l‘)

Check for
updates

Visual Analysis of Computer Game
Output Video Stream for Gameplay
Metrics

Kamil Koztowski!, Marcin Korytkowski?®, and Dominik Szajerman' ()
! Institute of Information Technology, Lodz University of Technology,
ul. Wélczanska 215, 90-924 Lédz, Poland
dominik.szajerman@p.lodz.pl
2 Czestochowa University of Technology, Al. Armii Krajowej 36,
42-200 Czestochowa, Poland
marcin.korytkowski@pcz.pl
http://kisi.pcz.pl, http://it.p.lodz.pl

Abstract. This work contains a solution for game metrics analysis
based on a visual data stream dedicated for the player. The solution
does not require interference in the programming code of the analyzed
game and it is only based on image processing. It is possible to analyze
several aspects of the game simultaneously, for example health/energy
bars, current weapon used, number of objects worn (aid kits, ammuni-
tion). There have been presented methods using cascading classifiers and
their training to detect the desired objects on the screen and to prepare
data for other stages of processing, e.g. OCR. The effect of the meth-
ods is a gameplay chart that allows a thorough analysis of the player’s
actions in the game world and his or her advancement. The solution is
fast enough that it can be used not only in previously recorded gameplay
analysis, but also in real time during simultaneous gameplay.

Keywords: Gameplay metrics - HUD -+ Image processing

1 Introduction

Gameplay metrics are important parts of testing and analyzing computer games.
They rely on the interpretation of raw data from the game, which may contain
information about the player’s current activities [10] — including, but not limited
to, moving around the world, performing defined operations, or interacting with
the graphical interface [4]. Acquiring data for the gameplay metrics process may
require some access to the game’s source code, whether by modding or compiling
open source projects. Another way may be to use specialized equipment such
as e.g. eyetracker to analyze the player’s behavior, but for obvious reasons it
is limited to laboratory conditions [9]. However, a lot of information could be
obtained from the game result streams alone — image and sound. This is very

© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12141, pp. 538-552, 2020.
https://doi.org/10.1007/978-3-030-50426-7_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50426-7_40&domain=pdf
http://orcid.org/0000-0002-6002-2733
http://orcid.org/0000-0002-4316-5310
https://doi.org/10.1007/978-3-030-50426-7_40

Visual Analysis of Computer Game Output Video Stream 539

important, because it allows to analyze games at which access to the source code
is impossible, such as those recently released — and do it very effectively [6].

The methods presented here can also be used in a broader scope, such as
testing player behavior (including attempts to cheat in online games), or elements
of automated tests, including tests of games produced by third-parties. The data
obtained here can be a subset of the inputs of a bot’s program, which tests the
game by building a map and navigating within it [3] or acting in other way [8].

The paper presents a solution consisting of three methods. The first combines
known HUD! analysis with shape detection based on a cascade classifier to obtain
a robust method independent of user screen configuration. The second expands
the game analysis presented in the literature with a new algorithm. It involves
recognizing shapes using cascade classifiers based on Haar-like [12] and Local
Binary Patterns (LBP) [2] features to recognize moving technical objects — in
this case, weapons in first-person shooter game (FPS). The third method allows
to analyse the HUD detected by the cascade classifiers to recognize the text
it contains, and interpret the strings obtained in this way. This allows to read
secondary information about the game, such as the number of first aid kits or
ammunition.

2 Related Work

Usually game metrics are understood as telemetry, i.e. remote collection of game-
play data for many players for analysis and statistics [5]. Only game producers
can do this because they have access to data collected on their game servers.
The data can be various: equipped weapon, play time, difficulty level, current
mission, avatar location, enemies’/NPCs’ parameters, save/load actions, player
drop-off per mission, custom use of game mechanics. Applications other than
play testing are, for example, bug tracking and QA. Game metrics results are
often presented as graphs of measured value versus time or heat-maps showing
the intensity of various measurements collected in 3D game space [5].

Audiovisual analysis of the game through postprocessing does not need to
access the game code. Thus can be an effective variation of gameplay metrics
for third-parties. It is based on audiovisual analysis of the recorded gameplay.
It was presented in [6]. Key elements of communication with the player in the
analyzed game, i.e. “Bioshock 2” [1] (e.g. health bar status, occurrence of the
HUD on the screen, sounds of shots) can be precisely extracted from the game
result streams. Then, these data can be presented as a graph illustrating several
dozen minutes of gameplay. Such graph is a clear way to distinguish between
the way a beginner player plays and an advanced one. The work [6] presents
algorithms that allow to segment and index the gameplay — they are referred
to as “Algorithm 1”7 and “Algorithm 2”. Our work references to them the same
way.

! Heads-Up Display is the graphics part of the game user interface by which informa-
tion about the state of the game is visually presented to the player.

540 K. Kozlowski et al.

“Algorithm 1”7 checks the occurrence of HUD on the screen (during non-
interactive scenes the HUD is hidden, which excludes them from performance
analysis) through the static logo detection algorithm on the screen, depending on
the mask created earlier. “Algorithm 2” checks the player’s health and energy
level as the appropriate colors constituting the health and energy bars in the
areas of the screen determined by static masks.

As a field for further analysis [6] proposes to include a method of detecting
objects on the screen, extracting text, and recognizing enemies by face detection.

3 Method

The solution is based on visual analysis of gameplay recordings in the game
“Bioshock 27 [1], using the tools built into the OpenCV 3.3.1, and cascade classi-
fiers that have been prepared by hand. In addition, the Tesseract text recognition
system was used.

In order to get data for the analysis the gameplay recordings were made. To
reduce the calculation time, the frames of the recordings for analysis should be
averages of several seconds of gameplay [6]. Each image analyzed is an average
of 30 frames. Averaging frames blur all the moving elements on the screen. The
most static element of the world — a weapon held by the player — is also blurred,
but not enough to prevent its analysis.

A certain problem in creating classifiers [7,13] is the preparation of appro-
priate image samples: several hundred positive, containing the sought shape,
and several thousand negative, not containing it. Although a thousand image
samples can mean a huge amount of data and a long time to obtain them, it is
also the number of frames from just 33 s of gameplay recording with a frequency
of 30 frames per second. Samples were therefore obtained by recording a short
gameplay and appropriate processing, described below.

Negative samples for learning the classifier were the entire screenshots of
gameplay. To ensure the right variety of screenshots two rules were applied. The
first was to quickly change the position and rotation of the camera throughout
the entire recording. The second involves making recordings in several places
— at least one dark and at least one bright. All classifiers were created on the
basis of several uninterrupted gameplays recorded in two different chapters of
“Bioshock 2” — no more than 30s each — made separately for each weapon.

Positive samples were obtained in the same way, however, additional crop-
ping was necessary so that they contained only the shape sought, with only small
background areas at the edges. To increase the diversity of samples, a random
jitter was introduced — for each frame a position offset and frame size are ran-
domly choosen, equal to at most 5% of its width or height. To save calculation
time when training the classifier, the n-th frame, instead of each were used.

The classifiers were created with the help of the traincascade program
included in the OpenCV package. Each classifier for this project was based on
200-900 positive samples, and 1000-2000 negative ones. The maximum false

Visual Analysis of Computer Game Output Video Stream 541

alarm rate? as well as the specific number of samples were manually choosen to
get the best results while keeping the training time below an hour. The exact
values are presented in Table 1. For all classifiers the Gentle AdaBoost training
algorithm was used, 19 was the maximum number of training epochs achieved.
The classifiers were created in two variants, based on the same data sets — for
Haar-like and LBP features.

Table 1. Training configurations of the different classifiers used in the method.

Haarl/LBP1 | Haar2/LBP2 | Haar3 | LBP3 | Haar4/LBP4 | Haar HUD
Negative samples | 479 263 397 397 246 903
Positive samples | 1501 990 1921 | 1921 | 1098 826
Max false alarm | 40% 40% 40% | 33% | 40% 40%

3.1 Algorithm A. HUD Detection and Analysis

HUD detection is performed using a properly trained cascade classifier based
on Haar-like features. The classifier reliably detects a screen section with the
same shape and the same HUD fragment (the cropping differences between sub-
sequent detections are small). It is therefore possible to train the classifier so
that it detects one very characteristic fragment of the HUD and then enlarges
the marked area (e.g. in percentage) so that it contains the entire HUD (Fig. 1).

The detected screen area — if the detection occurred — is intended for further
processing. As in “Algorithm 2” [6], the intensity of colors was measured in
two areas of the examined image (health bar and energy bar). It was based on
masking the image and counting pixels with an appropriate shade relative to all
non-zero pixels in the mask. In our approach, on the other hand, pixel filtering
for shade and brightness in the HSV? color space was used, and detection of
rectangular contours describing the pixels detected in this way (bar filling). The
width of the bright red rectangle in the HUD area determines the amount of
health of the player, and the width of the bright blue rectangle means the amount
of energy of the player.

The difference from “Algorithm 2” [6] is that the operation is local for the
HUD, not for the entire screen, so the transformations made on the HUD are
not relevant to it. As a result, it is possible to detect the presence of HUD on the
screen and advanced analysis of its content regardless of its current location. In
addition, it is not necessary to prepare an appropriate mask before conducting
the tests: it is enough to prepare information about the desired colors. Optionally,
additional cropping of the detected area can be used to reduce the chance of
incorrect color detection in the background game world.

2 False positive detection percentage allowed at each stage of training the cascade
classifier.
3 hue, saturation, value.

542 K. Kozlowski et al.

7ot)
e)
@) Electro Bolt

Fig. 1. The cascade classifier detects and marks the screen area containing the HUD
(processed frame from a screencast recorded from “Bioshock 27 [1]).

An intermediate “Algorithm A” has also been implemented, detecting the
HUD area with a cascade classifier, and then analyzing it locally using masks,
as described by “Algorithm 2”.

In addition, a separate implementation was made that works exactly accord-
ing to Algorithms “1” and “2” of [6] to compare the effectiveness of HUD
detection.

3.2 Algorithm B. Identification of Held Weapons

In “Bioshock 27, as in the vast majority of FPS, the weapon held by the player’s
character is always visible in the lower right corner of the screen as a model in
the game world, making small movements both when moving the camera and
the character, as well as when idle. In the averaged frame, the model is therefore
blurred, but still retains a reproducible set of characteristics (Fig. 2).

The image analysis was carried out in the initial stages of the plot of the
game “Bioshock 2”, where four weapons are available. Detections are carried
out on each analyzed frame using four different classifiers, each trained to detect
a different weapon: “Drill” (1), “Rivet gun” (2), “Hack tool” (3) and “Machine
gun” (4). In order to optimize detection and reduce false positive errors, the
analysis is performed only on a fragment of the image — specifically its right
half. What counts is the fact of detecting the shape; whether the area found by
the classifier contains all or only part of the weapon does not matter (Fig.2).
There is also no reason to create a general classifier (whether any weapons are
kept) as part of the optimization, since the weapons are kept only when the
HUD is displayed. And this is detected by the “Algorithm A”.

Visual Analysis of Computer Game Output Video Stream 543

Fig. 2. The effects of the “Algorithm B”. Two different weapons are effectively detected
and marked on the screen (processed frames from a screencast recorded from “Bioshock
27 [1)).

Based on which classifier in the given frame detected the weapon on the
screen, it is determined which weapon is currently visible.

3.3 Algorithm C. Eliminating Weapon Identification Error

Due to problems such as invisibility of the weapon at some moments, caused by
environmental factors (“Bioshock 2”7 takes place largely in very dark locations,
so a large part of the features can be visible to a very limited extent), or the
possibility of incorrect detection of weapons by “Algorithm B” (no weapons, or
several weapons at the same time), it is necessary to use the method of mitigating
the effects of errors. Our solution to the problem is to use fuzzy logic by creating a
vector of floating point values that are stored throughout the analysis. Each value
in the vector corresponds to the “truth” of the occurrence of a given weapon in a
given frame based on the results of detection by cascade classifiers in the current
frame and previous frame. Thus, with four detected weapons, the vector has four
components. Each vector field has a specific maximum (here 3.0) and minimum
(0.0) value. If any weapon is recognized in a given frame, the fields corresponding
to each of the detected weapons are incremented by a certain value (here 1.0),
and the non-detected weapon fields are decremented by the same amount. If no
weapon is detected in the frame, the values of all fields are reduced by some other
value (here 0.3). The highest value in the corresponding field of the vector gives
current weapon. In this way, a single incorrect detection in one frame (as well as
the detection of more than one weapon in a single frame), when the weapon is
detected correctly in the previous and next frame, does not affect the result. If
no weapon is detected, the stored values will be accepted as current for the next
few frames (maximum of 10 frames for example values). However, the detection
of a correct weapon change is delayed by only two frames.

This method can be effectively applied in the vast majority of modern FPS
games — it is enough to prepare other classifiers for them, for weapons present
in a given game.

544 K. Kozlowski et al.

3.4 Algorithm D. Reading Text in the Graphical Interface

The main HUD in the game “Bioshock 2”7, shown in Fig. 3, in addition to two
status bars also contains two numbers. The first of them means the number of
first aid kits (supplementing the character’s health), and the second — the number
of portions of “Eve”, supplementing energy. The lower HUD of the game, in
turn, presents information about the quantity and type of ammunition for the
currently selected weapon. These values have a huge impact on the player’s
tactics and tell a lot about his style.

Fig. 3. Algorithm for detecting the value of the energy bar. From the left: The input
area of the image detected by the classifier (additionally automatically cropped to
improve processing); the image with detected pixels of proper shade and brightness
(light blue); the output image with the outline of the energy bar marked, whose width
is information about the energy possessed (fragments of processed frames from a screen-
cast recorded from “Bioshock 2” [1]). (Color figure online)

After detecting these HUDs, the cropped image fragments are processed using
the method described in “Algorithm A”. It is based on masking the interface so
that only fragments that may contain text are visible, and on thresholding the
image according to brightness to make the text clearer and remove unwanted
shapes and gradients from the background. In the image prepared in this way,
the text recognition process is carried out using the Tesseract-OCR system. The
detection is based on default text recognition results for English, made available
by the creators in a public repository [11].

If the pre-processing was successful, processing the detection results is very
simple. Tesseract-OCR, provides a text string of several lines whose analysis
strictly depends on the analyzed HUD. For example, upper HUD analysis pro-
vides three lines of text: the first two are integers, the third is a simple string
with the name of the plasmid* used.

To support text recognition, the range of characters recognized by Tesseract
can be limited, e.g. to numbers only. Particularly undesirable are simple punc-
tuation marks, such as a period and comma, which may be misdetected on the
basis of individual pixels.

4 Results

A series of tests of the methods was carried out on four different recordings of the
game from the “Bioshock 2”7 game. It was done with the use of frame averaging

4 Characteristic of “Bioshock 2” gameplay object.

Visual Analysis of Computer Game Output Video Stream 545

(30 in one) and without it. The recordings contained sequences of exploration,
fighting, non-interactive story scenes (without HUD) and an open pause menu,
recorded in various game locations, including well-lit and darker places, addi-
tionally differing in the colors of the environment. In total, over 11 min of various
gameplay were tested, averaged into 699 samples. The recordings were made at
a resolution of 1280 x 720 pixels, with a 30 frames per second (thus during the
analysis one average frame contained data from exactly one second of the record-
ing). Weapon classifiers operated with a scale factor of 1.02°, and searched for
areas between 250 x 200 and 600 x 600 pixels.

For averaged frames, the average accuracy (ACC) of HUD detection was
92.13%, with a precision of 99.35% (PPV). Details of the effectiveness of the
HUD detection classifier are presented in Table 2 (where it was designated “Haar
HUD”). The standard deviation of the reading of the values presented in the
HUD at a constant level of health and energy, using “Algorithm A” was 1.07 for
both bars (with values given on a scale of 0-100), respectively. Standard devia-
tions for the values read by the implemented “Algorithm 2” were 4.03 and 2.25,
respectively, for health and energy. In the case of the indirect algorithm (“Algo-
rithm 2”7 operating locally in the area cut out using the cascade classifier) 4.38
and 2.22, respectively. In addition, the implemented “Algorithm 1” confirmed
its 100% HUD detection efficiency mentioned in [6].

Table 2. Table of statistics on the operation of various classifiers in the application.
The rows “Total Haar” and “Total LBP” contain the sums of the TP, FP, TN and
FN columns of all Haar and LBP classifiers, respectively, and the average of the other
columns. Numbering 1-4 next to the classifier names defines the weapons as in the
Subsect. 3.2. Haar HUD is a classifier used to detect HUD in the “Algorithm A”.

Classifier |TP |TN |FP FN | Precision | Sensitivity Specificity| Accuracy
(PPV) (TPR) (SPC) (ACQC)

Haar 1 124 | 445 | 107 | 24 |53.68% 83.78% 80.62% 81.29%
Haar 2 92 | 495 8 | 105 | 92.00% 46.70 % | 98.41% 83.86%
Haar 3 115 | 493 71 | 21 |61.83% 84.56% 87.41% 86.86%

Haar 4 105 | 464 47 | 84 | 69.08% 55.56% 90.80% 81.29%
Total Haar | 436 | 1897 | 233 | 234 | 69.15% 67.65% 89.31% 83.32%

LBP 1 132 | 532 20 | 16 |86.84% 89.19% 96.38% 94.86%
LBP 2 161 | 466 25 | 37 |86.56% 81.31% 95.02% 91.14%
LBP 3 94 | 562 2 | 42 197.92% 69.12% 99.65% 93.71%
LBP 4 121 | 431 79 | 69 |60.50% 63.69% 84.51% 78.86 %

Total LBP | 508 | 2002 | 126 | 164 | 82.95% 75.83% 93.89% 89.64%
Haar HUD | 618 26 4 | 51 199.35% 92.37% 86.66% 92.13%

5 Defines the step size when the classifier scales the searched shape. The smaller the
scale factor, the more calculations the classifier makes and the greater its accuracy.

546 K. Kozlowski et al.

When testing the “Algorithm B”, the average effectiveness of identification
of the weapon held (compliance of the identified weapon with the actual value)
was 58.08% for “Algorithm B” alone using LBP classifiers, 55.36% for Algorithm
B” alone using Haar-like classifiers, and 66.95% for “Algorithm B” using LBP
features and using “Algorithm C”. Details are presented in Table 2 and Table 3.

Table 3. Weapon identification efficiency for three different detection systems, for four
different gameplay recordings.

Recording number 1 2 3 4

RAW LBP 75.00% | 44.64% | 74.83% | 76.32%
RAW Haar-like 69.57% | 46.43% | 73.78% | 70.30%
LBP with “Algorithm C” | 77.17% | 62.50% | 82.17% | 92.48%

For non-averaged frames, both the detection of weapons and HUDs increased
the occurrence of false positive error, which reduced the effectiveness of both
“Algorithm B” and “Algorithm A”, due to much greater information noise.

Using the presented algorithms, it was possible to create charts showing the
states of health, energy and weapons used (Detected Weapon) in subsequent time
samples for two (of four) choosen recordings — visible in Fig.4. The algorithms
“B” and “C” were tested independently of the “Algorithm A”.

On average, full analysis took 19.692ms, of which 9.118 ms was HUD and
10.573 ms was weapon analysis. On this scale, it should also be mentioned that
loading and averaging 30 frames of the recording took an average of 188.416 ms
using an HDD. Tests were carried out on a computer with an Intel Core i7-
4720HQ @ 2.60 GHz processor. The created system did not contain multi-
threaded elements.

Training of classifiers with Haar-like features took 20-40 minutes on the
above described equipment with 5 threads. Training of LBP classifiers on the
same data in all cases lasted from 50s to 18 min (where only LBP 3 was created
for more than 5 min).

HUD analysis using the “Algorithm D” in “Bioshock 2” was performed on the
same recordings as the detection of weapons. The upper HUD (first aid kit, eve)
and lower HUD (ammunition) analysis were tested. The average effectiveness
of text analysis in frames with correctly detected areas of text was 99.36% and
98.79%, respectively. The effectiveness of text analysis in all frames in which
it should be carried out (the frames in which detection of screen areas was
ineffective were included) was 93.25% and 95.90%, respectively. There was no
false positive error in any of the 701 frames tested (there was never an accidental
successful analysis of an area that did not contain the appropriate text). Details
are presented in Table4. The numbers in the upper part of the table indicate
the number of frames meeting the condition shown in the left column.

547

Visual Analysis of Computer Game Output Video Stream

"OUO PU02dS 9} (PYSIY "JIeyd Surpiodel Aejdouwred uesooyd 3sIy oy} :JorT § *S1q

192 IS¢ I¥C T€Z TZZ TIIZ TOC TI6T TI8T TILT TI9T TST IHT TET ICT TIIT TOT I6 I8 TIL T9 IS Iy T€ 1IZ TIT T

- — —
/}L)\l/\ll)..\f)l}ll\.\(l A —— S
"
[R T 1 W
1
1 [
T T
" "
T R TR T
P
e
r——— OO0

192 1SC I¥Z T€EZ TZZ TIZ TOZ TI6T T8T TILT TI9T TIST TIHT TET IZT TIT TOT 16 T8 TIL 19 IS Ty TE T2 TIT T

.’r|.l —_— }i\l\\/l}ll\%}\ln\sl\/r

(i I " (T (T (T wun

Detected Health Energy Actual Detected Health Energy
Weapon

Weapon

Actual

Weapon

Weapon

548 K. Kozlowski et al.

Table 4. Statistics on the analysis of two different HUD parts.

Top HUD (aid Bottom HUD
kits, eve) (ammunition)

Correct detection of the area and | 622 492

its correct analysis result (A)

Correct detection of the area and | 4 6

incorrect analysis result (B)

Incorrect detection of visible area |41 15

(FN)

Incorrect detection and full 0 0

analysis of the invisible area (FP)

Correctly not detecting an invisible | 34 188

area (TN)

Total analysed frames 701

Effectiveness of the analysis in the |99.36% 98.80%

detected areas (M%)

The effectiveness of the analysis in | 93.25% 95.91%

all frames that should be analyzed

A
(a55rrn)

5 Discussion

HUD detection using the Haar-like classifier brought noticeably less accuracy
than the logo detection method of “Algorithm 1”7 (a decrease of about 8%).
This, combined with the high accuracy achieved (a small number of FP errors)
means that “Algorithm A” receives less data for analysis, but only a small part
of them is incorrect (HUD analysis occurs rarely when it is not on the screen).

Random deviations of the detected position and HUD area by the cascade
classifier should have a negative impact on the effectiveness of HUD analysis.
However, there are negligible differences in the standard deviation values between
the implementation of “Algorithm 2” in the full-screen version (described in [6])
and the indirect, classifier-based. This suggests that the deviations of the values
are mainly caused by errors in detecting colored pixels in subsequent frames,
rather than shifting areas of the masks. At the same time, the new method of
analyzing the value of health and energy bars, finally described in “Algorithm
A” brought much more stable results than both versions of “Algorithm 2” (with
more than four times less standard deviation).

Weapon identification based on both Haar-like and LBP features has similar
effectiveness — in some cases Haar-like gives better results, in others worse than
LBP. The difference is always at most few percent (at most 6% points of differ-
ence). This is despite the fact that the LBP classifiers have on average clearly
higher efficiency and precision than those based on Haar-like features.

Visual Analysis of Computer Game Output Video Stream 549

For each set of samples, the use of the “Algorithm C” increased the effective-
ness of weapon identification. The effectiveness of the “Algorithm C” decreases
with frequent weapon changes, reaching the lowest value at first recording (Fig. 4
left). In the second recording (Fig. 4 right), where the effectiveness of identifica-
tion with the “Algorithm C” is the highest of all cases, weapon changes occur
least often (only 11 times in 4 min).

The number of samples that should be forwarded to the classifier learning
process (and its maximum false alarm) to obtain satisfactory results is strictly
dependent on the appearance of the specific weapon. For example, the most
difficult classifiers to create were Haar 3 and LBP 3, detecting the “Hack Tool”
(shown in Fig.5). The reason was the distinctive appearance of the weapon,
which contained two circles. This caused a false positive to occur frequently.

@ Electro Bolt

Fig. 5. Visual effect of the methods result: image from the average frame, the detected
HUD area subjected to further analysis, and the identifier of the detected weapon in
the lower right corner (processed frame from a screencast recorded from “Bioshock 27

[1)-

The analysis of the HUD content in terms of text content (“Algorithm D”)
proved to be very effective for all recordings from the game, with a particularly
low (below 1.3%) percentage of erroneous full analyzes, and a complete lack of
False Positive errors. Their higher frequency could lead to undetectable analysis
errors, distorting the generated picture of the course of the game.

Figure 4 shows the results of analyzing two different game recordings. They
presented types of weapons appearing in subsequent samples, marked manu-
ally (Actual Weapon chart line), and types detected by “Algorithm B”, using
LBP classifiers, supported by “Algorithm C” (Detected Weapon chart line). The

550 K. Kozlowski et al.

results of Actual Weapon and Detected Weapon are similar to each other, which
means that the identification of weapons carried out by the application is quite
effective. It is clearly seen that in Fig.4 on the left side there is a greater dis-
crepancy between the actual weapons and weapons detected by the algorithms
than on the right. The reason is the player frequently changing weapons, which
reduces the effectiveness of the “Algorithm C”.

Health and energy values presented in Fig. 4 were detected using the “Algo-
rithm A”. It can be seen many breaks in them, caused by the algorithm not
detecting the GUI due to an error or because the GUI was hidden in the game.
For example, the pause in Fig. 4 on the left side, near the sample (seconds) 246,
is the result of the player entering the shopping menu. However, the gap in Fig. 4
on the right side, at sample 26, is caused by a false negative error of the classifier,
extending over a dozen samples. Despite the missing data at some moments, the
charts can be used to determine differences in the player’s actions. According to
Fig.4 on the left, the player lost health during the fight around 11s (samples)
and healed 60s later. At the same time he at no time used special skills that
would cause loss of energy — its state was constant all the time. In Fig.4 on the
right, the player repeatedly used his skill, and in the 157th second he started
a 40-s battle that caused health levels to wave over that period. Thanks to the
weapon chart, it can be said that most of the aforementioned fight took place
using a “Machine gun” (weapon 4), which at the end (about 181s) was changed
to a “Rivet gun” (weapon 2).

6 Conclusions

The use of cascade classifiers in the presented methods has significantly reduced
its creation time. This is due to the possibility of using a small number of samples
and the use of a small number of learning stages. Despite this, the classifiers
achieved a precision of 75%.

Using the presented methods, it was possible to distinguish a set of four
classes of objects (weapons) with an efficiency of over 66%, which turned out to
be sufficient for analyzing the game. The presented algorithm for minimalization
identification errors turned out to be positive in all test cases.

LBP classifiers present in this application — i.e. detecting different types of
weapons — show noticeably higher efficiency than Haar-like classifiers. However,
this does not translate into clear gains in the effectiveness of weapon identifica-
tion without the use of an algorithm that eliminates identification errors. Much
shorter learning time makes the process of improving and testing LBP classifiers
in an iterative way much more efficient than with Haar-like classifiers.

The time results of the algorithms clearly show that the method can be
effectively used in real time — not only as postprocessing, but also as an analysis
of ongoing gameplay.

The presented method of HUD detection and analysis is effective to a degree
similar to the literature method [6], however, it allows you to analyze the inter-
face regardless of its location on the screen, so it is suitable for analyzing moving
interface elements.

Visual Analysis of Computer Game Output Video Stream 551

Further work may include the preparation of more precise classifiers, which
should significantly increase the effectiveness of weapon identification. The sys-
tem has the potential to significantly parallelize calculations, because of all the
methods presented only the “Algorithm C” has to be executed sequentially. The
presented graphical interface analysis method can be used in other games to
analyze static and moving interface elements. Weapon identification algorithms
can be used in most FPS games.

The algorithms presented here allowed to make an effective analysis of the
player’s state of change over time in three aspects: energy level, health level and
the type of weapon held. The obtained statistics allow to determine the style
of playing and to detect and analyze the most important moments from the
recorded game (e.g. the course of the fight) based on the generated graph itself.

Of course, the methods presented have their limitations. While the analysis
of GUI elements can also be useful for other game genres, the specific weapon
detection algorithm will only be useful for FPS games. The method based on
postprocessing and classification of graphic elements would always need to be
adjusted if the type of game analyzed changes. But other game metrics methods
are not without this drawback, where the collected data itself is closely related
to a specific genre or even a specific game.

References

1. 2K Games: Bioshock 2 (2010). https://store.steampowered.com/app/8850/

2. Ahonen, T., Hadid, A., Pietikdinen, M.: Face recognition with local binary pat-
terns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469—481.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24670-1_36

3. Daszuta, M., Wrébel, F., Rynkiewicz, F., Szajerman, D., Napieralski, P.: Affective
pathfinding in video games. J. Appl. Comput. Sci. 26(2), 23-29 (2018)

4. El-Nasr, M.S., Drachen, A., Canossa, A. (eds.): Game Analytics. Springer, Heidel-
berg (2013). https://www.ebook.de/de/product/20778057 /game_analytics.html

5. El-Nasr, M.S., Drachen, A., Canossa, A. (eds.): Game Analytics. Springer, London
(2013). https://doi.org/10.1007/978-1-4471-4769-5

6. Marczak, R., Schott, G., Hanna, P.: Postprocessing gameplay metrics for game-
play performance segmentation based on audiovisual analysis. IEEE Trans. Com-
put. Intell. AT Games 7(3), 279-291 (2015). https://doi.org/10.1109/tciaig.2014.
2382718

7. Opalka, S., Stasiak, B., Szajerman, D., Wojciechowski, A.: Multi-channel convolu-
tional neural networks architecture feeding for effective EEG mental tasks classifi-
cation. Sensors 18(10), 3451 (2018)

8. Rogalski, J., Szajerman, D.: A memory model for emotional decision-making agent
in a game. J. Appl. Comput. Sci. 26(2), 161-186 (2018)

9. Szajerman, D., Napieralski, P., Lecointe, J.P.: Joint analysis of simultaneous EEG
and eye tracking data for video images. COMPEL Int. J. Comput. Math. Electr.
Electron. Eng. 37(5), 1870-1884 (2018). https://doi.org/10.1108 /compel-07-2018-
0281

https://store.steampowered.com/app/8850/
https://doi.org/10.1007/978-3-540-24670-1_36
https://www.ebook.de/de/product/20778057/game_analytics.html
https://doi.org/10.1007/978-1-4471-4769-5
https://doi.org/10.1109/tciaig.2014.2382718
https://doi.org/10.1109/tciaig.2014.2382718
https://doi.org/10.1108/compel-07-2018-0281
https://doi.org/10.1108/compel-07-2018-0281

552 K. Kozlowski et al.

10. Szajerman, D., Warycha, M., Antonik, A., Wojciechowski, A.: Popular brain
computer interfaces for game mechanics control. In: Zgrzywa, A., Choros, K.,
Sieminski, A. (eds.) Multimedia and Network Information Systems. AISC, vol. 506,
pp. 123-134. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43982-
211

11. Tesseract Data: tesseract-ocr/tessdata. https://github.com/tesseract-ocr/tess
data/

12. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple fea-
tures. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, CVPR 2001. IEEE Computer Society (2001).
https://doi.org/10.1109/cvpr.2001.990517

13. Walczak, J., Poreda, T., Wojciechowski, A.: Effective planar cluster detection in
point clouds using histogram-driven KD-like partition and shifted mahalanobis
distance based regression. Remote Sens. 11(21), 2465 (2019)

https://doi.org/10.1007/978-3-319-43982-2_11
https://doi.org/10.1007/978-3-319-43982-2_11
https://github.com/tesseract-ocr/tessdata/
https://github.com/tesseract-ocr/tessdata/
https://doi.org/10.1109/cvpr.2001.990517

	Visual Analysis of Computer Game Output Video Stream for Gameplay Metrics
	1 Introduction
	2 Related Work
	3 Method
	3.1 Algorithm A. HUD Detection and Analysis
	3.2 Algorithm B. Identification of Held Weapons
	3.3 Algorithm C. Eliminating Weapon Identification Error
	3.4 Algorithm D. Reading Text in the Graphical Interface

	4 Results
	5 Discussion
	6 Conclusions
	References

