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Abstract. In this paper we present the results of an empirical study of
stochastic projection and stochastic gradient descent methods as means
of obtaining approximate inverses and preconditioners for iterative meth-
ods. Results of numerical experiments are used to analyse scalability and
overall suitability of the selected methods as practical tools for treatment
of large linear systems of equations. The results are preliminary due to
the code being not yet fully optimized.
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1 Introduction

In this paper we present an empirical evaluation of three numerical methods
derived for the stochastic solution of linear algebraic systems. All methods are
evaluated regarding their suitability as tools for computing an approximate
inverse matrix. Furthermore, we consider their scalability and the usefulness
of the approximate inverses as preconditioners for iterative solvers for linear sys-
tems of the form Ax = b, where A ∈ {R,C}n×n is henceforth designated system
matrix.

Solution of linear algebraic systems is of paramount importance in almost
every domain of scientific computing. In case of table-top numerical experiments
such systems may very well be solved using well-known methods like LU decom-
position, but for a wide variety of cases the size of the matrices would prevent
them from being storable even given the abundant storage space available nowa-
days. In such cases the matrices have, however, generally a very sparse struc-
ture, reducing their memory footprint enormously. The downside being, that an
inverse of a sparse matrix is generally dense and a method like LU decomposition
hence becomes unfeasible. To obtain a solution in such cases iterative methods
such as generalized minimal residues (GMRES) iteration or bi-conjugate gradi-
ent stabilized (BiCGstab) iteration are employed, which solve the linear system
by merit of a fixed-point iteration. Since there’s no silver bullet for complex-
ity of the problem iterative methods may suffer of slow convergence towards
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the solution. This problem one attempts to ameliorate using preconditioners -
matrices which modify the problem and ideally reduce the number of iterations
and, ideally also the runtime to solution.

Here we consider the suitability of two methods, stochastic gradient descent
with missing values (mSGD) and stochastic projection (SP) as ways to compute
said preconditioners.

2 Algorithm Description

Our main focus in this work is on stochastic projection (SP), or randomized
Kazmarz method, as described in [6] and on the stochastic gradient descent
with missing values (mSGD) - as given in [5]. Both methods are assessed also
regarding their sensitivity to the initial conditions. The latter is achieved by
comparing convergence behaviour with a random initial guess at the solution to
an initial guess provided by the Markov Chain Monte Carlo Matrix Inversion
(MCMCMI) method described in [4]. In the following a brief description of each
method is provided.

2.1 Stochastic Projection

The basic idea is fairly simple, and the implementation follows roughly eq. (2.13)
of [6]. The main idea is to project the solution vector successively and orthog-
onally onto arbitrarily chosen subspaces until the accumulated effect leads the
iteration into the subspace of the true solution. An obvious extension to block-
projections has been mentioned in [6] and implemented here. The iteration step
is given as follows:

xk+1 = xk + At
i

(
AiA

t
i

)−1 (bi − Aixk) . (1)

Here Ai is a randomly selected block of rows of the matrix and bi the corre-
sponding subset of entries of the right-hand-side vector of

Ax = b . (2)

The intuitive simplicity of this approach is paid for by its performance. Further-
more the computation of a matrix inverse in each step is required. Depending on
the block size the computation of said inverse, or a solution of a dense system,
may incur a significant cost.

2.2 Stochastic Gradient Descent

In the present modification, as proposed by Ma and Needell in [5] a gradient
descent takes place not over the entirety of the column space of the matrix,
but rather over a randomly selected subspace (of dimension 1). Ma and Needell



Empirical Analysis of Stochastic Methods of Linear Algebra 541

derive the method under the assumption that an entry aij of the system matrix
itself is missing with a probability p. This results in the following iteration rule:

xk+1 = xk − αk
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Here ai is the i-th column-vector of the matrix and the last part of the step
utilises a diagonal matrix derived from the outer product of ai with itself. Con-
vergence of the gradient descent method depends on its step-size. The latter can
be either fixed or variable and an expression for a variable step size is provided
as a function of an arbitrary parameters 0 < c, r < 1, where c is called “learning
rate”, the number of iterations k and the smallest eigenvalue λmin of the system
matrix:

αk =
c

|λmin|r
k
T . (4)

Here T is the number of steps after which the step size will be shrunk by a
factor r < 1. Again, the relative simplicity of the method is compensated by the
existence of two parameters in (3): αk, p. Both are, as a rule, unknown a-priori
and have to either be guessed or, in case of the step size, computed using (4). An
educated guess as to the parameters may very well result in sub-optimal choices,
whereas the computation of αk using the above equation introduces yet another
pair of parameters.

2.3 Markov Chain Monte Carlo Matrix Inversion

The third solution method presented here is the approximation of an inverse
using Markov Chain Monte Carlo for Matrix Inversion (MCMCMI) as presented
in [4]. The fundamental idea of the method is to employ the Neumann series
to compute an inverse of a diagonally-dominant matrix. To reduce the cost the
Neumann series is evaluated stochastically using Markov Chains. Since the series
is infinite estimates as to the number and length of chains are required for a
practical application. Such an estimate was provided in [3] and the method has
been implemented both for GPUs and CPUs. In the current case it stands as a
stand-alone method of providing preconditioners for iterative methods, as well
as a source of initial conditions for the mSGD and SP iterations.

The algorithm can be split into the following 5 phases (Notice that phases 1
and 5 are only necessary when the initial matrix is not a diagonally dominant
matrix (ddm)): 1) Initial matrix is transformed into a ddm, 2) Transformation of
ddm for suitable Neumann series expansion, 3) Monte Carlo method is applied
to calculate sparse approximation of the inverse matrix, 4) Given 2, calculate
the inverse of the ddm from 3, 5) Recovery process is applied to calculate the
inverse of the original matrix due to the transformation in 1. It must be noted
that the last phase requires in general O(n3) operations and hence is generally
neglected. Prior numerical experiments have demonstrated that it is not com-
pulsory to obtain an effective preconditioner and is in general an impediment
to an efficient preconditioner. The method requires two tolerance values ε - an
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error bound on the stochastic error, which determines the maximum amount of
chains required - and δ, a truncation error bound which affects the length of the
chains. Both have to be provided by the user and together dictate the precision
of the approximation.

The major caveat of this method is that it is strictly valid only for diagonally
dominant matrices if the recovery procedure is not being applied. Nevertheless,
as has been demonstrated in [4], the obtained approximation of the unrecovered
inverse is often sufficient as a preconditioner for iterative systems.

3 Implementation and Experiments

The effectiveness of the chosen methods has been assessed using a set of sparse
matrices of varying size and structure, intended to represent multiple domains
of scientific computing. It is provided in Table 1. The set contains matrices from
climate simulations (nonsym r3 a11, sym r6 a11), semiconductor electronics
(circuit5M dc, from [2]), computational fluid dynamics (rdb2048, [2]) and sim-
ple mathematics (2DFDLaplace 20x20).

Table 1. Matrix set.

Matrix Dimension Non-zeros Sparsity Symmetry

circuit5M dc 3, 523, 317× 3, 523, 317 19,194,193 1.5 · 10−6% Symmetric

nonsym r3 a11 20, 930× 20, 930 638,733 0.15% Non-symmetric

sym r6 a11 1, 314, 306× 1, 314, 306 36,951,316 0.02% Symmetric

rdb2048 2048× 2048 12032 0.28% Non-symmetric

2DFDLaplace 20x20 361× 361 1729 1.32% Symmetric

3.1 Implementation Details and Caveats

The methods described in the previous section have been implemented in C++.
Parallelization of all of the methods for use on CPUs has been achieved by
combining MPI and OpenMP (OMP) parallelisation (so-called hybrid paralleli-
sation). A GPU implementation was available only for MCMCMI at the time
of writing. This has been done using NVIDIA’s CUDA programming model.
To utilise multiple GPUs the implementation utilises OpenMP threads s.t. each
GPU is controlled by one thread.

Parallelisation is similar for all methods and architectures. The main process
reads the matrix A and the run-time parameters. It then broadcasts this data to
the workers. Each worker computes the fraction of rows/columns it has to process
based on its rank. At the end of the computation the resultant local block of
A−1 is purged of entries smaller than the user-prescribed tolerance (10−9 resp.
10−14 for circuit5M dc). Then it is collected onto the master process for storage.
It is important to note that, with increasing matrix size broadcast operations
introduce a non-negligible communication overhead.
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In the case of the GPU implementation of MCMCMI the main process is the
master thread of OpenMP and workers are the GPUs. For the hybrid implemen-
tation (MPI+OpenMP) the master process is MPI rank 0 and worker processes
have rank> 0. The distribution of the matrix blocks is uniform among the pro-
cesses, with the last block of rows being assigned to the master due to it being
potentially smaller than the other blocks. This preferential treatment of the mas-
ter is done to mask potential load imbalance by letting the master prepare the
output arrays prior to collection. Within each node (MPI rank) the computa-
tion of the approximate inverse is parallelised over the rows of the block using
OpenMP dynamicdistribution to ameliorate load imbalance among the rows.

The mSGD and SP implementations follow the same structure, but acceler-
ation on the worker processes is achieved by utilising Eigens’ built-in paralleli-
sation using OpenMP threads instead of manually distributing the columns of
the inverse.

The main drawback of the CPU-oriented implementation of MCMCMI is
the lack of resources which could be used to compact and sort the row of the
approximate inverse, before the entries that will be retained are extracted. The
current implementation of stream compaction introduces significant overhead
but is still preferable to sorting an entire row of the approximate inverse if it
contains only a handful of non-vanishing values.

Numerical experiments for SP and mSGD were run on the Scafell Pike system
of the Hartree centre, which consists of nodes fitted with 2x XEON gold E5-6142
v5 processors resulting in 32 cores per node and due to HyperThreading in 64
threads per node.

The experiments for the assessment of MCMCMI and to generate optimized
initial conditions for mSGD and SP were executed on the hemera system of
the Helmholtz Centre Dresden-Rossendorf by A.L. The systems running the
K80 experiment set consisted of 8x NVIDIA K80 GPUs with 32GB VRAM
on a system with 2 Xeon E5-2630v3 CPUs with HyperThreading enabled. For
hybrid MCMCMI experiments the nodes used contained 2 Xeon Gold 6148 CPUs
with 20cores/40 threads each. The P100 experiments were performed on systems
containing 4 P100 GPUs with 16GB VRAM each connected via the NVLink
interface to a node of 2 Xeon Gold 6136 CPUs with 12 cores/24 threads each.
All systems are connected via Infiniband with 56 Gb/s.

3.2 Numerical Experiments and Analysis of Results

MCMCMI. For the sake of simplicity we chose ε = δ for the simulations,
although this is by no means necessary. This choice ensures that neither stochas-
tic (ε) nor truncation errors (δ) dominate.

From Fig. 1a one can immediately see (note that the upper horizontal axis
enumerates GPUs), that the usage of the GPU many-core architecture is of lit-
tle meaning if the workload is small. This is the case when the matrix to be
inverted is small. In this case the GPU will spend most of the time in memory-
management overhead. Hence, for the nonsym r3 a11 matrix an optimal number
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(a) Execution time of the preconditioner
computation for a small matrix. Manage-
ment overhead on GPUs is emphasized by
the small size.

(b) Speed-up in comparison to 12 CPU
cores for the sym r6 a11 matrix and a pre-
cision of ε = 0.0625.

Fig. 1. Execution time and speed-up of MCMCMI depending on the underlying archi-
tecture and matrix size. Note that the lower axis enumerates CPUs of the OpenMP
or MPI+OpenMP (hybrid) implementation and the upper axis GPUs of a GPU-only
implementation.

of GPUs, dependent on their architecture, appears to exist. The latter is under-
standable since different architectures generally feature vastly different numbers
of processing units.

However, requiring a precise approximate inverse (lowering the relative error
ε) and working with large matrices leads to a full utilization of the GPU’s com-
puting resources, resulting in a good scalability across multiple GPUs. Similarly
for CPUs. Figure 1b serves to illustrate these assertions. In the case of the hybrid
implementation, utilizing MPI and OpenMP parallelization, one can see that the
overhead of distributing the system matrix A and the final collection of the pre-
conditioner onto the main process inhibits scaling of the method. Increase of
the tolerances beyond 0.125 is seldom useful since the execution time becomes
dominated by communication and memory management overhead even for small
matrices and few processes/GPUs.

mSGDParameters. The missing element probability and learning rate param-
eters of mSGD are unknown and hard to estimate a-priori. To elucidate the sen-
sitivity of the method to the choice of these parameters a parameter search has
been performed. To this end r = 0.5 and T = Ntotal/100, with Ntotal = 105

have been chosen and c, p varied. The results of the parameter search are shown
in Fig. 2. They indicate the existence of an optimal choice of parameters with a
bias towards higher values for the missing probability p. The choice of an optimal
parameter set will not, however, improve the convergence and errors dramatically.
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(a) nonsym r3 a11 matrix. (b) rdb2048 matrix.

Fig. 2. Dependency of the error of mSGD on the chosen parameters.

As can be seen in the figure the best reduction of the error is achieved for the
rdb2048 matrix and is ∝ 3×. It is also interesting to observe, that in contrast to
the non-symmetric matrices of Fig. 2 the optimal parameter set for the symmetric
discrete Laplacian is located towards higher learning rates. This holds, too, for the
large sym r6 a11 matrix, too, and suggests the possibility that the learning rate
may be influenced by the symmetry of the matrix (Fig. 3).

Fig. 3. Dependency of the error of mSGD on the chosen parameters for
2DFDLaplace 20x20 matrix.

Scalability. For mSGD and SP the scaling behaviour across multiple nodes
using hybrid parallelization is illustrated in Fig. 4. The recline of the speed-up for
the smallest matrix of the set is to be expected since each thread/worker cannot
receive less than one column of the approximate inverse to process. Processes
that do not receive any columns remain idle but participate in the initial matrix
broadcast, hence slowing the process down.
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(a) SP for nonsym r3 a11 matrix. (b) mSGD

Fig. 4. Speed-Up achieved by both methods for different matrices of the chosen matrix
set. For the small Laplace matrix one can clearly observe a saturation. Note the loga-
rithmic scale of the axes.

Increasing the size of the matrix leads to a better speed-up, as can be
seen for the case of the nonsym r3 a11 matrix. Comparing the speed-up for
nonsym r3 a11 to that of rdb2048 we can see, that the latter reclines markedly
around 211 workers, which corresponds to the point where each worker has to pro-
cess one column only. The non-vanishing speed-up for the case where the number
of workers is larger than the number of columns of the matrix is startling, but
could possibly be attributed to a wider distribution of the MPI processes on the
machine, thereby relieving the pressure on compute resources such as caches and
memory bandwidth. The tendency of the speed-up curve to be convex at around
27 workers (threads) we attribute to caching effects.

It is instructive to compare the achieved speed-up and execution times of
these methods to the speed-up of MCMCMI which can be easily inferred from
Fig. 1a. For a relatively small matrix of dimension ∼ 20000 the MCMCMI imple-
mentation does not scale well. The reason for this is the memory management
imposed by the use of sparse matrices and the fact that even at a relatively high
precision of ε = 0.0625 the Markov chains are still relatively short and hence the
overall computational cost is still modest. In fact, if one compares the execution
times provided in Figs. 1a, 5 one can immediately see, that although MCMCMI
does not scale well it clearly has the advantage with regards to the practical
requirement of short run times.

Error Convergence. As can be observed in Fig. 6 usage of the rough approx-
imate inverse provided by MCMCMI reduces the error of both SP and mSGD
significantly. Unexpectedly it appears to have no effect on the behaviour of the
error for SP. This suggests a certain agnosticism of the method with regards to
the starting vector/matrix for the iteration. The similarity of the behaviour of
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(a) nonsym r3 a11 matrix. (b) rdb2048 matrix.

Fig. 5. Total execution times of the different methods.

mSGD and SP is misleading in the case of the nonsym r3 a11 matrix, since for
mSGD the step-size was determined using (4) with the quantities provided in
Sect. 3.2. One can see that the mSGD iteration starts to converge roughly after
103 steps, which corresponds the point at which k

T = k
103 becomes larger than

one and by merit of 0 < r < 1 the step-size shrinks. Indeed, if one considers the
error behaviour for rdb2048 it becomes apparent that it begins to converge only
after the exponential becomes > 1.

(a) nonsym r3 a11 matrix (b) rdb2048 matrix

Fig. 6. Errors achieved by SP and mSGD for different matrices using a random matrix
as initial condition, or an approximate inverse provided by MCMCMI.
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The case of nonsym r3 a11 matrix presents also the rare case where SP with
a block size of 2 × 2 provides a better convergence in the early stages of the
iteration, than a larger block size. Furthermore it can be seen, that in this case
using a better x0 in conjunction with a non-uniform selection probability for
the rows of the matrix in (3) leads to an unexpected worsening of the computed
error.

Although SP outperforms mSGD with regards to the error convergence it is
slower than the latter. To a large part this is due to the fact that in the current
implementation of SP the timings include the error computations, which are not
strictly necessary. Furthermore, SP requires the computation of the inverse of
a small m × m, m ∈ {1, 2, 3, 4} matrix at each step. This cost, however, can
be neglected currently, since it is dwarfed by the error computations. To reduce
the impact of this inversion the block sizes were chosen such that the usage
of an explicit expression for the calculation of the inverse of the block by the
used library1. The dominant factor at the current development stage will be the
memory management, though.

4 Conclusions and Future Work

In summary we observe that in the present state of development neither of these
methods is capable of competing against, for instance, MCMCMI as a method to
compute an approximate inverse to be used as a preconditioner efficiently. This
is chiefly due to the excessive execution times and slow error convergence. One
has to note that the parameters of SP and mSGD have not been explored in full,
and the analysis currently under way suggests that some sizeable improvements
can be made.

The error behaviour of SP observed for all but the nonsym r3 a11 matrix
suggests that a sequence of diminishing block sizes might be effective in accel-
erating the convergence of this method. This will be equivalent to successive
refinement of projection spaces down to the one-dimensional solution space.

For mSGD the obvious point of optimization will be the choice of the param-
eters for (4), especially of T - as elaborated upon in the previous section. Espe-
cially the connection of the optimal step-size to the symmetry properties of the
matrix are deserving of a particular focus, since this simple to check property
would provide a simple criterion for the selection of the learning rate.

All three methods described above currently suffer the same deficiency - the
need to broadcast the system matrix prior to the execution of the method. The
necessary broadcast is the dominant factor determining the execution time of the
MCMCMI process but is sub-dominant for mSGD and SP, since both are more
expensive in their application. In principle none of the methods strictly require
a matrix to be available and all should work in conjunction with matrix-free
problems.

Multiple such tests are planned for the near future and will serve to assess the
usefulness of the methods as preconditioners in the domain of electrodynamics
1 The Eigen 3 template library.
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and plasma physics. Furthermore, based on the observation that the lengths
of empirical Markov Chains are much shorter than predicted by theory [1], we
expect the need for further formal analysis of the MCMCMI method to provide
bounds that are more precise.
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