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Abstract. In this paper an expanded mixed formulation is introduced
to solve the two dimensional space fractional Darcy flow in porous media.
By introducing an auxiliary vector, we derive a new mixed formulation
and the well-possedness of the formulation can be established. Then
the locally mass-conservative expanded mixed finite element method is
applied for the solution. Numerical results are shown to verify the effi-
ciency of the proposed algorithm.
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element method · Well-posedness

1 Introduction

Fractional partial differential equations (PDE) have been explored as an impor-
tant tool to develop more accurate mathematical models to describe complex
anomalous systems such as phase transitions, anomalous diffusions. In this paper,
we focus on the modeling and simulation of flow in porous media. In particular,
when considering modeling of flow in fractured porous media, one may consider
different fractional time derivatives in matrix and fracture regions due to the
different memory properties. For instance, Caputo [3] apply the time fractional
PDE to model the flow in fractured porous media. However, there still exists the
fact that there is a steady state for flow in fractured porous media. Thus, we
consider the steady state space fractional PDE for the modeling and simulation
of flow in porous media.
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Until now, a number of articles referring to the space fractional PDE have
appeared in literature (see [13] and the reference therein). Most of the works
concern on the fractional Laplacian equation in unbounded or bounded domain,
and there exist different kinds of definitions of fractional Laplacian, such as
spectral/Fourier definition, singular integral representation, via the standard
Laplacian (elliptic extension), directional representation, et al. Lots of numerical
methods have been developed for the space fractional PDE, for instance, the
finite different method, the finite volume method, the spectral method, et al
(see [9,12,14–16,19] and the references therein). In particular, the finite element
methods have been firstly developed and analyzed by Ervin, Roop for the space
fractional PDE, and then by other authors in a series of works [2,5–7,18]. In
these works, standard Galerkin finite element methods are always applied for
the fractional Laplacian equation. However, when the standard Galerkin finite
element methods are applied to the flow equation, the mass conservation can
not be retained.

For the space fractional Darcy flow, J. H. He [10] firstly studied seepage flow
in porous media and used fractional derivatives to describe the fractional Darcy’s
law behavior. In [10], the permeability can only be assumed to be diagonal and
the PDE system violates the principle of Galilean invariance. Some numerical
methods have been developed for such kind of equation, e.g., see [2]. In this
paper, we will apply the fractional gradient operator defined by Meerschaert
et al. [17] to write down the space fractional Darcy flow for the two dimensional
problem which obeys the principle of Galilean invariance. In order to develop
the locally mass-conservative finite element method for the fractional Darcy
flow, Chen and Wang [4] proposed a new mixed finite element method for a
one-dimensional fractional Darcy flow. In this work, we extend the locally mass-
conservative mixed finite element method to the two dimensional problems which
can be easily extended to three dimensional problems. By introducing a new
auxiliary vector, we can obtain the new expanded mixed formulation for the
fractional Darcy flow and the well-possedness of the new formulation can be
well established.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
mathematical model for the two dimensional space fractional Darcy flow in
porous media. Then we introduce the expanded mixed formulation and estab-
lish its well-posedness in Sect. 3, and show the expanded mixed finite element
method and the detailed implementation in Sect. 4. Some numerical results are
given in Sect. 5 to verify the efficiency of the proposed algorithm. Finally we
provide a conclusion in Sect. 6.

2 Preliminary

In this section we will follow [7,17] to recall the definitions of the directional
integral, the directional derivative operators, the fractional gradient operator,
and then introduce the space fractional Darcy’s law which obeys the principle of
Galilean invariance. We use the standard notations and definitions for Sobolev
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spaces (cf. [1]) throughout the paper. Since our work focus on the two dimen-
sional problem, the following definitions are given for the functions in R2.

Definition 1 (cf. [7]). Let μ > 0 and θ ∈ R. The μ-th order fractional integral
in the direction θ = (cos θ, sin θ) is defined by

D−μ
θ v(x, y) =

∫ ∞

0

ξμ−1

Γ (ξ)
v(x − ξ cos θ, y − ξ sin θ)d ξ,

where Γ (·, ·) is a Gamma function.

Definition 2 (cf. [7]). Let n be a positive integer. The n-th order derivative in
the direction of θ = (cos θ, sin θ) is given by

Dn
θ v(x, y) = (cos θ

∂

∂x
+ sin θ

∂

∂y
)nv(x, y).

Definition 3 (cf. [7]). Let μ > 0, θ ∈ R. Let n be an integer such that n − 1 ≤
μ < n, and define σ = n − μ. Then the μ-th order directional derivative in the
direction of θ = (cos θ, sin θ) is defined by

Dμ
θ v(x, y) = D−σ

θ Dn
θ v(x, y).

Definition 4 (cf. [17]). Let α ∈ (0, 1). The fractional gradient operator with
respect to the measure M is defined by

∇α
Mv =

∫ 2π

0

θDα
θ vM(θ)d θ,

where θ = (cos θ, sin θ) is a unit vector, Dα
θ is the Riemann-Liouville fractional

directional derivative and M(θ) is a positive (probability) density function satis-
fying

∫ 2π

0
M(θ)d θ = 1.

By the Lemma 5.6 in [7], we have Dα
θ v = Dα−1

θ D1
θv = Dα−1

θ (θ · ∇v). Thus,
we write down the steady state space fractional Darcy flow as follows:

∇ · u = f in Ω, (2.1a)
u = −K∇α

Mp in Ω, (2.1b)

p = 0 in R2 \ Ω, (2.1c)

where u, p, f are fluid velocity, pressure and source term, K is a bounded sym-
metric and positive definite permeability tensor, and ∇α

Mp =
∫ 2π

0
θDα−1

θ (θ ·
∇p)M(θ)d θ. For brevity, we consider the fractional Darcy flow in a bounded
domain with homogeneous boundary condition for pressure and assume the pres-
sure to be zero outside the domain. For the problem with non-homogeneous
boundary conditions, some addition techniques such as the lifting approach and
other strategies introduced in [13] can be further applied to solve the problem.
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For the one dimensional space fractional diffusion equation, the regularity of
solution was obtained in [8,11]. In this work, we consider the two dimensional

model and assume the regularity of solution for the system (2.1) as p ∈ H
α+1
2

0 (Ω).
The gravity effect can also be considered in the space fractional Darcy law as
u = −K(∇α

Mp + ρg), and the above model can also be extended to the three
dimensional problem.

3 Expanded Mixed Formulation

In this section we present a mass-conservative mixed formulation for the frac-
tional Darcy flow (2.1) and establish the well-posedness of the weak formulation.
Firstly we define the notations for some Sobolev spaces as follows:

V := H(div, Ω) ∩ [H
1−α
2 (Ω)]2, H := [H

α−1
2 (Ω)]2, Q := L2(Ω).

In order to propose a well-posed mixed formulation for the space fractional
Darcy flow, we introduce a new auxiliary vector w = ∇p ∈ H. Now we present
the expanded mixed formulation for (2.1) as follows: Find (u,w, p) ∈ V ×H×Q,
such that

(w,η) + (p,∇ · η) = 0, (3.1a)

(u,v) + (K
∫ 2π

0

θDα−1
θ (θ · w)M(θ)d θ,v) = 0, (3.1b)

(∇ · u, q) = (f, q), (3.1c)

for any (η,v, q) ∈ V × H × Q. Since we assume that V and H are dual spaces,
w,u ∈ V and η,v ∈ H, we can see that the inner products for (w,η) and (u,v)
in (3.1) are well defined.

Now we define U := H × Q and let

a(τ ,χ) := (K
∫ 2π

0

θDα−1
θ (θ · w)M(θ)d θ,v),

b(χ,u) := (u,v) + (∇ · u, q),
b(τ ,η) := (w,η) + (p,∇ · η),

for τ = (w, p) ∈ U ,χ = (v, q) ∈ U . Then the expanded mixed formulation
(3.1) can be equivalently rewritten as follows: For any (χ,η) ∈ U × V , find
(τ ,u) ∈ U × V such that

a(τ ,χ) + b(χ,u) = (f, q), (3.2a)
b(τ ,η) = 0. (3.2b)

In the following, we will aim to prove the well-posedness of the mixed system
(3.2). We define Z = {χ ∈ U : b(χ,η) = 0, ∀η ∈ V }. We start the proof from
the following key lemma which can be proved by the similar technique in [4]. We
denote by C with or without subscript a positive constant. These constants can
take on different values in different occurrences.
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Lemma 1. Let χ = (v, q) ∈ Z. We have that χ ∈ Z if and only if q ∈ H
α+1
2

0 (Ω)
and v = ∇q ∈ [H

α−1
2 (Ω)]2.

Proof. If q ∈ H
α+1
2

0 (Ω) and v = ∇q ∈ [H
α−1
2 (Ω)]2, we have

(v,η) = (∇q,η) = −(q,∇ · η) +
∫

∂Ω

qη · n , ∀η ∈ V .

Since q ∈ H
α+1
2

0 (Ω), we have (v,η) + (q,∇ · η) = 0, i.e., χ = (v, q) ∈ Z.
Now we let χ = (v, q) ∈ Z. Firstly, we let η = (1, 0)T or (0, 1)T in b(χ,η)

and we get v ∈ [L1(Ω)]2. Then we let η ∈ D(Ω) where D(Ω) denotes the set of
all functions φ ∈ C∞(Ω) which vanish outside a compact subset of Ω. Then we
have

(v,η) = −(q,∇ · η) = (∇q,η), ∀η ∈ [D(Ω)]2,

which yields that v = ∇q ∈ [L1(Ω)]2 and q ∈ W 1,1(Ω). By the density and
Sobolev imbedding theories, we have that for any q ∈ W 1,1(Ω), there exist
qε ∈ C1(Ω) and a constant C > 0 such that

‖q − qε‖W 1,1(Ω) ≤ ε, ‖q − qε‖L∞(Ω) ≤ C‖q − qε‖W 1,1(Ω) ≤ Cε.

Now, for any η ∈ V , we have

(q,∇ · η) = (q − qε,∇ · η) + (qε,∇ · η)

= (q − qε,∇ · η) − (∇qε,η) +
∫

∂Ω

qεη · n

= −(∇q,η) +
∫

∂Ω

qη · n

+ (q − qε,∇ · η) − (∇qε − ∇q,η) +
∫

∂Ω

(qε − q)η · n . (3.3)

By the density argument and the imbedding theory, we can see that the last
three terms on the right-hand side of the last equality in (3.3) become zero as
ε → 0. Thus combining the above derivation and v = ∇q, we have

(q,∇ · η) = −(∇q,η) +
∫

∂Ω

qη · n = −(v,η) +
∫

∂Ω

qη · n , ∀η ∈ V . (3.4)

Since χ = (v, q) ∈ Z, we have (q,∇ · η) + (v,η) = 0, which together with (3.4)
yields that q = 0 on ∂Ω. Thus we have q ∈ W 1,1

0 (Ω).
By the definition of fractional gradient operator, we have

∇
α+1
2

M q =
∫ 2π

0

θD
α+1
2

θ qM(θ)dθ =
∫ 2π

0

θD
α−1
2

θ θ · ∇qM(θ)dθ

=
∫ 2π

0

θD
α−1
2

θ θ · vM(θ)dθ ∈ L2(Ω).

Thus we obtain q ∈ H
α+1
2 (Ω) which together with q = 0 on ∂Ω yields q ∈

H
α+1
2

0 (Ω) and v = ∇q ∈ [H
α−1
2 (Ω)]2. Now we conclude the proof. �
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Next we introduce another two important tools to prove the well-posedness
of (3.2).

Lemma 2 (cf. [7]). Let μ > 0. For each θ ∈ [0, 2π), there holds

(Dμ
θ q,Dμ

θ+πq)L2(Ω) = cos(πμ)‖Dμ
θ q‖2L2(Ω), ∀q ∈ Hμ

0 (Ω) and q = 0 in R2 \ Ω.

Lemma 3 (cf. [7]). For any q ∈ Hμ
0 (Ω) and q = 0 in R2 \ Ω, there holds the

fractional Poincaré-Friedrichs inequality as follows:
∫ 2π

0

‖Dμ
θ q‖2L2(Ω)M(θ)d θ ≥ C‖q‖2L2(Ω).

Now for any χ = (v, q) ∈ U , we denote

|v|2α−1
2 ,M

=
∫ 2π

0

‖D
α−1
2

θ θ · v‖2L2(Ω)M(θ)d θ

and
‖χ‖2U := ‖q‖2L2(Ω) + |v|2α−1

2 ,M
.

In the following, in order to show the proof in brevity, we assume the permeability
tensor K = KI with a positive constant K > 0 and I is identity matrix.

Lemma 4. For any χ ∈ Z, we have

a(χ,χ) ≥ C‖χ‖2U .

Proof. By Lemma 1, for any χ = (v, q) ∈ Z, we have v = ∇q and q ∈ H
α+1
2

0 (Ω).
Then by the Theorems 2.1–2.2 in [7], the fact D1

θ = −D1
θ+π and the Lemma 2,

we have

a(χ,χ) = (K
∫ 2π

0

θDα−1
θ (θ · v)M(θ)d θ,v)

= (K
∫ 2π

0

Dα−1
θ (θ · ∇q)M(θ)d θ,θ · ∇q)

=
∫ 2π

0

(KD
α−1

2
θ (θ · ∇q),D

α−1
2

θ+π (θ · ∇q))M(θ)d θ

= −
∫ 2π

0

(KD
α+1
2

θ q,D
α+1
2

θ+π q)M(θ)d θ

= sin
πα

2

∫ 2π

0

‖
√

KD
α+1
2

θ q‖2L2(Ω)M(θ)dθ.

We note that D
α+1
2

θ q = D
α−1
2

θ θ · v. Then we can get the desired estimate
by the above equality and the fractional Poincaré-Friedrichs inequality in the
Lemma 3. �
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Lemma 5. There holds

inf
η∈V

sup
χ∈U

b(χ,η)
‖χ‖U ‖η‖V

≥ C.

Proof. For any η ∈ V , we let χ0 = (η,∇ · η), then we have

sup
χ∈U

b(χ,η)
‖χ‖U

≥ b(χ0,η)
‖χ0‖U

=
(η,η) + (∇ · η,∇ · η)

(‖η‖2α−1
2 ,M

+ ‖∇ · η‖2L2(Ω))
1/2

.

By the imbedding theory, we easily have

sup
χ∈U

b(χ,η)
‖χ‖U

≥ C‖η‖V ,

which directly yields the desired estimate. �

By the Lemmas 4–5 and the Babuška-Brezzi theory, we finally obtain the
following theorem to state the well-posedness of (3.2), and this also indicates
the well-posedness of the mixed system (3.1).

Theorem 1. There exists a unique solution (τ ,u) for the mixed system (3.2).

4 Expanded Mixed Finite Element Method and Its
Implementation

In this section we will introduce the expanded mixed finite element method for
the mixed formulation (3.1) and show the details of implementation. Let Th be
the quasi-uniform structured or unstructured mesh on Ω. We define

V h = {ηh ∈ V : ηh|T ∈ RT0(T ), ∀T ∈ Th},

Hh = {vh ∈ H : vh|T ∈ [P0(T )]2, ∀T ∈ Th},

Qh = {qh ∈ Q : qh|T ∈ P0(T ), ∀T ∈ Th}.

We remark that the high order mixed finite element spaces can also be used
in V h × Hh × Qh if the solution is smooth enough. For the problem with a
low regularity solution, the approximation based on the low order mixed finite
element space is advised. We utilize V h,Hh, Qh as the approximate spaces for
V ,H, Q. The expanded mixed finite element method for the space fractional
Darcy flow (2.1) is defined as: Find (uh,wh, ph) ∈ V h × Hh × Qh such that

(wh,ηh) + (ph,∇ · ηh) = 0, (4.1a)

(uh,vh) + (K
∫ 2π

0

θDα−1
θ (θ · wh)M(θ)d θ,vh) = 0, (4.1b)

(∇ · uh, qh) = (f, qh), (4.1c)
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for any (ηh,vh, qh) ∈ V h × Hh × Qh.
We note that the key step in implementation of (4.1) is how to discretize the

following term:

Tf = (K
∫ 2π

0

θDα−1
θ (θ · wh)M(θ)d θ,vh).

We assume that M(θ) has the discrete form

M(θ) =
L∑

k=1

ωkδ(θ − θk),
L∑

k=1

ωk = 1,

where δ is the Dirac delta function. For brevity, we assume K = KI, then

Tf =
L∑

k=1

ωkK(Dα−1
θk

(θk · wh),θk · vh).

Since θk = (cos θk, sin θk) and wh,vh ∈ Hh are piecewise constant vector func-
tions with the basis functions (0, 1)T and (1, 0)T , the key implementation of Tf

lies in the computation of

T̂ θ
f = (Dα−1

θ χK′ , χK), K ′,K ∈ Th,

where χS is an indicator function for a set S in R2.

Fig. 1. Illustration for computing T̂ θ
f on the unstructured mesh.

If Th is an unstructured mesh with a triangular partition of Ω, we can com-
pute T̂ θ

f as follows: Let ν = 1 − α, Ω1, Ω2 ∈ K, we have

T̂ θ
f = (Dα−1

θ χK′ , χK)K

=

∫
Ω1

(
(x′ − S1)

ν

Γ (ν + 1)
− (x′ − S2)

ν

Γ (ν + 1)
)dx′dy′ +

∫
Ω2

(
(x′ − S′

1)
ν

Γ (ν + 1)
− (x′ − S′

2)
ν

Γ (ν + 1)
)dx′dy′,

where S1, S2, S
′
1, S

′
2 are the coordinates in the rotating coordinate system (see

Fig. 1).
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Fig. 2. Illustration for computing T̂ θ
f on the structured mesh.

The implementation of T̂ θ
f can also be similarly implemented on the struc-

tured mesh. For simplicity, we implement (4.1) on the structured mesh with

M(θ) =
4∑

k=1

1
4
δ(θ − θk), where θk =

π

2
(k − 1).

Then, when θ = 0, π/2, π, 3π/2, we have (see Fig. 2)

T̂ θ
f = (Dα−1

θ χK′ , χK)K =
∫

K

(
(x′ − S1)ν

Γ (ν + 1)
− (x′ − S2)ν

Γ (ν + 1)
)dx′dy′.

5 Numerical Experiments

In this section we show some numerical results to verify the efficiency of the
expanded mixed finite element method. In the following examples, we assume the
porous medium is isotropic and K = I. We implement the proposed algorithm
on the structured mesh with M(θ) =

∑4
k=1

1
4δ(θ − θk), where θk = π

2 (k − 1).

Example 1. In this example we test the steady state space fractional Darcy flow
(2.1) on a unit square domain with 81 × 81 grid. We let f = 1 and f = −1 in
four grid cells of Th respectively and let f = 0 in other region.

We choose α = 0.1, 0.5, 0.7, 0.9 to test the algorithm. From Fig. 3 we can
clearly see how the parameter α influences the solution.

Example 2. We remark that the expanded mixed FEM can also be applied to
solve the following space fractional transport in porous media:

∂c

∂t
+ ∇ · (uc + D(u)∇α

Mc) = f in Ω,

c = 0 in R2 \ Ω,

c(x, 0) = c0(x) in Ω.

In this example, we test the space fractional transport on [0, 4] × [0, 1] with
128 × 32 grid. We assume the velocity u = (0.1, 0)T . We denote r2 = (x −
1/8)2 +(y − 1/2)2 and let f = 0, c0(x) = 105 × 21−1/(1−5r2/4) in the local region
r2 ≤ 10−3 and c0(x) = 0 in other region.
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Fig. 3. With K = 1. Top-Left: solution of pressure (α = 0.1). Top-Right: solution of
pressure (α = 0.5). Bottom-Left: solution of pressure (α = 0.7). Bottom-Right: solution
of pressure (α = 0.9).

Fig. 4. The concentration solutions with different α at T = 1.2 with time step δt = 0.01.
Top-Left: α = 0.1. Top-Right: α = 0.5. Bottom-Left: α = 0.7. Bottom-Right: α = 0.9.

We test this example by choosing α = 0.1, 0.5, 0.7, 0.9 and compute the solu-
tions with time step δt = 0.01 until the time T = 1.2. From Fig. 4 we can
also clearly see how the parameter α influences the distribution of concentration
at a fixed time. We can see that the diffusion effect is more obvious when the
parameter α becomes large.
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6 Conclusion

In this paper we discuss an expanded mixed finite element method for the
solution of the two dimensional space fractional Darcy flow in porous media.
The locally mass-conservation can be retained by this mixed scheme. The well-
posedness of the expanded mixed formulation is proved and the implementa-
tion of the algorithm is given in details. Numerical results are shown to verify
the efficiency of this mixed scheme. The mixed scheme for the space fractional
Darcy flow with non-homogeneous boundary conditions will be investigated in
the future work.
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