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Abstract. Multiscale modelling and simulation typically entails cou-
pling multiple simulation codes into a single program. Doing this in an
ad-hoc fashion tends to result in a tightly coupled, difficult-to-change
computer program. This makes it difficult to experiment with differ-
ent submodels, or to implement advanced techniques such as surrogate
modelling. Furthermore, building the coupling itself is time-consuming.
The MUltiScale Coupling Library and Environment version 3 (MUSCLE
3) aims to alleviate these problems. It allows the coupling to be speci-
fied in a simple configuration file, which specifies the components of the
simulation and how they should be connected together. At runtime a
simulation manager takes care of coordination of submodels, while data
is exchanged over the network in a peer-to-peer fashion via the MUSCLE
library. Submodels need to be linked to this library, but this is minimally
invasive and restructuring simulation codes is usually not needed. Once
operational, the model may be rewired or augmented by changing the
configuration, without further changes to the submodels. MUSCLE 3 is
developed openly on GitHub, and is available as Open Source software
under the Apache 2.0 license.
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1 Introduction

Natural systems consist of many interacting processes, each taking place at differ-
ent scales in time and space. Such multiscale systems are studied for instance in
materials science, astrophysics, biomedicine, and nuclear physics [11,16,24,25].
Multiscale systems may extend across different kinds of physics, and beyond into
social systems. For example, electricity production and distribution covers pro-
cesses at time scales ranging from less than a second to several decades, covering
physical properties of the infrastructure, weather, and economic aspects [21]. The
behaviour of such systems, especially where emergent phenomena are present,
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may be understood better through simulation. Simulation models of multiscale
systems (multiscale models for short), are typically coupled simulations: they
consist of several submodels between which information is exchanged.

Constructing multiscale models is a non-trivial task. In addition to the chal-
lenge of constructing and verifying a sufficiently accurate model of each of the
individual processes in the system, scale bridging techniques must be used to pre-
serve key invariants while exchanging information between different spatiotem-
poral scales. If submodels that use different domain representations need to
communicate, then conversion methods are required to bridge these gaps as well.
Multiscale models that exhibit temporal scale separation may require irregular
communication patterns, and spatial scale separation results in running multiple
instances, possibly varying their number during simulation.

Once verified, the model must be validated and its uncertainty quantified
(UQ) [22]. This entails uncertainty propagation (forward UQ) and/or statisti-
cal inference of missing parameter values and their uncertainty (inverse UQ).
Sensitivity analysis (SA) may also be employed to study the importance of indi-
vidual model inputs for obtaining a realistic result. Such analysis is often done
using ensembles, which is computationally expensive especially if the model on its
own already requires significant resources. Recently, semi-intrusive methods have
been proposed to improve the efficiency of UQ of multiscale models [18]. These
methods leave individual submodels unchanged, but require replacing some of
them or augmenting the model with additional components, thus changing the
connections between the submodels.

When creating a multiscale model, time and development effort can often
be saved by reusing existing submodel implementations. The coupling between
the models however is specific to the multiscale model as a whole, and needs
to be developed from scratch. Doing this in an ad-hoc fashion tends to result
in a tightly coupled, difficult-to-change computer program. Experimenting with
different model formulations or performing efficient validation and uncertainty
quantification then requires changing the submodel implementations, which in
turn makes it difficult to ensure continued interoperability between model com-
ponents. As a result, significant amounts of time are spent solving technical
problems rather than investigating the properties of the system under study.

These issues can be alleviated through the use of a model coupling frame-
work, a software framework which takes care of some of the aspects of coupling
submodels together into a coupled simulation. Many coupling frameworks exist,
originating from a diversity of fields [2,12,13]. Most of these focus on tightly-
coupled scale-overlapping multiphysics simulations, often in a particular domain,
and emphasise efficient execution on high-performance computers.

The MUSCLE framework has taken a somewhat different approach, focus-
ing on scale-separated coupled simulation. These types of coupled simulations
have specific communication patterns which occupy a space in between tightly-
coupled, high communication intensity multiphysics simulations, and pleasingly
parallel computations in which there is no communication between components
at all. The aforementioned methods for semi-intrusive UQ entail a similar com-
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munication style, but require the ability to handle ensembles of (parts of) the
coupled simulation. In this paper, we introduce version 3 of the MUltiScale Cou-
pling Library and Environment (MUSCLE 3 [23]), and explain how it helps mul-
tiscale model developers in connecting (existing) submodels together, exchanging
information between them, and changing the structure of the multiscale model as
required for e.g. uncertainty quantification. We compare and contrast MUSCLE
3 to two representative examples: preCICE [5], an overlapping-scale multiphysics
framework, and AMUSE [20], another multiscale-oriented coupling framework.

2 Designing Coupled Simulations with the MMSF

MUSCLE 3 is based on the theory of the Multiscale Modeling and Simula-
tion Framework (MMSF, [4,8]). The MMSF provides a systematic method for
deriving the required message exchange pattern from the relative scales of the
modelled processes. As an example, we show this process for a 2D simulation of
In-Stent Restenosis (ISR2D, [6,7,17,19]). This model models stent deployment
in a coronary artery, followed by a healing process involving (slow) cell growth
and (fast) blood flow through the artery. The biophysical aspects of the model
have been described extensively in the literature; here we will focus on the model
architecture and communication pattern. Note that we have slightly simplified
both the model (ignoring data conversion) and the method (unifying state and
boundary condition updates) for convenience.

Simple coupled simulations consist of two or more sequential model runs,
where the output of one model is used as an input of the next model. This suf-
fices if one real-world process takes place before the next, or if there is otherwise
effectively a one-way information flow between the modeled processes. The pat-
tern of data exchange in such a model may be described as a Directed Acyclic
Graph (DAG)-based workflow.

A more complex case is that of cyclic models, in which two or more submodels
influence each other’s behaviour as the simulation progresses. Using a DAG to
describe such a simulation is possible, but requires modelling each executing
submodel as a long sequence of state update steps, making the DAG unwieldy
and difficult to analyse. Moreover, the number of steps may not be known in
advance if a submodel has a variable step size or runs until it detects convergence.

A more compact but still modular representation is obtained by consider-
ing the coupled simulation to be a collection of simultaneously executing pro-
grams (components) which exchange information during execution by sending
and receiving messages. Designing a coupled simulation then becomes a matter of
deciding which component should send which information to which other compo-
nent at which time. Designing this pattern of information exchange between the
components is non-trivial. Each submodel must receive the information it needs
to perform its next computation as soon as possible and in the correct form.
Moreover, in order to avoid deadlock, message sending and receiving should
match up exactly between the submodels.

Figure 1 depicts the derivation of the communication pattern of ISR2D
according to the MMSF. Figure 1a) shows the spatial and temporal domains
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Fig. 1. a) Spatiotemporal domains (ordinal scales), b) Scale Separation Map, c) MML
diagram, and d) simulation timeline of the ISR2D model.

in which the three processes comprising the model take place. Temporally, the
model can be divided into a deployment phase followed by a healing phase. Spa-
tially, deployment and cell growth act on the arterial wall, while blood flow acts
on the lumen (the open space inside the artery). Figure 1b) shows a Scale Sep-
aration Map [15] for the healing phase of the model. On the temporal axis, it
shows that blood flow occurs on a scale of milliseconds to a second, while cell
growth is a process of hours to weeks. Thus, the temporal scales are separated [9].
Spatially, the scales overlap, with the smallest agents in the cell growth model
as well as the blood flow model’s grid spacing on the order of 10µm, while the
domains are both on the order of millimeters.

According to the MMSF, the required communication pattern for the coupled
simulation can be derived from the above information. The MMSF assumes that
each submodel executes a Submodel Execution Loop (SEL). The SEL starts with
an initialisation step (finit), then proceeds to repeatedly observe the state (Oi)
and then update the state (S). After a number of repetitions of these two steps,
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iteration stops and the final state is observed (Of ). During observation steps,
(some of the) state of the model may be sent to another simulation component,
while during initialisation and state update steps messages may be received.

For the ISR2D model, causality dictates that the deployment phase is simu-
lated before the healing phase, and therefore that the final state of the deploy-
ment (Of ) is fed into the initial conditions (finit) of the healing simulation. In
the MMSF, this is known as a dispatch coupling template. Within the healing
phase, there are two submodels which are timescale separated. This calls for the
use of the call (Oi to finit) and release (Of to S) coupling templates.

Figure 1c) shows the resulting connections between the submodels using the
Multiscale Modeling Language [10]. In this diagram, the submodels are drawn
as boxes, with lines indicating conduits between them through which messages
may be transmitted. Decorations at the end of the lines indicate the SEL steps
(or operators) between which the messages are sent. Note that conduits are
unidirectional.

Figure 1d) shows the corresponding timeline of execution. First, deployment
is simulated, then the cell growth and blood flow models start. At every timestep
of the cell growth submodel (slow dynamics), part of its state is observed (Oi)
and used to initialise (finit) the blood flow submodel (fast dynamics). The blood
flow model repeatedly updates its state until it converges, then sends (part of)
its final state (at its Of ) back to the cell growth model’s next state update (S).

3 MUSCLE 3

While the above demonstrates how to design a multiscale model from individ-
ual submodels, it does not explain how to implement one. In this section, we
introduce MUSCLE 3 and yMMSL, and show how they ease building a complex
coupled simulation. MUSCLE 3 is the third incarnation of the MUltiScale Cou-
pling Library and Environment, and is thus the successor of MUSCLE [14] and
MUSCLE 2 [3]. MUSCLE 3 consists of two main components: libmuscle and
the MUSCLE Manager.

Figure 2 shows how libmuscle and the MUSCLE Manager work together
with each other and with the submodels to enact the simulation. At start-up,
the MUSCLE Manager reads in a description of the model and then waits for the
submodels to register. The submodels are linked with libmuscle, which offers
an API through which they can interact with the outside world using ports,
which are gateways through which messages may be sent and received. To start
the simulation, the Manager is started first, passing the configuration, and then
the submodels are all started and passed the location of the Manager.

At submodel start-up, libmuscle connects to the MUSCLE Manager via
TCP, describes how it can be contacted by other components, and then receives a
description for each of its ports of which other component it should communicate
with and where it may be found. The MUSCLE Manager derives this informa-
tion from the model topology description and from the registration information
sent by the other submodels. The submodels then set up direct peer-to-peer net-
work connections to exchange messages. These connections currently use TCP,
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Fig. 2. MUSCLE 3 run-time architecture for ISR2D.

but a negotiation mechanism allows for future addition of faster transports with-
out changes to user code. Submodels may use MPI for internal communication
independently of their use of MUSCLE 3 for external communication. In this
case, MUSCLE 3 uses a spinloop-free receive barrier to allow resource sharing
between submodels that do not run concurrently. In MUSCLE 2, each non-Java
model instance is accompanied by a Java minder process which handles com-
munication, an additional complexity that has been removed in MUSCLE 3 in
favour of a native libmuscle implementation with language bindings.

3.1 Model Description

The Manager is in charge of setting up the connections between the submodels.
The model is described to the Manager using yMMSL, a YAML-based serialisa-
tion of the Multiscale Modelling and Simulation Language (MMSL). MMSL is
a somewhat simplified successor to the MML [10], still based on the same con-
cepts from the MMSF. Listing 1 shows an example yMMSL file for ISR2D. The
model is described with its name, the compute elements making up the model,
and the conduits between them. The name of each compute element is given, as
well as a second identifier which identifies the implementation to use to instan-
tiate this compute element. Conduits are listed in the form component1.port1:
component2.port2, which means that any messages sent by component1 on its
port1 are to be sent to component2 on its port2. The components referred to in
the conduits section must be listed in the compute elements section. MUSCLE
3 reads this file directly, unlike MUSCLE 2 which was configured using a Ruby
script that could be derived from the MML XML file.

The yMMSL file also contains settings for the simulation. These can be global
settings, like length of the simulated artery section, or addressed to a specific
submodel, e.g. bf.velocity. Submodel-specific settings override global settings
if both are given. Settings may be of types float, integer, boolean, string, and
1D or 2D array of float.
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Listing 1. yMMSL file for ISR2D

ymmsl_version: v0.1

model:

name: ISR2D

compute_elements :

deploy: deploy_stent

smc: cell_model

bf: blood_flow

conduits:

deploy.final_state_out: smc.initial_state_in

smc.geom_out: bf.domain_in

bf.wss_out: smc.wss_in

settings:

length: 1.5

lumen_width: 1.0

deploy.max_depth: 0.11

bf.velocity: 0.48

smc.re_recovered_time: 1987200 # 23 days in seconds

# Many other settings here

3.2 Libmuscle

The submodels need to coordinate with the Manager, and communicate with
each other. They do this using libmuscle, which is a library currently available
in Python 3 (via pip), C++ and Fortran. Unlike in MUSCLE 2, whose Java API
differed significantly from the native one, the same features are available in all
supported languages. Listing 2 shows an example in Python. First, an Instance
object is created and given a description of the ports that this submodel will use.
At this point, libmuscle will connect to the Manager to register itself, using an
instance name and contact information passed on the command line. Next, the
reuse loop is entered. If a submodel is used as a micromodel, then it will need to
run many times over the course of the simulation. The required number of runs
equals the macromodel’s number of timesteps, which the micromodel should
not have any knowledge of if modularity is to be preserved. A shared setting
could solve that, but will not work if the macromodel has varying timesteps
or runs until it detects convergence. Determining whether to do another run
is therefore taken care of by MUSCLE 3, and the submodel simply calls its
reuse instance() function to determine if another run is needed. In most cases,
MUSCLE 2 relied on a global end time to shut down the simulation, which is
less flexible and potentially error-prone.

Within the reuse loop is the implementation of the Submodel Execution
Loop. First, the model is initialised (lines 10–17). Settings are requested from
libmuscle, passing an (optional) type description so that libmuscle can gen-
erate an appropriate error message if the submodel is configured incorrectly.
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Listing 2. Using libmuscle from Python

1 def cell_model () -> None:

2 instance = Instance ({

3 Operator.F_INIT: [’initial_state_in ’],

4 Operator.O_I: [’geom_out ’],

5 Operator.S: [’wss_in’],

6 Operator.O_F: [’final_state_out ’]})

7

8 while instance.reuse_instance ():

9 # F_INIT

10 length = instance.get_setting(’length’, ’float’)

11 width = instance.get_setting(’lumen_width ’, ’float’)

12 rec_time = instance.get_setting(’re_recovered_time’, ’int’)

13 t_max = instance.get_setting(’t_max’, ’float’)

14

15 init_msg = instance.receive(’initial_state_in ’)

16 t_cur = msg.timestamp

17 init_model(length , width , init_msg.data)

18

19 while t_cur + dt < t_max:

20 # O_I

21 t_next = t_cur + dt if t_cur + dt < t_max else None

22 msg_out = Message(t_cur , t_next , calc_geometry ())

23 instance.send(’geom_out ’, msg_out)

24

25 # S

26 wss_msg = instance.receive(’wss_in’)

27 update_state(wss_msg.data)

28 t_cur += dt

29

30 # O_F

31 instance.send(’final_state ’, Message(t_cur , None , get_state ()))

Note that re recovered time is specified without the prefix; libmuscle will
automatically resolve the setting name to either a submodel-specific or a global
setting. A message containing the initial state is received on the relevant port
(line 15), and the submodel’s simulation time is initialised using the correspond-
ing timestamp. The obtained data is then used to initialise the simulation state in
a model-specific way, as represented here by an abstract init model() function
(line 17).

Next is the iteration part of the SEL, in which the state is repeatedly observed
and updated (lines 19–28). In addition to the simulation time corresponding to
the current state, the timestamp for the next state is calculated here (line 21).
This is unused here, but is required in case two submodels with overlapping
timescales are to be coupled [4] and so improves reusability of the model. In
ISR2D’s Oi operator, the current geometry of the artery is calculated and sent
on the geom out port (lines 22–23). Next, the wall shear stress is received and
used in the model’s state update, after which the simulation time is incremented
and the next observation may occur (lines 26–28). Once the final state is reached,
it is sent on the corresponding port (line 31). In this example, this port is not
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connected, which causes MUSCLE 3 to simply ignore the send operation. In
practice, a component would be attached which saves this final state to disk, or
postprocesses it in some way, possibly via an in-situ/in-transit analysis frame-
work.

Message data may consist of floating point numbers, integers, Booleans,
strings, raw byte arrays, or lists or dictionaries containing these, as well as grids of
floating point or integer numbers or Booleans, where MUSCLE 2 only supported
1D arrays of numbers. Internally, MUSCLE 3 uses MessagePack for encoding the
data before it is sent.

4 Uncertainty Quantification

Uncertainty Quantification of simulation models is an important part of their
evaluation. Intrusive methods provide an efficient solution in some cases, but UQ
is most often done using Monte Carlo (MC) ensembles. An important innovation
in MUSCLE 3 compared to MUSCLE 2 is its flexible support for Monte Carlo-
based algorithms. This takes the form of two orthogonal features: instance sets
and settings injection.

Fig. 3. MMSL diagram for Uncertainty Quantification of ISR2D.

Figure 3 shows an MMSL diagram of a Monte Carlo forward UQ of ISR2D.
The simulation has been augmented with a sampler and a load balancer, and
there are now multiple instances of each of the three submodels. The sampler
samples the uncertain parameters from their respective distributions, and gen-
erates a settings object for each ensemble member. These objects are sent to
the load balancer, which distributes them evenly among the available model
instances. The settings are then sent into a special port on the submodel
instances named muscle settings in, from where the receiving libmuscle
automatically overlays them on top of the centrally provided settings. The set-
tings are then transparently passed on to the corresponding other submodel
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instances. Final results are passed back via the load balancer to the sampler,
which can then compute the required statistics.

To enable communication with sets of instances, MUSCLE 3 offers vector
ports, recognisable by the square brackets in the name. A vector port allows
sending or receiving on any of a number of slots, which correspond to instances
if the port is connected to a set of them. Vector ports may also be connected to
each other, in which case each sending slot corresponds to a receiving slot. In the
example, the Sampler component resizes its parameters[] port to the number
of samples it intends to generate, then generates the settings objects and sends
one on each slot. The load balancer receives each object on the corresponding
slot of its front in port, and passes it on to a slot on its back out port. It is
then received by the corresponding ensemble member, which runs and produces
a result for the load balancer to receive on back in. The load balancer then
reverses the earlier slot mapping, and passes the result back to the sampler on
the same slot on its front out that the sampler sent the corresponding settings
object on.

With the exception of the mapping inside the load balancer, all addressing
in this use case is done transparently by MUSCLE 3, and components are not
aware of the rest of the simulation. In particular, the submodels are not aware
of the fact that they are part of an ensemble, and can be completely unmodified.

5 Discussion

An important advantage of the use of a coupling framework is the increase
in modularity of the model. In MUSCLE 3, submodels do not know of each
other’s existence, instead communicating through abstract ports. This gives a
large amount of flexibility in how many submodels and submodel instances there
are and how they are connected, as demonstrated by the UQ example. Modular-
ity can be further improved by inserting helper components into the simulation.
For instance, the full ISR2D model has two mappers, components which con-
vert from the agent-based representation of the cell model to the lattice-based
representation of the blood flow model and back. These are implemented in the
same way as submodels, but being simple functions only implement the F INIT
and O F parts of the SEL. The use of mappers allows submodels to interact with
the outside world on their own terms from a semantic perspective as well as
with respect to connectivity. Separate scale bridging components may be used
in the same way, except converting between scales rather than between domain
representations.

Other coupling libraries and frameworks exist. While a full review is beyond
the scope of this paper (see e.g. [12]), we provide a brief comparison here with
two other such frameworks in order to show how MUSCLE 3 relates to other
solutions.

preCICE is a framework for coupled multiphysics simulations [5]. It comes
with adapters for a variety of CFD and finite element solvers, as well as scale
bridging algorithms and coupling schemes. Data is exchanged between submod-
els in the form of variables defined on meshes, which can be written to by one
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component and read by another. Connections are described in an XML-based
configuration file. Like MUSCLE 3, preCICE links submodels to the framework
by adding calls to a library to them. For more generic packages, a more extensive
adapter is created to enable more configurability. Submodels are started sepa-
rately, and discover each other via files in a known directory on a shared file
system, after which peer-to-peer connections are set up.

preCICE differs from MUSCLE 3 in that it is intended primarily for scale-
overlapping, tightly-coupled physics simulations. MUSCLE 3 can do this as well,
but is mainly designed for loosely-coupled multiscale models of any kind. For
instance, it is not clear how an agent-based cell simulation as used in ISR2D
would fit in the preCICE data model. MUSCLE 3’s central management of
model settings and its support for sets of instances allows it to run ensembles,
thus providing support for Uncertainty Quantification. preCICE does not seem
to have any features in this direction.

The Astrophysical Multipurpose Software Environment (AMUSE) is a frame-
work for coupled multiscale astrophysics simulations [20,25]. It comprises a
library of well-known astrophysics models wrapped in Python modules, facilities
for unit handling and data conversion, and infrastructure for spawning these
models and communicating with them at runtime.

Data exchange between AMUSE submodels is in the form of either grids or
particle collections, both of which store objects with arbitrary attributes. With
respect to linking submodels, AMUSE takes the opposite approach to MUSCLE
3 and preCICE. Instead of linking the model code to a library, the model code
is made into a library, and where MUSCLE 3 and preCICE have a built-in
configurable coupling paradigm, in AMUSE coupling is done by an arbitrary
user-written Python script which calls the model code. This script also starts
the submodels, and performs communication by reading and writing to variables
in the models.

Linking a submodel to AMUSE is more complex than doing this in MUSCLE
3, because an API needs to be implemented that can access many parts of the
model. This API enables access to the model’s parameters as well as to its state.
AMUSE comes with many existing astrophysics codes however, which will likely
suffice for most users. Coupling via a Python script gives the user more flexibility,
but also places the responsibility for implementing the coupling completely on
the user. Uncertainty quantification could be implemented, although scalability
to large ensembles may be affected by the lack of peer-to-peer communication.

6 Conclusions and Future Work

MUSCLE 3, as the latest version of MUSCLE, builds on almost fourteen years
of work on the Multiscale Modelling and Simulation Framework and the MUS-
CLE paradigm. It is mainly designed for building loosely coupled multiscale
simulations, rather than scale-overlapping multi-physics simulations. Models are
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described by a yMMSL configuration file, which can be quickly modified to
change the model structure. Linking existing codes to the framework can be
done quickly and easily due to its library-based design. Other frameworks have
more existing integrations however. Which framework is best will thus depend
on which kind of problem the user is trying to solve.

MUSCLE 3 is Open Source software available under the Apache 2.0 license,
and it is being developed openly on GitHub [23]. Compared to MUSCLE 2,
the code base is entirely new and while enough functionality exists for it to
be useful, more work remains to be done. We are currently working on getting
the first models ported to MUSCLE 3, and we plan to further extend support
for Uncertainty Quantification, implementing model components to support the
recently-proposed semi-intrusive UQ algorithms [18]. We will also finish imple-
menting semi-intrusive benchmarking of models, which will enable performance
measurement and support performance improvements as well as enabling future
static scheduling of complex simulations. Other future features could include
dynamic instantiation and more efficient load balancing of submodels in order
to support the Heterogeneous Multiscale Computing paradigm [1].
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