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Abstract. In this work, we develop an efficient energy stable scheme for the
hydrodynamics coupled phase-field surfactant model with variable densities.
The thermodynamically consistent model consists of two Cahn–Hilliard–type
equations and incompressible Navier–Stokes equation. We use two scalar
auxiliary variables to transform nonlinear parts in the free energy functional into
quadratic forms, and then they can be treated efficiently and semi-implicitly.
A splitting method based on pressure stabilization is used to solve the Navier–
Stokes equation. By some subtle explicit-implicit treatments to nonlinear con-
vection and stress terms, we construct a first-order energy stable scheme for the
two-phase system with soluble surfactants. The developed scheme is efficient
and easy-to-implement. At each time step, computations of phase-field vari-
ables, the velocity and pressure are decoupled. We rigorously prove that the
proposed scheme is unconditionally energy stable. Numerical results confirm
that our scheme is accurate and energy stable.

Keywords: Surfactant � Interfacial flow � Phase-field modeling �
Navier–stokes

1 Introduction

Surfactants, interface active agents, are known to lower the interfacial tension and
allow for the formation of emulsion [1, 2]. Commonly-used surfactants are amphiphilic
compounds, meaning they contain both hydrophilic heads and hydrophobic tails [1, 3].
This special molecular composition enables surfactants to selectively absorb on fluid
interfaces. Surfactants play a crucial role in everyday life and many industrial pro-
cesses, such as the cleanser essence, the crude oil recovery and pharmaceutical
materials, thus having an understanding of their behavior is a necessity. Numerical
simulation is taking an increasingly significant position in investigating the interfacial
phenomena, as it can provide easier access to some quantities such as surfactant
concentration, pressure and velocity, which are difficult to measure experimentally.
However, the computational modeling of interfacial dynamics with surfactants remains
a challenging task.
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The phase-field model is an effective modeling and simulation tool in investigating
interfacial phenomena and it has been extensively used with much successes [4]. This
method introduces a phase-field variable to distinguish two pure phases. The interface
is treated as a thin layer, inside which the phase-field variable varies continuously [5,
6]. Unlike shape interface models, the phase-field model does not need to track the
interface explicitly, and the interface can be implicitly and automatically captured by
the evolution of phase-field variable. Therefore, the computations and analysis of the
phase-field model are easier than other models [7, 8].

The phase-field model was first used to study the dynamics of phase separation with
surfactants in [9]. Two phase-field variables were introduced in their work. Since then,
a variety of phase-field surfactant models have been proposed and reviews of these
models can refer to [10–12]. Here we only highlight two representative works. The
authors in [13] introduced the logarithmic Floy-Huggins potential to restrict the range
of surfactant concentration. A nonlinear coupling surface energy potential was used to
account for the high surfactant concentration along the fluid interface. An enthalpic
term was also adopted to stabilize the phase-field model and control the surfactant
solubility in the bulk phases. Their model can describe realistic adsorption isotherms,
e.g., Langmuir isotherm, in thermodynamic equilibrium. In [14], the authors analyzed
the well-posedness of the phase-field surfactant model proposed in [13], and provided
strong evidence that the model was mathematically ill-posed for a large set of physi-
cally relevant parameters. They made critical modifications to the model and sub-
stantially increased the domain of validity. In this study, we will use this modified
model to describe a binary fluid-surfactant system.

Numerically, it is a challenging issue to discretize the strong couplings between two
phase-field variables. The introduction of hydrodynamics will further increase the
complexity for the development of numerical schemes. Several attempts have been
made to solve the interfacial flows with surfactants [15–18], but none of them can
provide the energy stability for numerical schemes in theory. Most recently, we con-
structed a first-order and a second-order schemes, which are linear and totally
decoupled, for a phase-field surfactant model with fluid flow [19]. However, this study
only considered the case of matched density and viscosity, which greatly reduces
difficulties in algorithm developments. Thus, the main purpose of this study is to
construct an efficient, easy-to-implement and energy stable scheme for the hydrody-
namics coupled phase-field surfactant model with variable densities.

The rest of this paper is organized as follows. In Sect. 2, we describe a hydrody-
namics coupled phase-field surfactant model with variable densities. In Sect. 3, we
develop an efficient energy stable scheme carry out the energy stability for the proposed
scheme. Several numerical experiments are investigated in Sect. 4 and the paper is
finally concluded in Sect. 5.

2 Governing Equation

In this section, we consider a typical phase-field surfactant model in [14, 19] for a two-
phase system with surfactants
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Ef u; /; wð Þ ¼
Z

Cn2

4
r/j j2 þF /ð Þþ PiG wð Þ � w /2 � 1

� �2
4

þ w/2

4Ex

 !
dX; ð2:1Þ

where F /ð Þ is the double well potential and G wð Þ the logarithmic Flory–Huggins
potential,

F /ð Þ ¼ /2 � 1
� �2

4
; G wð Þ ¼ w lnwþ 1� wð Þ ln 1� wð Þ:

Two phase-field variables are used in the free energy functional. The first phase-field
variable / uses two constants (–1 and 1) to distinguish two phases, and it varies
continuously across the interface between –1 and 1. The other phase-field variable w is
used to represent the surfactant concentration. The parameter Cn determines the
interfacial thickness and Pi is a temperature-dependent parameter. More details of the
free energy functional can refer to [6] and [19].

Although both the double well potential and the Flory–Huggins potential are
bounded from below, the latter is not always positive in the whole domain. Thus, we
add a zero term PiB� PiB to the free energy functional, and rewrite (2.1) into

Ef /;wð Þ ¼
Z

Cn2

4
r/j j2 þF /ð Þþ Pi G wð ÞþBð Þ

�
þ w/2

4Ex
� w /2 � 1

� �2
4

!
dX

� PiB Xj j;
ð2:2Þ

where the positive constant B ensures G wð ÞþB[ 0; and B = 1 is adopted in this
study. Note that the free energy is not changed due to the introduction of the zero term
PiB� PiB: We now use the scalar auxiliary variable (SAV) approach [12, 20] to
transform the free functional into a new form. Through the simple substitution of scalar
variables, the nonlinear parts of the free energy are transformed into quadratic forms of
new scalar variables. More precisely, we define two scalar variables

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Eu /ð Þ

p
; V ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ev wð Þ

p
; ð2:3Þ

Where

Eu /ð Þ ¼
Z

F /ð ÞdX; Ev wð Þ ¼
Z

G wð ÞþBð ÞdX:

Then the free energy can be transformed into

Ef /; w; U; Vð Þ ¼
Z

W e
2

q uj j2 þ Cn2

4
r/j j2�w /2 � 1

� �2
4

þ w/2

4Ex

 !
dXþU2 + PiV2 � PiB Xj j;

ð2:4Þ
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Through the functional derivatives of Ef with respect to phase-field variables / and
w, we can obtain chemical potentials w/ and ww

w/ ¼ �Cn2

2
D/þ Uffiffiffiffiffiffiffiffiffiffiffiffi

Eu /ð Þp F0 /ð Þþ w/
2Ex

� w/W ; Ut ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Eu /ð Þp Z

F0 /ð Þ/tdX;

ð2:5Þ

ww ¼ PiVffiffiffiffiffiffiffiffiffiffiffiffi
Ev wð Þp G0 wð Þþ /2

4Ex
�W2

4
; Vt ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Ev wð Þp Z

G0 wð ÞwtdX: ð2:6Þ

Note that /2 � 1 are denoted as Win (2.5) and (2.6).
Evolutions of phase-field variables / and w can be described by the conserved

Cahn–Hilliard–type equations [14, 21],

/t þr � u/ð Þ ¼ 1
Pe/

Dw/; ð2:7Þ

wt þr � uwð Þ ¼ 1
Pew

r �Mwrww; ð2:8Þ

where Pe/ and Pew are Péclet numbers. A degenerate mobility Mw ¼ w 1� wð Þ; which
vanishes at the extreme points w ¼ 0 and w ¼ 1; is adopted to combine with the
logarithmic chemical potential ww: Eqs. (2.6)–(2.9) are coupled to the Navier–Stokes
equation in the form [4, 14]

qut þ qu � ruþ J � ru� 1
Re

r � gD uð Þþrpþ 1
ReCaCn

/rw/ þwrww

� � ¼ 0; ð2:9Þ

r � u ¼ 0; ð2:10Þ

where DðuÞ ¼ ruþrTu; and J ¼ kq � 1
� �rw/

�
2Pe/: u is the velocity field, p is

the pressure, Re is the Reynolds number and Ca is the Capillary number. We usually
assume the density q and viscosity g has the following linear relations,

q ¼ 1� kq
2

/þ 1þ kq
2

; g ¼ 1� kg
2

/þ 1þ kg
2

:

where kq and kg are density and viscosity ratios, respectively.
In particular, if we consider the body force, e.g., the gravitational force, the

dimensionless momentum equation read

qut þ qu � ruþ J � ru� 1
Re

r � gD uð Þþrpþ 1
BoCn

/rw/ þwrww
� �� qg ¼ 0;

ð2:11Þ
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where Bo ¼ ReCa is the Bond number, and g is the unit vector denoting the direction
of body force.

Periodic boundary conditions or the following boundary conditions

@n/
nþ 1 ¼ rwnþ 1

/ � n ¼ rwnþ 1
w � n ¼ u ¼ @np

nþ 1 ¼ 0; on C;

can be used to close the above governing system. Here C denotes boundaries of the
domain.

The total energy Etot of the hydrodynamic system (2.5)–(2.10) is the sum of kinetic
energy Ek and free energy Ef

Etot u; /; w;U;Vð Þ ¼
Z

We
2

q uj j2 þ Cn2

4
r/j j2 þ w/2

4Ex
� w /2 � 1

� �2
4

 !
dX

þU2 + PiV2 � PiB Xj j;

where We ¼ ReCaCn, and we can easily derive the following energy dissipation law.

d
dt
Etot ¼ � 1

Pe/

Z
rw/

�� ��2dX
� 1
Pew

Z ffiffiffiffiffiffiffi
Mw

p rww

�� ��2dX� CaCn
2

Z ffiffiffi
g

p
D uð Þ�� ��2dX� 0:

Next, we will develop an efficient time-marching scheme for the above governing
system and carry out the energy estimate. To simplify the presentation, in the next
section, we will take (2.9) as an example to construct the desired scheme.

3 Numerical Scheme

3.1 Energy Stable First-Order Scheme

We now present a first-order time-marching scheme to solve the governing system in
Sect. 2. To deal with the case of nonmatching density, a cut-off function [4] is defined as

~/nþ 1 ¼ /nþ 1 j/nþ 1j � 1;

sign /nþ 1� � j/nþ 1j[ 1:

(

Given wn;/n; un and pn, the scheme (3.1) calculates wnþ 1;/nþ 1; un+1 and pn+1 for
n � 0 in three steps.

In step 1, we update wnþ 1 and /nþ 1 by solving

wnþ 1 � wn

dt
þr � un�w

n� �� 1
Pew

r �Mn
wrwnþ 1

w ¼ 0; ð3:1aÞ
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wnþ 1
w ¼ PiVnþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ev wnð Þp G0 wnð Þþ /nð Þ2
4Ex

� Wnð Þ2
4

; ð3:1bÞ

Vnþ 1 � Vn

dt
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ev wnð Þp Z

G0 wnð Þw
nþ 1 � wn

dt
dX; ð3:1cÞ

/nþ 1 � /n

dt
þr � un�/

n� �� 1
Pe/

Dwnþ 1
/ ¼ 0; ð3:1dÞ

wnþ 1
/ ¼ �Cn2

2
D/nþ 1 þ Unþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eu /nð Þp F0 /nð Þþ wnþ 1/nþ 1

2Ex
� 1
2
wnþ 1Wn /nþ 1 þ/n� �

;

ð3:1eÞ

Unþ 1 � Un

dt
¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eu /nð Þp Z

F0 /nð Þ/
nþ 1 � /n

dt
dX; ð3:1fÞ

with periodic boundary conditions or the following boundary conditions

@nw
nþ 1
w ¼ @n/

nþ 1 ¼ @nw
nþ 1
/ ¼ 0; on C;

where un� is the intermediate velocity

un� ¼ un � dtwn

Weqn
rwnþ 1

w � dt/n

Weqn
rwnþ 1

/ : ð3:1gÞ

In step 2, we update un+1 by solving [22]

qn
unþ 1 � un

dt
þ qnun�
� � � runþ 1 þ Jnþ 1 � runþ 1 � 1

Re
r � gnD unþ 1� �þr 2pn � pn�1� �

þ 1
We

/nrwnþ 1
/ þwnrwnþ 1

w

� 	
þ 1þ kq

4
r � un�
� �

unþ 1 ¼ 0;

unþ 1 ¼ 0; onC;

8>>>>><
>>>>>:

ð3:1hÞ

where
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Jnþ 1 ¼ kq � 1
2Pe/

rwnþ 1
/ ; qnþ 1 ¼ 1� kq

2
~/nþ 1 þ 1þ kq

2
;

gnþ 1 ¼ 1� kg
2

~/nþ 1 þ 1þ kg
2

:

ð3:1iÞ

In step 3, we update pn+1 by solving the pressure Poisson equation with a constant
coefficient [4, 23]

� D pnþ 1 � pn
� � ¼ � v

dt
r � unþ 1;

rpnþ 1 � n ¼ 0; on C;

8<
: ð3:1jÞ

where v ¼ 1
2min 11; kq

� �
:

Remark 3.1. (1) Computations of wnþ 1; /nþ 1� �
; un+1 and pn+1 are decoupled, which

indicate that the scheme (3.1) is efficient and easy-to-implement. At each time step, un+1

and pn+1 can be obtained by solving only two elliptic equations;Moreover, Vn+1 andUn+1

do not involve any extra computational cost, since they can be calculated explicitly once
we obtainwnþ 1 and/nþ 1: (2) In the explicit convective velocity un�;we introduce a first-
order stabilization term [24], which plays a dominant role in decoupling the computation
of wnþ 1; /nþ 1� �

from un+1 and constructing the unconditionally energy stable scheme.

Theorem 3.1. The scheme (3.1) is unconditionally energy stable, and satisfies the
following discrete energy dissipation law:

Enþ 1
tot � En

tot �
� dt
Pew

ffiffiffiffiffiffiffi
Mn

w

q
rwnþ 1

w




 


2� dt
Pe/

rwnþ 1
/




 


2� dtCaCn
2

ffiffiffiffiffi
gn

p
D unþ 1� �

 

2 � 0; ð3:2Þ

where

En
tot ¼

We
2

qn; unj j2
� 	

þ dt2W e
2v

rpnk k2 þ Cn2

4
r/nk k2 þ Unð Þ2 þ Pi Vnð Þ2

þ 1
4Ex

wn; /nj j2
� 	

� 1
4

wn; Wnj j2
� 	

� PiB Xj j;

here �k k denotes the L2-norm in X. Now we will rigorously prove the discrete energy
dissipation law in (3.2). We first introduce an intermediate kinetic energy [25] as

En
k;� ¼

We
2

qnun�; u
n
�

� �
: ð3:3Þ

The difference between Enþ 1
k and En

k;� is estimated as
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Enþ 1
k � En

k;� ¼
We
2

qnþ 1; unþ 1
�� ��2� 	

�We
2

qn; un�
�� ��2� 	

¼ We
2

qn; unþ 1
�� ��2� un�

�� ��2� 	
þ We

2
qnþ 1 � qn; unþ 1

�� ��2� 	
¼ We qn unþ 1 � un�

� �
; unþ 1� ��We

2
qn; unþ 1 � un�

�� ��2� 	
þ We

2
qnþ 1 � qn; unþ 1

�� ��2� 	
:

ð3:4Þ

Substituting (3.1i) into (3.1a), we obtain the following identity

qnþ 1 � qn¼� dt 1� kq
� �

2
r � /nun�
� �� dtr � Jnþ 1: ð3:5Þ

We can also easily derive from (3.1g) that

W eqn unþ 1 � un
� �þ dt wnrwnþ 1

w þ/rwnþ 1
/

� 	
¼ Weqn unþ 1 � un�

� �
: ð3:6Þ

Using the identity (3.6), we have

Weqn unþ 1 � un�
� � ¼ dtCaCnr � gnD unþ 1

� �� dtWer 2pn � pn�1
� �� dtWe qnun�

� � � runþ 1

�dtWeJnþ 1 � runþ 1 � dtWe 1þ kq
� �
4

r � un�
� �

unþ 1:

ð3:7Þ

By taking the L2 inner product of (3.7) with un+1, and using (3.4) and the following
identities

� dtWe qnun�
� � � runþ 1; unþ 1� � ¼ dtWe

2
r � qnun�
� �

; unþ 1
�� ��2� 	

¼ dtWe 1� kq
� �
4

r � /nun�
� �

; unþ 1
�� ��2� 	

þ dtWe 1þ kq
� �
4

r � un�; unþ 1
�� ��2� 	

;

Jnþ 1 � r� �
unþ 1 þ 1

2
r � Jnþ 1� �

unþ 1; unþ 1
� �

¼ 0:
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we can derive that

Enþ 1
k � En

k;� ¼ � dtCaCn
2

ffiffiffiffiffi
gn

p
D unþ 1� �

 

2�dtWe qnun�

� � � runþ 1; unþ 1� �
� dtWe Jnþ 1 � runþ 1; unþ 1� �� dtWe 1þ kq

� �
4

r � un�; unþ 1
�� ��2� 	

� dtWe pnþ 1 � 2pn þ pn�1; r � unþ 1� �þ dtWe pnþ 1; r � unþ 1� �
�We

2
qn; unþ 1 � un�

�� ��2� 	
� dtWe

2
1� kq

2
r � /nun�
� �þr � Jnþ 1; unþ 1

�� ��2� �

¼ � dtCaCn
2

ffiffiffiffiffi
gn

p
D unþ 1� �

 

2�dtWe pnþ 1 � 2pn þ pn�1; r � unþ 1� �

þ dtWe pnþ 1; r � unþ 1� ��We
2

qn; unþ 1 � un�
�� ��2� 	

:

ð3:8Þ

Using the Eq. (3.1g), we obtain

En
k;� � En

k¼
We
2

qn; un�
�� ��2� unj j2

� 	
¼ Weqn un� � un

� �
; un�

� ��We
2

qn; un� � un
�� ��2� 	

¼ �dt wnr � wnþ 1
w þ/nrwnþ 1

/ ; un�
� 	

�We
2

qn; un� � un
�� ��2� 	

¼ dt r � wun�
� �

; wnþ 1
w

� 	
þ dt r � /un�

� �
; wnþ 1

/

� 	
�We

2
qn; un� � un

�� ��2� 	
:

ð3:9Þ

Summing up Eqs. (3.8) and (3.9), we get

Enþ 1
k � En

k ¼ � dtCaCn
2

ffiffiffiffiffi
gn

p
D unþ 1
� �

 

2�dtWe pnþ 1 � 2pn þ pn�1; r � unþ 1

� �
þ dtWe pnþ 1; r � unþ 1� �þ dt r � wun�

� �
; wnþ 1

w

� 	
þ dt r � /un�

� �
; wnþ 1

/

� 	
�We

2
qn; unþ 1 � un�

�� ��2� 	
�We

2
qn; un� � un

�� ��2� 	
:

ð3:10Þ

By taking the L2 inner product of (3.1j) with dt2We(pn+1 − 2pn+ pn − 1)/v and with-
dt2Wepn+1/v separately, we obtain

� dt2W e
2v

r pnþ 1 � pn
� �

 

2� r pn � pn�1� �

 

2 þ r pnþ 1 � 2pn þ pn�1� �

 

2� 	

¼ dtWe pnþ 1 � 2pn þ pn�1; r � unþ 1
� �

;

ð3:11Þ
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and

dt2W e
2v

rpnþ 1


 

2� rpnk k2 þ r pnþ 1 � pn

� �

 

2� 	
¼ �dtWe pnþ 1; r � unþ 1� �

: ð3:12Þ

Combining (3.11) and (3.12), yields

� dtWe pnþ 1 � 2pn þ pn�1; r � unþ 1� �þ dtWe pnþ 1; r � unþ 1� �
¼ � dt2W e

2v
rpnþ 1


 

2� rpnk k2
� 	

� dt2W e
2v

r pn � pn�1� �

 

2
þ dt2W e

2v
r pnþ 1 � 2pn þ pn�1
� �

 

2:

ð3:13Þ

We take the difference of (3.1j) at step tn+1 and tn, pair the resulting equation with
dt2We(pn+1 − 2pn+ pn − 1)/(2v) then take integration by parts for both sides to derive

dt2W e
2v

r pnþ 1 � 2pn þ pn�1
� �

 

2 � v

2
We unþ 1 � un


 

2 � We

4
qn; unþ 1 � un

�� ��� �2
: ð3:14Þ

Summing up Eqs. (3.10), (3.13) and (3.14), and using the triangle inequality

W e
2

qn; unþ 1 � un�
�� ��2� 	

þ We
2

qn; un� � un
�� ��2� 	

� W e
4

qn; unþ 1 � un
�� ��� �2

:

ð3:15Þ

we can derive that

Enþ 1
k � En

k � � dtCaCn
2

ffiffiffiffiffi
gn

p
D unþ 1
� �

 

2� dt2W e

2v
rpnþ 1


 

2� rpnk k2
� 	

þ dt r � wun�
� �

; wnþ 1
w

� 	
þ dt r � /un�

� �
; wnþ 1

/

� 	
:

ð3:16Þ

By taking the inner product of (3.1a) with dtwnþ 1
w ; we can easily derive that

wnþ 1 � wn; wnþ 1
w

� 	
þ dt r � un�w

n� �
; wnþ 1

w

� 	
¼ � dt

Pew

ffiffiffiffiffiffiffi
Mn

w

q
rwnþ 1

w




 


2: ð3:17Þ

By taking the inner product of (3.1b) with � wnþ 1 � wn� �
; we can derive that

� wnþ 1 � wn; wnþ 1
w

� 	
¼� Pi Vnþ 1an; wnþ 1 � wn� �� 1

4Ex
/nj j2; wnþ 1 � wn

� 	
þ 1

4
Wnj j2; wnþ 1 � wn

� 	
:

ð3:18Þ
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where an ¼ G0 wnð Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ev wnð Þp

: Taking the inner product of (3.1c) with 2dtPiVn+1 to
obtain

Pi Vnþ 1� �2� Vnð Þ2 þ Vnþ 1 � Vn
� �2h i

¼ Pi Vnþ 1an; wnþ 1 � wn� �
: ð3:19Þ

Summing up Eqs. (3.17)–(3.19), we get

Pi Vnþ 1
� �2� Vnð Þ2 þ Vnþ 1 � Vn

� �2h i
¼ �dt r un�w

n� �
; wnþ 1

w

� 	
� dt
Pew

ffiffiffiffiffiffiffi
Mn

w

q
rwnþ 1

w




 


2
� 1
4Ex

/nj j2; wnþ 1 � wn
� 	

þ 1
4

Wnj j2; wnþ 1 � wn
� 	

:

ð3:20Þ

By taking the inner product of (3.1d) with dtwnþ 1
/ ; we have

/nþ 1 � /n; wnþ 1
/

� 	
þ dt r � un�/

n� �
; wnþ 1

/

� 	
¼ � dt

Pe/
rwnþ 1

/




 


2: ð3:21Þ

By taking the inner product of (3.1e) with � /nþ 1 � /n� �
; we can derive that

� /nþ 1 � /n; wnþ 1
/

� 	
¼ �Cn2

2
r/nþ 1; r/nþ 1 �r/n� �� Unþ 1bn; /nþ 1 � /n� �

� 1
2Ex

wnþ 1/nþ 1; /nþ 1 � /n� �þ 1
2

wnþ 1Wn /nþ 1 þ/n� �
; /nþ 1 � /n� �

¼ �Cn2

4
r/nþ 1


 

2� r/nk k2 þ r/nþ 1 �r/n



 

2� 	
� Unþ 1bn; /nþ 1 � /n� �

� 1
4Ex

wnþ 1; /nþ 1
�� ��2� 	

� wnþ 1; /nj j2
� 	

þ wnþ 1; /nþ 1 � /n
�� ��2� 	h i

þ 1
4

wnþ 1; Wnþ 1
�� ��2� 	

� wnþ 1; Wnj j2
� 	

� wnþ 1; Wnþ 1 �Wn
�� ��2� 	h i

:

ð3:22Þ

where bn ¼ F0 /nð Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eu /nð Þp

: Taking the inner product of (3.1f) with 2dtUn+1 to
obtain

Unþ 1� �2� Unð Þ2 þ Unþ 1 � Un
� �2h i

¼ Unþ 1bn; /nþ 1 � /n� �
: ð3:23Þ

Summing up Eqs. (3.20)–(3.23), and dropping off some positive terms, we have
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Cn2

4
r/nþ 1


 

2� r/nk k2
� 	

þ Unþ 1� �2� Unð Þ2
h i

þ Pi Vnþ 1� �2� Vnð Þ2
h i

þ 1
4Ex

wnþ 1; /nþ 1
�� ��2� 	

� wn; /nj j2
� 	h i

� 1
4

wnþ 1; Wnþ 1
�� ��2� 	

� wn; Wnj j2
� 	h i

� � dt
Pew

ffiffiffiffiffiffiffi
Mn

w

q
rwnþ 1

w




 


2� dt
Pew

rwnþ 1
w




 


2�dt r un�w
n� �
; wnþ 1

w

� 	
� dt r un�/

n� �
; wnþ 1

/

� 	
:

ð3:24Þ

Finally, combining (3.16) and (3.24), we arrive at the desired result.

4 Numerical Results

To implement the scheme (3.1), we use a finite difference method on staggered grids to
discretize space. We pay special attention to the discretization of the convection terms
in the Cahn-Hilliard and Navier-Stokes equations. A composite high resolution
scheme, known as the MINMOD scheme, is used to reduce the undershoot and
overshoot around the interface. The computations of wnþ 1;/nþ 1; un+1 and pn+1 can be
totally decoupled if we replace wnþ 1 in (3.1e) with wn: The simplified scheme is
extremely efficient and easy-to-implement. However, this simplification will definitely
destroy the unconditional energy stability of our scheme. The implementation of such a
simplified scheme requires small time step-sizes to obtain the desired accuracy and
energy stability. The above scheme is adopted in [26] and numerical results demon-
strate the energy stability of the proposed scheme. Here we will not present these
results due to the limit of article length.

We simulate the droplet deformation under the horizontal body force and a shear
flow in a computational domain X = [0, 3] � [0, 1]. Periodic boundary conditions are
applied on the left and right sides. A circular droplet with the radius of r = 0.3 is
initially placed at (1, 0.5). Other simulation parameters are listed as follows:

Pe/ ¼ 10;Pew ¼ 100; Re ¼ 10;Bo ¼ 1; Cn ¼ 0:01; Ex ¼ 1; Pi ¼ 0:1227; kq
¼ kv ¼ 10:

Figure 1 shows the time evolution plots of droplet deformation and surfactant
concentration. The droplet continuously deforms and moves forward under the action
of the shear flow and the body force. We can divide the whole process into two stages
based on the droplet deformation and surfactant migration. At the first stage, the body
force has limited effect on the droplet deformation compared with the shear flow.
Surfactants gradually migrate toward droplet tips, as shown in Fig. 1(b), resulting in
the non-uniformity of interfacial tension along the interface. As we mentioned before,
the surfactant concentration gradient induces the Marangoni stress, which will resist the
further migration of surfactants. However, the Marangoni stress is not large enough to
balance the effect of shear flow, and surfactants continue to move toward tips. In Fig. 1
(c), surfactants are swept into the bulk phases when concentration reaches the maxi-
mum at the droplet tips. At the second stage, the body force plays an important role in
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the droplet deformation and surfactant migration. In Fig. 1(d), surfactants on the tip A
are slowly swept towards the ABC segment under the effect of the body force. Sur-
factants along the ADC segment continuously move to the tips under the combined
action of the shear flow and the body force.

Fig. 1. Evolutions of pressure field (background color), quiver plot of velocity (u, v), phase-field
variables / and w. For each subfigure, the right is the profile of w. (wb = 1.5 � 10−2).

0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Fig. 2. Profiles of phase-field variable / at t = 1 (left) and t = 2 (right). (black dash line:
wb= 1�10−6; blue solid line: wb= 1.5 � 10−2; red solid line: wb= 5�10−2) (Color figure online)
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Figure 2 demonstrates the profiles of phase-field variable / at three different wb
values. A more prolate profile of / is observed for a higher surfactant bulk concen-
tration, which confirms the effect of surfactants in reducing the interfacial tension.

5 Conclusion

The numerical approximation of incompressible and immiscible two-phase flows with
soluble surfactants is the main topic in this paper. An efficient, accurate and energy
stable time-marching scheme is constructed using the SAV approach for the hydro-
dynamics coupled phase-field surfactant model with variable densities. We rigorously
prove the unconditional energy stability of the semi-implicit scheme. Numerical results
demonstrate the energy stability of the proposed scheme.
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