®

Check for
updates

A Variational Algorithm for Quantum
Neural Networks

Antonio Macaluso!®), Luca Clissa??3, Stefano Lodi!, and Claudio Sartori’

! Department of Computer Science and Engineering, University of Bologna,
Bologna, Italy
{antonio.macaluso2,stefano.lodi,claudio.sartori}@unibo.it
2 Department of Physics and Astronomy, University of Bologna, Bologna, Italy
luca.clissa2@unibo.it
3 Istituto Nazionale di Fisica Nucleare (INFN), Bologna, Italy

Abstract. Quantum Computing leverages the laws of quantum mechan-
ics to build computers endowed with tremendous computing power. The
field is attracting ever-increasing attention from both academic and
private sectors, as testified by the recent demonstration of quantum
supremacy in practice. However, the intrinsic restriction to linear opera-
tions significantly limits the range of relevant use cases for the application
of Quantum Computing. In this work, we introduce a novel variational
algorithm for quantum Single Layer Perceptron. Thanks to the universal
approximation theorem, and given that the number of hidden neurons
scales exponentially with the number of qubits, our framework opens
to the possibility of approximating any function on quantum computers.
Thus, the proposed approach produces a model with substantial descrip-
tive power, and widens the horizon of potential applications already in
the NISQ era, especially the ones related to Quantum Artificial Intel-
ligence. In particular, we design a quantum circuit to perform linear
combinations in superposition and discuss adaptations to classification
and regression tasks. After this theoretical investigation, we also pro-
vide practical implementations using various simulation environments.
Finally, we test the proposed algorithm on synthetic data exploiting both
simulators and real quantum devices.

Keywords: Quantum Al - Quantum Machine Learning + Quantum
computing - Quantum variational algorithms - Machine Learning -
Neural Networks

1 Background and Motivation

The field of quantum computing (QC) has recently achieved a historic milestone
with quantum supremacy [1], thus attracting increasing interest and fostering
future research. One of the topics in which QC may have a higher impact is
Quantum Machine Learning (QML), i.e. a sub-discipline of quantum informa-
tion processing whose intent is developing quantum algorithms that learn from

© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12142, pp. 591-604, 2020.
https://doi.org/10.1007/978-3-030-50433-5_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50433-5_45&domain=pdf
https://doi.org/10.1007/978-3-030-50433-5_45

592 A. Macaluso et al.

data. However, the ability to deliver a significant boost in performance through
quantum algorithms on near-term devices is still to be demonstrated. Given
these premises, Neural Networks (NN) are among the most desired targets when
coming to transposing classical models into their quantum counterpart. In fact,
NN have demonstrated remarkable performances in many real-world applica-
tions and multiple learning tasks, including clustering, classification, regression
and pattern recognition.

In this work, we introduce a general model framework that reproduces a
quantum state equivalent to the output of a classical Single Layer Perceptron
(SLP). This is achieved by implementing an efficient variational algorithm that
performs linear combinations in superposition. The results are then passed alto-
gether through an activation function with just one application. Importantly,
the framework supports pluggable activation function routines, thus allowing an
easy way to adapt the approach to different use cases. In Sect. 2, we design a
quantum circuit that generates a quantum SLP (qSLP) with two hidden neu-
rons. Section 3 is devoted to practical experiments to test our model as a linear
classifier. Finally, Sect.4 describes how our approach can be extended to the
case of more hidden neurons.

1.1 Quantum Variational Algorithms

The construction of full-scale, error-corrected quantum devices still poses many
technical challenges. At the same time, significant progress has been made in
the development of small-scale quantum computers, thus giving rise to the so-
called Noisy Intermediate-Scale Quantum (NISQ) era. For this reason, many
researchers are currently focusing on algorithms for NISQ machines that may
have an immediate impact on real-world applications, e.g. chemistry [2] and
optimisation [3,4].

Such machines, however, are still not sufficiently powerful to be a credi-
ble alternative to the classical ones. For this reason, hybrid computation was
proposed to exploit near-term devices to benefit from the performance boost
expected from quantum technologies. Quantum variational algorithms [5,6] rep-
resent the most promising attempt in this direction, and they are designed to
tackle optimisation problems using both classical and quantum resources. The
latter component is referred to as variational circuit, and it presents three ingre-
dients: i) a parametrised quantum circuit U(x;), 1) a quantum output f(z;6)
and #7) an updating rule for the parameters 6.

The general hybrid approach is illustrated in Fig. 1. The data, x, are initially
pre-processed on a classical device to determine the input quantum state. The
quantum hardware then prepares a quantum state |z) and computes U/(z;6)
with randomly initialised parameters 6. After multiple executions of U(x;8), the
classical component post-processes the measurements and generates a prediction
f(x;0). Finally, the parameters are updated, and the whole cycle is run multiple
times in a closed loop between the classical and quantum hardware.

Interestingly, the first practical demonstration of quantum advantage over
classical supercomputers is related precisely to variational algorithms [7]. Other

A Variational Algorithm for Quantum Neural Networks 593

Quantum Classical

Output
f(x;60)

Cost
L Ely - rG; 1

|

Update
0i-1 — 6;

1

;
1 State

LT) Ues6)
1

i
1

U(x; 6;)

-

Fig. 1. Scheme of a hybrid quantum-classical algorithm for supervised learning. The
quantum variational circuit is depicted in green, while the classical component is rep-
resented in blue. (Color figure online)

applications related to Machine Learning (ML) problems were also explored [8,9].
More recently, Schuld et al. [10] proposed a low-depth variational algorithm for
classification. The strengths of this approach are two-fold. On one side, the pos-
sibility of learning gate parameters enables the adaptation of the architecture for
different use cases. On the other hand, the choice of amplitude encoding allows
obtaining model predictions with a single-qubit measurement. Importantly, sim-
ulations on standard benchmark datasets showed good performances, with the
advantage of requiring fewer parameters than classical alternatives.

1.2 Neural Network as Universal Approximator

A Single Hidden Layer Neural Network (or Single Layer Perceptron - SLP) [11]
is a two-stage model suitable for both classification and regression. Given a
training point (z;,y;), the output of a feedforward NN with a single hidden
layer containing H neurons can be expressed as:

"
F@i) = oou | Y Bionia (L(zi;6;)) | - (1)

Jj=1

Each hidden neuron j computes a linear combination, L(-), of the input features
x; € RP with coefficients given by the p-dimensional vector ;. This operation
is performed for all neurons, and the results are individually fed into the inner
activation function oy;q. The outputs of the previous operation are then lin-
early combined with coefficients ;. Finally, a task-dependent outer activation
function, ooys, is applied.

Despite being more straightforward than the deep architectures proposed in
recent years, the SLP model can be very expressive. According to the universal
approzimation theorem [12], in fact, a SLP with a non-constant, bounded and
continuous activation function can approximate any continuous function on a

594 A. Macaluso et al.

closed and bounded subset of R™, provided that enough hidden neurons are
specified. In spite of this crucial theoretical result, SLP are rarely adopted in
practice due to the unfeasibility of large amounts of hidden neurons on classical
devices. Quantum computers, however, could leverage state superposition to
scale the number of hidden neurons exponentially with the number of available
qubits. Starting from these considerations, cleverly implementing a quantum
SLP endowed with a proper activation function would therefore enable a real
chance to benefit from the universal approximation property.

1.3 Related Works

Several attempts for building a quantum perceptron unit were discussed in the
literature [13-15]. A concrete implementation in near-term processors is illus-
trated in [16], where the authors introduced a model for binary classification
using a modified version of the perceptron updating rule. A key characteristic of
their architecture is the theoretical exponential advantage in storage resources
over classical alternatives. This constitutes the first step towards the efficient
implementation of quantum NN on near-term quantum processing hardware.

To the best of our knowledge, however, there are no trainable algorithms
that efficiently reproduce a quantum state encoding the output of a classical
SLP. Also, the available approaches rely on the introduction of severe constraints
on the input data in order to reproduce non-linear activation functions, which
makes the algorithms hardly useful in practice.

1.4 Contribution

In this work, we propose a new variational algorithm reproducing a quantum
Single Layer Perceptron, whose output is equivalent to the classical counterpart.
In particular, building on top of the approach described in [10], we design a
general framework that allows efficient computation using just mild constraints
on the input. Also, the flexible architecture enables to plug in custom implemen-
tations of the activation function routine, thus adapting to different use cases.
Thanks to the possibility of learning the parameters for a given task, the pro-
posed framework allows training models that can potentially approximate any
function.

However, we do not address the problem of implementing a non-linear activa-
tion function. Our goal is to provide a framework that generates multiple linear
combinations in superposition entangled with a control register. In this way,
instead of executing a given activation function for each hidden neuron, a single
application is needed to propagate it to all of the quantum states. This allows
scaling the number of hidden neurons exponentially with the number of qubits,
thus enabling the gSLP to be a concrete alternative for approximating complex
and diverse functions.

A Variational Algorithm for Quantum Neural Networks 595

2 Variational Algorithm for Single Hidden Layer Neural
Network

2.1 Encode Data in Amplitude Encoding

The first issue to address when using a quantum computer for data analysis is
state preparation, i.e. the design of a process that loads the data from a classical
memory to a quantum system. The most general encoding adopted in QML is
amplitude encoding [17]. This strategy associates quantum amplitudes with real
vectors of observations at the cost of introducing just normalisation constraints.
Formally, a normalised vector # € R2" can be described by the amplitudes of a
quantum state |z) as:

on Iy

) = aplk) e—az=| 1 |. (2)
k=1

Ton

In this way, it is possible to use the index register to indicate the k-th feature.
The main advantage of this encoding is that we only need n qubits for a vector
of p = 2™ elements. This means that, if a quantum algorithm is polynomial
in n, then it will have a polylogarithmic runtime dependency on the data size.
A possible strategy for amplitude encoding has been proposed by Motténen
et al. [18], which is the one used for experiments in this work. The goal of this
approach is to map an arbitrary state |x) to the ground |0...0). Once the circuit
is obtained, then all of the operations are inverted and applied in the reversed
order.

2.2 Activation Function

The implementation of a proper activation function — in the sense of the Univer-
sal Approximation Theorem — is one of the major issues for building a complete
quantum Neural Network. This is due to the restrictions to linear and unitary
operations imposed by the laws of quantum mechanics [19]. The most promis-
ing attempt to solve this problem is described in [20], where the authors use
the repeat-until-success technique to achieve non-linearity. The most significant
limitation is the requirement of inputs in the range [0, %], which is a severe
constraint for real-world problems.

In this work, we do not discuss how to implement a non-linear activation
function. However, we provide an framework that permits to train a quantum
SLP for a given activation function Y. Our architecture is naturally capable of
incorporating any implementation of an activation function whose parameters
are learned, like the one described in [21]. Indeed, we can think of extending
the circuit that trains the qSLP to also learn the activation parameters. For this
reason, new implementations of non-linear activation functions are naturally
pluggable in the proposed framework as long as they fit in a learning paradigm.

596 A. Macaluso et al.

2.3 Gates as Linear Operators

A variational circuit U(#) is composed of a series of gates, each one possibly
parametrised by a set of parameters {¢;},_, ;. Formally, U(6) is the product
of matrices:

U@)=U---Up---Un, 3)

where each U, is composed of a single-qubit or a two-qubit quantum gate. In
order to make the single-qubit gate trainable it is necessary to formulate U; in
terms of parameters that can be learned. This is possible by adopting a single-
qubit gate G which is defined as the following 2 x 2 unitary matrix [22]:

efeos(af2) esin(a/2) > .

—e sin(a/2) e Beos(a/2)

(e) = (@

Thus, we can now express each U; in terms of single-qubit gates, G;, acting
on the i-th qubit:

U=18 0G® 11, (5)

where n is the total number of qubits of the quantum system. This representation
of U(6) is convenient since it allows computing the gradient analytically, as shown
in [10].

Alternatively, we can express Eq. (4) using complex numbers z,u € C instead
of trigonometric functions:

6o = (0 1), (6)

—v* z*

where |z|? + |v|> = 1. This parametrisation avoids non-linear dependencies
between the circuit parameters and the model output. Notice that the defini-
tion of linear operator given in Eq. (6) involves complex coeflicients. Therefore,
it describes a more general operation with respect to the classical counterpart
adopted in an SLP, that only allows for linear combinations with real-valued
coefficient. Nonetheless, one can still parametrise the circuit using Pauli-Y rota-
tion in case one wants to restrict the computation to the real domain.

2.4 Quantum Single Hidden Layer Network with Two Neurons

In this section we introduce the basic idea of a quantum Single Layer Perceptron
with two neurons in the hidden layer. The generalisation of the algorithm is then
discussed in Sect. 4.

Intuitively, a qSLP can be implemented into a quantum computer in two
steps. Firstly, we generate different linear operations in superposition, each one
having different parameters 6;, entangled with a control register. Secondly, we
propagate the activation function to all the linear combinations in superposi-
tion. Notice that, thanks this approach, instead of executing a given activation

A Variational Algorithm for Quantum Neural Networks 597

function for each hidden neuron, we need only one application to obtain the out-
put of all the neurons in the hidden layer. To this end, three quantum registers
are necessary: control, data (denoted by |¢)) and temporary register (|¢)). The
latter is responsible for generating the linear combinations of the input data in
superposition. Also, it can be in any arbitrary state, possibly even unknown.

The algorithm is composed of five main steps: state preparation, entangled
linear operators in superposition, application of the activation function, read-out
step, post-processing.

State Linear Activ. Readout Post
Preparation Operators (M) processing
	‘ ‘	
control	0) H Ry (B) [\ e	f(x;0,8)
	I I	
data) : &J : ‘ G(0y1) ‘ : @ : @ Loss(x; 3,0,b)	
	I I	
. \ \ \ L	1 \	
emporary) ‘ ‘ ‘ @J ‘ ‘ ‘ Update (3,60,b	
Po)	P1)	P2)

Fig. 2. Quantum circuit for training a qSLP.

(Step 1) The state preparation includes encoding the data, x, in the amplitude
of |¢) and applying a parametrised Y-rotation R,(3) to the control qubit:
21) = (Ry(8) ® Sz @ 1) Do) = (Ry(B) ® Su ® 1) [0} [0) |4)
= (B110) + B2(1)) ® |2) ® |¢) = B110) |2) [$) + B2 1) |2} [4)), (T7)
where S, indicates the routine that encodes the data, |B1|? + |32/ = 1 and
/617 52 € R.
(Step 2) We exploit the idea of quantum forking [23] to generate two different
linear operations in superposition, each entangled with the control qubit.
2.1 The first controlled-swap is applied to swap |x) with |¢) if the control qubit
is equal to |1):
1
VE

where F is a normalisation constant.

182) = —= (5110} 2} 16} + B2 [1)19) =)) (®)

598 A. Macaluso et al.

2.2 Two linear operations parametrised by two different sets (6; and 63) act on
|¢)) and |¢) respectively:

|Bs) = (1 ®G0) @ G(oz)) &)

— = (5110 G0) 16) + 211 16) G0)

1

VE

2.3 Then, the second controlled-swap is executed to swap |L(z;63)) with |¢) if
the control qubit is equal to |1):

(8110 1LG@360)10) + B2 1) 16} IL(w:62))) (9)

1
VE

Finally, the two linear operations are stored in |¢)) and are then entangled with
one state of the control qubit. At this point, a routine is necessary to propagate
the activation function in both the trajectories of [¢).

@0) = —=(8110) IL(@:0)) 16) + 52 1) [L(:02)))). (10)

(Step 3) Activation function:

P5) = (11 ®X® 11) @)
|

" VE

1

" VE

At the end of Step 3 the two linear operations, L(-), are put through the same
activation function, oy;q, represented by the gate Y. The results are then encoded
in the quantum register [¢)). Each output is finally weighed by the parameters
of the control qubit (3), i.e. the coefficients attached to the hidden neurons in
the linear combination that produces the output of the NN. This is exactly the
quantum version of the two-neurons classical SLP presented in Eq. (1).

(8110) £1L(:6) |8) + 5211) £ |L(a:62)) |6))

(81100 |onsa[L(x:60)]) |8) + B2 11) |onsa [L(: 62)]) 6}). (11)

(Step 4) The measurement of 1)) can be expressed as the expected value of the
Pauli-Z operator acting on the quantum state |z):

(M) = (@] UT(8,0)(1 ® 0. ® 1)U(B,) |®o) = 7 (3 3,6), (12)

where U(f3,0) represents the gSLP circuit. In order to get an estimate of 7(-),
we have to run the entire circuit multiple times.

(Step 5) The post-processing is performed classically and is task-dependent.
For classification models we need four steps: (i) adding a learnable bias term
b to produce a continuous output, (i) applying a thresholding operation, (iii)
computing the loss function and (iv) updating the parameters. Notice that all
these steps are customisable and can be adapted to the particular needs of the

A Variational Algorithm for Quantum Neural Networks 599

application. In the case of the experiments presented in Sect.3 we adopt the
following thresholding operation:

1 if w(xy;8,0)+b> 0.5

, 13
0 else (13)

where b is the bias term and f(z;; 3,0,b) gives us the predicted class for obser-
vation x. As loss function we choose the Sum of Squared Errors (SSE) between
the predictions and the true values y:

N
SSE = Loss(©; D) Z (w3)]27 (14)
i=1

where N is the total number of observations in the sample and © = {8, 6, b}.
Finally, we exploit the Nesterov accelerated gradient method for updating the
parameters, although many alternative optimisation strategies can be adopted
to update the parameters [24] .

To summarise, the variational algorithm described above allows reproducing
a classical Neural Network with one hidden layer on a quantum computer. In
particular, it includes a variational circuit adopted for encoding the data, per-
forming the linear combinations of input neurons and applying the same activa-
tion function to their results with just one execution. A single iteration during
the learning process is then completed using classical resources to measure the
output of the network, compute the loss function and update the parameters.
The whole process is then repeated iteratively until convergence, as for classical
Neural Networks.

As a final remark, notice that having a post-processing step that is extremely
flexible enables the adoption of this model both for regression and classification
problems, thus enhancing the impact of such algorithm.

3 Experiments

To test the performances of the gSLP, we implemented the circuit illustrated in
Fig. 2 using PennyLane [25], a software framework for optimisation and Machine
Learning. This library can be used for both quantum and hybrid computations,
and allows using quantum objects (e.g. qubits, gates) in conjunction with clas-
sical elements (e.g. variables, functions). It can handle many learning tasks such
as training a hybrid ML model in a supervised fashion. In addition, we also
implemented a version of the qSLP on the Qiskit framework. In this way, we
were able to execute the pre-trained algorithm obtained with PennyLane both
on QASM simulators and on a real device.

In our case, the goal is to find the parameters of the quantum circuit (3, 6)
plus the additional bias term b. In absence of a gate X which implements a
non-linear activation function, the final quantum state of |)) is:

195) = —= (61 10) |L(w361)) 16) + B2 [1) |L(x362)) |0)). (15)

1
VE

600 A. Macaluso et al.

1.2 1.6
\ —— Test accuracy
1.5 i Train accuracy
\ 1.4
1.0 \“
1.0 . \ 12
g 0.8
X o w
205 3 1.0 2
£0.6
0.0 0.8
05 class 0 04 06
' class 1 --- Cost function)
0.2
-05 0.0 05 1.0 15 0 20 40 60 80 100
X1 Epochs
(a) (b)

Fig. 3. The plot on the left illustrates the distributions of generated data in the two
classes (0,1). The plot on the right shows the trends over training epochs of the cost
function and the accuracy.

which is a linear transformation of the input data and defines a linear classifier.
Notice that Pr[y; = 1|a;] for a given observation x; corresponds to the square
of the linear transformation of hidden neurons with coefficients 3; plus a bias
term, b.

In practice, we generated linearly separable data to test our classifier. In
particular, we drew a random sample of 500 observations (250 per class) from
two independent bivariate Gaussian distributions, with different mean vectors
and the same covariance matrix (Fig.3a). Then, we used the 75% of the data
for training and the remaining 25% for testing. The training metrics for the
model trained on the PennyLane simulator are illustrated in Fig. 3b. The results
demonstrate that the quantum SLP is able to classify correctly the observations,
as testified by the high classification accuracy in both training and test sets, 0.97
and 0.95 respectively. After the model was trained, the variational algorithm
was also implemented using Qiskit, and its performance was tested on 50 newly-
generated observations. In this way, it was possible to test the pre-trained model
on both the QASM simulator — which emulates the execution of a quantum
circuit on a real device, also including highly configurable noise models — and a
real device. Results are reported in Table 1. The PennyLane implementation was
in line with the training results, and was the most accurate (94% accuracy), as
expected since the framework assumes a perfect device. The effects of introducing
the intrinsic noise due to quantum computations, instead, can be appreciated
in the Qiskit implementations. Both alternatives showed lower performances,
although the decrease in accuracy was certainly smaller for QASM. The real
device, instead, presented a significant deterioration. This may be due to the
depth of the implemented circuit, especially regarding the encoding part, that
seems to be prohibitive considering the actual quantum devices.

A Variational Algorithm for Quantum Neural Networks 601

Table 1. Test accuracy of multiple implementations. The performance deteriorates as
we introduce intrinsic quantum noise (QASM) and current technology limits (IBM —
Vigo).

PennyLane | QASM | IBM (Vigo)
94% 90% 64%

Accuracy
o ° I o =
o ~N [} o o

o
)

o
'S

0.8

o
W

F0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Standard deviation

---- Cost function —— Test accuracy Train accuracy

Fig. 4. Assessment metrics trend as a function of distributions overlapping. Larger
standard deviations cause the two distributions to overlap, so that observations belong-
ing to the two classes are mixed together and, hence, harder to separate. As a conse-
quence, model performances decrease and non-linearity is required.

In addition, we investigated how the performance of the qSLP implemented
in PennyLane changes as the generated distributions get closer and less sepa-
rated. To this end, we drew multiple samples from the two distributions, each
time increasing the common standard deviation so to force reciprocal contami-
nation. As expected, the accuracy showed a decreasing trend as the overlap of
the distributions increased (Fig. 4). In conclusion, the experiments show that the
proposed architecture works well for linearly separable data. However, perfor-
mance decreases as we add to the problem a level of complexity that cannot be
solved by linear classifiers.

4 (Generalisation to H Hidden Neurons

In this section we discuss the generalisation of the quantum SLP to the case of
H > 2 hidden neurons.

In order to extend the quantum state in Eq. (11), we can consider a data reg-
ister whose size depends on the number of input features, a control register made
by d qubits, and another register (output) that stores the output of the Neural
Network. Intuitively, the algorithm can be summarised into three steps. First,

602 A. Macaluso et al.

the control register is turned into a non-uniform superposition parameterised by
the 29-dimensional vector 3 by means of an oracle B:

|@1> = (]l ® B ®]l) |$>data ‘O>contr01 |O>output

~=(meXanen). (16)

The second step generates a superposition of the same linear operation with
different parameters entangled with the control register. This is possible by
assuming to have a quantum oracle A that performs the following operation:

22) = 4100 = —= (1) 3 8, 13} 1L(a:6,))). a7)

Finally, the third step applies the Y gate to the third register, thus propa-
gating the activation function in all of the quantum states of the superposition:

03) = (1@ 1© X)|d2) — %(m >3l lelL@o)))). (18)

In this way, the result of the algorithm above can be accessed by a single-qubit
measurement. Regarding the parameters, 3 and {ej}jzly.“’ g can be randomly
initialised and the same hybrid optimisation process presented in Sect.2.4 can
be exploited.

As a final remark, it is important to notice that our algorithm entangles
linear combinations to the states of the control register. As a consequence, the
number of linear combinations that can be performed is equal to the number of
possible states of the quantum system. This, in turn, implies that the number of
hidden neurons H scales exponentially with the number of states of the control
register, 2¢. This is a consequence of each hidden neuron being represented by
a single linear combination. Thus, the exponential scaling property enables the
construction of quantum Neural Networks with an arbitrary large number of
hidden neurons as the amount of available qubits increases. In other terms, we
can build qSLP with an incredible descriptive power that may be really capable
of being an universal approximator.

5 Conclusions and Outlook

In this work, we proposed an implementation of a quantum version of the Single
Layer Perceptron. The key idea is to use a single state preparation routine and
apply different linear combinations in superposition, each entangled with a con-
trol register. This allows propagating the routine of a generic activation function
to all of the states with only one operation. As a result, a model trained through
our algorithm is potentially able to approximate any desired function as long as
enough hidden neurons and a non-linear activation function are available.

A Variational Algorithm for Quantum Neural Networks 603

Furthermore, we provided a practical implementation of our variational algo-
rithm that reproduces a quantum SLP for classification with two hidden neurons
and an identity function as activation.

In addition, we tested our algorithm on synthetic data and demonstrated
that the model works well in case of linearly separable observations, with a test
accuracy of 95%. However, the performance deteriorates when facing the intrinsic
noise due to quantum computations and current technology limits. On the other
hand, experiments showed how the performance of the model deteriorates as
the distributions of the two classes overlap so to contaminate each other, thus
testifying the necessity of introducing non-linearity into the model. For this
reason, the main challenge to tackle in the near future is the design of a routine
that reproduces a non-linear activation function.

Another natural follow-up of this work is the implementation of a general-
isation of the quantum SLP to the case of H > 2 hidden neurons. This would
be beneficial for more hands-on experimentation, including, for instance, the
discussion of a regression task.

In conclusion, we are still far from proving that Machine Learning can ben-
efit from Quantum Computing in practice. However, thanks to the flexibility of
variational algorithms, we believe that the hybrid quantum-classical approach
may be the ideal setting to make universal approximation possible in quantum
computers.

References

1. Arute, F., et al.: Quantum supremacy using a programmable superconducting pro-
cessor. Nature 574(7779), 505-510 (2019)

2. Lanyon, B.P., et al.: Towards quantum chemistry on a quantum computer. Nature
Chem. 2(2), 106 (2010)

3. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algo-
rithm. arXiv preprint arXiv:1411.4028 (2014)

4. Kandala, A., et al.: Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets. Nature 549(7671), 242 (2017)

5. Wecker, D., Hastings, M.B., Troyer, M.: Progress towards practical quantum vari-
ational algorithms. Phys. Rev. A 92, 042303 (2015)

6. Moll, N., et al.: Quantum optimization using variational algorithms on near-term
quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018)

7. Peruzzo, A.: A variational eigenvalue solver on a photonic quantum processor.
Nature Commun. 5, 4213 (2014)

8. Riste, D.: Demonstration of quantum advantage in machine learning. NPJ Quan-
tum Inf. 3(1), 16 (2017)

9. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quan-
tum machine learning. Nature 549(7671), 195-202 (2017)

10. Schuld, M., Bocharov, A., Svore, K., Wiebe, N.: Circuit-centric quantum classifiers.
arXiv preprint arXiv:1804.00633 (2018)

11. Hastie, T, Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

12. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5), 359-366 (1989)

http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/1804.00633
https://doi.org/10.1007/978-0-387-84858-7

604

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Macaluso et al.

Schuld, M., Sinayskiy, 1., Petruccione, F.: The quest for a quantum neural network.
Quantum Inf. Process. 13(11), 2567-2586 (2014)

Schuld, M., Sinayskiy, 1., Petruccione, F.: Simulating a perceptron on a quantum
computer. Phys. Lett. A 379(7), 660-663 (2015)

Faber, J., Giraldi, G.A.: Quantum models of artificial neural networks, 5(7.2), 5-7
(2002). http://arquivosweb.Incc.br/pdfs/QNN-Review.pdf

Tacchino, F., Macchiavello, C., Gerace, D., Bajoni, D.: An artificial neuron imple-
mented on an actual quantum processor, zak1998quantum. NPJ Quantum Inf.
5(1), 26 (2019)

Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers. QST.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96424-9

Mottonen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: Transforma-
tion of quantum states using uniformly controlled rotations. arXiv preprint
arXiv:quant-ph/0407010 (2004)

Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Am.
J. Phys. 70, 558 (2002)

Cao, Y., Guerreschi, G.G., Aspuru-Guzik, A.: Quantum neuron: an elemen-
tary building block for machine learning on quantum computers. arXiv preprint
arXiv:1711.11240 (2017)

Wei, H.: Towards a real quantum neuron. Nat. Sci. 10(3), 99-109 (2018)
Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52,
3457-3467 (1995)

Park, D.K., Sinayskiy, I., Fingerhuth, M., Petruccione, F., Kevin Rhee, J.-K.:
Quantum forking for fast weighted power summation. arXiv preprint
arXiv:1902.07959 (2019)

Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747 (2016)

Bergholm, V., et al.: Pennylane: automatic differentiation of hybrid quantum-
classical computations. arXiv preprint arXiv:1811.04968 (2018)

http://arquivosweb.lncc.br/pdfs/QNN-Review.pdf
https://doi.org/10.1007/978-3-319-96424-9
http://arxiv.org/abs/quant-ph/0407010
http://arxiv.org/abs/1711.11240
http://arxiv.org/abs/1902.07959
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1811.04968

	A Variational Algorithm for Quantum Neural Networks
	1 Background and Motivation
	1.1 Quantum Variational Algorithms
	1.2 Neural Network as Universal Approximator
	1.3 Related Works
	1.4 Contribution

	2 Variational Algorithm for Single Hidden Layer Neural Network
	2.1 Encode Data in Amplitude Encoding
	2.2 Activation Function
	2.3 Gates as Linear Operators
	2.4 Quantum Single Hidden Layer Network with Two Neurons

	3 Experiments
	4 Generalisation to H Hidden Neurons
	5 Conclusions and Outlook
	References

