose we have a reversible circuit of the
form presented below.

x1

G1 G2

f1

x2 f2

x3 f3
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The function F = (f1, f2, f3) is represented by such a reversible gates G1 and
G2, and can be written as:

F = G2G1I, (7)

where I represent 3 ∗ 3 identity function and G1, G2 are permutation matrices
representing reversible gates G1, G2. Applying Walsh-Hadamard transform to
the resulting function F we have

WF = WG2G1I = WG2W
−1WG1W

−1WI, (8)

SF = WG2G1I = WG2W
−1WG1W

−1SI = G̃2G̃1SI , (9)

where SI denote Walsh spectral representative of identity function and G̃2 and
G̃1 are Walsh-Hadamard representatives of reversible gates G2, G1 respectively.
For any n the SI is the simplest spectrum matrix n ∗ 2n, in each column, there
is only one nonzero value. For n = 3 SI have the form:

SI =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 8
0 8 0
0 0 0
8 0 0
0 0 0
0 0 0
0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Taking into account permutation matrices of reversible gates T1, T2, T3 we
can easily using matrices W and W−1 derive their representatives in the spectral
domain, below representatives of selected gates in Walsh domain are presented:

T1(1) →

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T2(1; 2) →

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

T3(1, 2; 3) →

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1

2 0 1
2 0 1

2 0 − 1
2

0 0 1 0 0 0 0 0
0 1

2 0 1
2 0 − 1

2 0 1
2

0 0 0 0 1 0 0 0
0 1

2 0 − 1
2 0 1

2 0 1
2

0 0 0 0 0 0 1 0
0 − 1

2 0 1
2 0 1

2 0 1
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)
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As all T1 are diagonal and T2 a permutation matrices, their application to
SI will not modify absolute values in each column, these operations can only
change their positions. All other gates T3, T4, ..., Tn will change the values in
the spectrum and very often change number or zeros in the spectral columns,
the more zero values are in the spectrum the more linear the function is.

In Walsh domain, the functions are treated as a spectral matrix, all the
possible input signals are taken into account, singular input is connected to a
matrix row. The columns of the spectral matrix are connected to the spectrum
of component functions. The action of the reversible gate on the actual state is
represented as matrix state multiplication, which means all columns in the state
matrix are treated independently, i.e. all component functions can be treated
the same way.

4 Ant Colony Optimization

Ant colony optimization (ACO) is a biologically inspired meta-heuristic algo-
rithm introduced by Dorigo in [5,7]. The main idea of the algorithm is based
on the social behavior of ants during a food search. The communication in the
colony is based on pheromone residue that is left by each colony member when
traveling between nest and food source. At first, ACO was introduced to solve
traveling salesman problem later the method was applied to many other combi-
natorial problems [6,8].

Usually, the ACO algorithm is defined on a graph that represents states in
a search space, each edge in the graph represents actions (transitions between
states) that can be taken during the walk of an artificial ant. Every action
(edge) has an assigned value that represents the cost of the choice (very often
the distance between the states).

The optimization procedure used in this paper is based on a colony of m
artificial ants, in an iteration, every ant walks independently on a problem graph,
at each node the ant has to choose an edge that leads to the nest state. When
an ant reaches the end, either by reaching the final state node or the limit of
steps in one iteration, pheromones residues on visited nodes are updated. The
pheromone update rule and decision reasoning depend on ACO implementation.

At the start of the procedure, each node has been given an initial value τ0.
During the update procedure we allow the pheromones to evaporate in time.

τij ← ρτij , (13)

where ρ ∈ [0, 1) is an evaporation parameter. The pheromone update procedure
is done after evaporation, at the end of each iteration, every ant from the colony
update pheromone by an additional deposit Δτk

ij :

Δτk
ij(t) = R/Ck(t), (14)

where R is a constant and Ck(t) represents the cost of the solution obtained by
k-th ant in an iteration t, usually, Ck represents the sum of costs assigned to
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edges used in the solution. The final pheromone update procedure, that takes
into account evaporation and new deposits have the form:

τij(t + 1) = ρτij(t) +
∑

k

Δτk
ij(t). (15)

When ant moves over the graph the choice of an outgoing edge can be taken
either randomly or based on actual pheromones residue and partial heuristic
reasoning. In the procedure, a parameter ζ, the probability of pure random
choice at each graph node, is used. In the case of pheromone-based choice the
decision is based on weighted probability:

pij(t) =
τij(t)αηβ

ij∑
i,j τij(t)αηβ

ij

, (16)

where pij(t) is the probability of choosing j edge when an ant is in node i in
iteration t, τij(t) represents the actual pheromone deposit in node i attached to
edge j at the moment t. The parameter ηij represents heuristic reasoning, this
part always depends on the problem to be solved. Two additional parameters α,
β describe the relative importance of the pheromone and heuristic factors.

5 Algorithm Implementation

In this paper ACO is used to optimize the process of reversible function syn-
thesis, moreover, all the reversible functions are represented with the use of the
Walsh-Hadamard spectrum. The procedure starts with an initial function to be
synthesized. Each ant will try to convert the function spectrum into a spectrum
SI by application of reversible gates. The solution is a sequence of gates that
represents a function in consideration.

In the proposed ant colony optimization procedure state (node of the graph)
is connected to the spectrum of a reversible function, while the actions (edges
of the graph) are the gates that can be added to the solution. Each edge has an
attached value that represents the quantum cost of the appropriate gate.

5.1 Heuristic Reasoning for Designed ACO

As was mentioned before in the process of decision making the heuristic knowl-
edge about the word of reversible functions is taken into account (16). The target
state SI has only one nonzero value, that means during synthesis procedure we
should maximize the number of zeros of the actual state.

Suppose we have two states F1, F2 represented by spectral matrices SFa
and

SFb
. Additionally, there is the reversible gate Gx that transforms one state into

another one, i. e. SFa
= G̃xSFb

. The heuristic factor for edge Gx connected to
the state Fa will have the form:
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ηax = 1 +
count zeros(SFb

) − count zeros(SFa
)

min (count zeros(SFb
), count zeros(SFa

))
(17)

± σ

qc(Gx)
, (18)

where σ is a scaling parameter, count zeros(.) represent the function that
returns the number of zeros in the argument, min(., .) is the function that returns
the minimum value from given arguments, qc(.) represents the quantum cost
of a reversible gate. The sign ± corresponds to the sign of count zeros(SFb

) −
count zeros(SFa

).
The form of the heuristic factor (17) represents the main parameters that

have to be taken into account during the synthesis procedure. The main part
count zeros(SFb

)−count zeros(SFa )

min(count zeros(SFb
),count zeros(SFa ))

depends on a change of the number of zeros in
two connected states SFa

and SFb
, if the application of the gate increase the

number of zeros the factor has positive value when number of zero decreases the
factor is negative and so decrease the probability of choosing the edge. The sec-
ond element of the heuristic factor ± σ

qc(Gx)
distinguishes the gates that generate

state with the same number of zeros in the spectrum but differs in quantum
cost.

5.2 Pheromone Update Procedure

In the pheromone update procedure, the deposit from k-th ant given by Eq. (14),
the sum of quantum costs of all the gates in the solution found by an ant is used
for assessment of the cost of the solution Ck.

5.3 Additional Parameters of ACO Used in the Implementation

In the implementation of the ACO algorithm, the values of parameters that were
used are presented in Table 2.

5.4 Creation of ACO System

The ACO is based on the graph that represents the search space. It has to be
mentioned that the graph in consideration is an enormous one, for n variables,
there are 2n! reversible functions. It is impossible to build and keep in memory
all possible functions as nodes and transition gates edges. For that reason, our
search space will be built during the optimization process, whenever an ant visits
a new node, important node information will be created, that means assign all
edges, generate all heuristic factors, initialize pheromone deposit, etc. This lazy
node initialization allows us to save memory and speed up the initialization
phase. In the starting initialization phase, only the target state (node connected
to SI) and a state connected to a function f in consideration are created. The
node connected to f takes the role of the nest, it means at the beginning of a
new iteration every ant starts from this node.
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Table 2. Parameters used in implemented ACO algorithm

Name Short description Value

α The parameter connected to the influence of
pheromone in decision making (16)

1

β The parameter connected to the influence of
heuristic in decision making (16)

1

ζ The probability of random choice at every
node

0.5

m The size of the colony 30

R The scale factor used for deposit (14) 1

ρ The pheromone evaporation factor (13) 0.8

σ The scale factor in heuristic rule (17) 1

During the first tests of the algorithm, it was noticed that the ACO behaves
better (gives better results) when more than one final state was given. For that
reason, in the initialization phase, more than one target state was created. For
every gate a state that can be obtained from state SI by application of a single
gate was initialized, moreover, this states had a very simple assignment of the
pheromones for edges: 1 for the edge that leads to SI and 0 to others. This creates
an additional set of states that directly leads to the final state. This procedure
could be extended to next states with the distance of two or three gates from SI ,
it has to be noted that while for n = 4 there are only 32 nearest neighbors of SI

the number of neighbors in a distance of 3 gates can be estimated to 5000–10000
and it not seem reasonable to initialize them all.

6 Numerical Results

The proposed algorithm has been implemented in python, and run to
synthesize selected benchmark functions. At first ACO algorithm was
used to synthesize one of functions used in publication [17]: f =
[2, 9, 7, 13, 10, 4, 2, 14, 3, 0, 12, 6, 8, 15, 11, 15]. On that function, the impact of
algorithm parameter values was analyzed and their final values selected (see
Table 2).

In the literature, authors use many different functions as well as different cost
measures to test developed synthesis algorithms. Therefore, the algorithm was
tested against two sets of functions: one the set of known benchmarks and results
obtained via heuristic algorithms implemented in revkit tool [25] (Table 3), the
other set of functions taken from [17] in order to compare two ACO based
approaches (Table 4). The results from Table 3 shows that the results obtained
are not always optimal, however, most of them are near-optimal.

In the article that uses the ACO approach [17], we can find results of synthesis
that takes into account the number of gates. In order to be able to compare
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Table 3. Results of the presented ACO
algorithm for selected benchmark func-
tions compared with circuits obtained
with revkit tool [25].

Benchmark function ACO Walsh Known solutions

GC QC GC QC

4 49 35 88 36 84 [29]

4b 15g 1 27 67 34 90 [29]

4b 15g 2 32 91 35 83 [29]

4b 15g 3 25 81 32 96 [29]

4b 15g 4 26 80 35 91 [29]

4b 15g 5 35 102 34 80 [29]

aj-e11 25 53 34 90 [29]

App2.2 22 83 26 86 [29]

decode42 25 53 34 90 [29]

dmasl 24 68 30 78 [29]

gyang 30 96 16 76 [29]

hwb4 20 40 21 37 [29]

mini-alu 13 45 12 68 [29]

mod10 171 22 72 13 65 [29]

msaee 26 64 38 98 [29]

nth prime4 18 60 26 70 [29]

oc5 31 127 26 82 [29]

oc6 30 66 36 88 [29]

oc7 20 54 32 92 [29]

oc8 24 54 38 98 [29]

hwb5 34 81 33 71 [27]

hwb6 48 105 47 107 [24]

nth prime6 inc 59 281 57 485 [27]

Table 4. Results of the presented ACO
algorithm compared to the results from
[17] when minimal gate count is taken
as the goal of the synthesis.

Function Permutation

based ACO

[17]

Walsh

based

ACO

[1, 0, 3, 2, 5, 7, 4, 6] 3 3

[7, 0, 1, 2, 3, 4, 5, 6] 3 3

[0, 1, 2, 3, 4, 6, 5, 7] 3 3

[0, 1, 2, 4, 3, 5, 6, 7] 4 3

[0, 1, 2, 3, 4, 5, 6, 8, 7, 9,

10, 11, 12, 13, 14, 15]

7 8

[1, 2, 3, 4, 5, 6, 7, 0] 3 3

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 0]

3 3

[0, 7, 6, 9, 4, 11, 10, 13, 8,

15, 14, 1, 12, 3, 2, 5]

4 4

[3, 6, 2, 5, 7, 1, 0, 4] 6 6

[1, 2, 7, 5, 6, 3, 0, 4] 6 6

[4, 3, 0, 2, 7, 5, 6, 1] 5 5

[7, 5, 2, 4, 6, 1, 0, 3] 5 5

[6, 2, 14, 13, 3, 11, 10,

7, 0, 5, 8, 1, 15, 12, 4, 9]

11 10

[2, 9, 7, 13, 10, 4, 2, 14

, 3, 0, 12, 6, 8, 15, 11, 15]

11 11

[6, 4, 11, 0, 9, 8, 12, 2,

15, 5, 3, 7, 10, 13, 14, 1]

13 12

[13, 1, 14, 0, 9, 2, 15, 6,

12, 8, 11, 3, 4, 5, 7, 10]

10 9

both approaches, the cost measure was changed from quantum cost (QC) to the
number of gates in sequence (GC). For the cases presented in Table 4 the cost
of all gates was set to 1 instead of quantum cost.

The results are shown in Table 4 show that the results obtained are compa-
rable, in more difficult tasks often better to those obtained in [17]. This could be
the result of function representation used, as the Walsh spectrum contains more
global information on the function and heuristic factor of ant decision policy is
probably better suited to the synthesis task.

7 Conclusions

In the paper, a new approach for meta-heuristic reversible synthesis is presented.
The most important change is connected with different function representation
used. The Walsh-Hadamard spectrum of a function contains some global prop-
erties of the function, i.e. the correlation of the function values with input vari-
ables. This property allows the algorithm to create a choosing policy based on
the linearity of the function, the number of zeros in spectral representation of
the function in consideration. Additionally knowing that some of the simplest
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reversible gates preserve absolute values of the spectrum the artificial ants in the
ACO algorithm more often use high-cost gate only when the gate simplifies the
function. The results of the presented algorithm were compared to best-known
solutions, this comparison shows that even though the results obtained didn’t
always reach global optimal solutions, they were near the optimal ones. It has to
be noted that the global optimal reversible circuits are known only for functions
with the input variable numbers up to 4, for the functions with a higher number
of inputs the global optimal solutions are not known. Therefore all methods that
give a near-optimal solution for a high number of variables are important.

7.1 Future Areas of Research

The results obtained are promising, the extensions of the method presented are
considered. As was mentioned all columns of component functions are treated
independently, it is possible to store in the graph only component function states
while all the decisions would be taken with the use of global knowledge, the final
decision would be the sum of factors for each component function. This could
lead to an exchange of information between similar functions that share the
same component function spectral column. Additionally, it is possible to use
two-directional synthesis, i.e. one nest can be placed in target node and search
for a given function, while the other nest works the same way as presented, the
pheromones could be exchanged between these two colonies. This could lead to
better exploration and exploitation of search space in consideration.
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