
Bringing Harmony to Computational
Science Pedagogy

Richard Roth(B) and William Pierce

Hood College, Frederick, MD 21701, USA
{rothr,pierce}@hood.edu

Abstract. Inherent in a musical composition are properties that are
analogous to properties and laws that exist in mathematics, physics, and
psychology. It follows then that computation using musical models can
provide results that are analogous to results provided by mathematical,
physical, and psychological models. The audible output of a carefully
constructed musical model can demonstrate properties and relationships
in a way that is immediately perceptible. For this reason, the study of
musical computation is a worthwhile pursuit as a pedagogical tool for
computational science. Proposed in this paper is a curriculum for imple-
menting the study of musical computation within a larger computer sci-
ence or computational science program at a college or university. A ben-
efit of such a curriculum is that it provides a way to integrate artistic
endeavors into a STREAM program, while maintaining the mathematical
foundations of STEM. Furthermore, the study of musical computation
aligns well with the arts-related components of Human-Centered Com-
puting. The curriculum is built on the following two hypotheses: The
first hypothesis is that the cognitive, creative, and structural processes
involved in both musical composition and computer programming, are
similar enough that skilled computer scientists, with or without musical
backgrounds, can learn to use programming languages to compose inter-
esting, expressive, and sophisticated musical works. The second hypoth-
esis is that the links between music, mathematics, and several branches
of science are strong enough that skilled computational scientists can
create musical models that are able to be designed using vocabularies
of mathematics and science. While the curriculum defined in this paper
focuses on musical computation, the design principles behind it may be
applied to other disciplines.

Keywords: Computational science · Pedagogy · Curriculum design ·
System modeling · Music composition · Algorithms · Sound design ·
Digital signal processing · Psychoacoustics · Embedded systems

1 Introduction

Outlined in this paper is a curriculum for implementing a computational music
curriculum at a college or university. This curriculum is designed to be a sub-
curriculum for a larger computer science or computational science program.
c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12143, pp. 661–673, 2020.
https://doi.org/10.1007/978-3-030-50436-6_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50436-6_49&domain=pdf
http://orcid.org/0000-0001-8622-8134
http://orcid.org/0000-0002-1974-1779
https://doi.org/10.1007/978-3-030-50436-6_49

662 R. Roth and W. Pierce

In this curriculum, music is studied using the vocabularies of mathematics and
science. The purpose of this curriculum is to use musical models as pedagogical
tools for computational science.

This paper begins with a discussion of music as it was studied in ancient
Greece, as the study of numbers evolving over time. This discussion is included
to provide a historical precedent for using music as a pedagogical tool for math-
ematics and the sciences. The paper then discusses the logic and usefulness of
using shared vocabularies to study the relationships between diverse disciplines
such as music, mathematics, and the sciences. Following this discussion, several
examples are given to demonstrate how musical models can be effectively used
in teaching multiple areas of modern mathematics and science.

The computational music curriculum is then discussed from a design perspec-
tive. This discussion is followed by a case study that provides details on how the
computational music curriculum is implemented at Hood College. The paper
concludes with observations and thoughts regarding the resources required to
implement this curriculum, how the curriculum might be put in place at other
institutions, and how computational music fits in with mathematics-based inter-
disciplinary trends such as Science, Technology, Engineering and Mathematics
(STEM), as well as Human-Centered Computing (HCC).

2 The Laws of Musical Motion

Long before gravity and inertia were defined, the scientists, mathematicians, and
philosophers of ancient Greece used the vocabulary of music to discuss the bal-
ance and beauty observed in the motion of the sun, moon, and stars. Pythagoras
used the term celestial harmony to describe this motion. For Pythagoras, Plato,
and others, an understanding of the universe was achieved through the study
of the quadrivium: mathematics, geometry, music, and astronomy. The role of
music in the quadrivium was the study of the evolution of numbers over time [2].

The Greek notion of celestial harmony, survived well into the seventeenth cen-
tury, as evidenced by the publication of Johannes Kepler’s “Harmonice Mundi”
in 1619. In this text, Kepler uses his research and discoveries in astronomy,
to support the theory that motions of musical voices, and the motions of the
heavens, both abide by the same laws [5].

Later that century, composer, organist, and music theorist Johann Joseph
Fux, defined in his text “Gradus ad Parnassum,” the mathematical foundations
of musical elements, and the laws governing musical counterpoint; which is the
study of musical voices in motion [1]. Fux discussed musical counterpoint in
a way that recalled the concepts of Harmonice Mundi and celestial motion by
describing musical lines as voices that move through musical space, much like
the way objects move through physical space.

Studying music as both an art and a science, has allowed intellectuals
throughout history, with a framework, or pedagogical tool set, for studying and
learning about elements and forces that may have been at their time, out of
reach.

Bringing Harmony to Computational Science Pedagogy 663

3 Shared Vocabularies

Shared vocabularies allow the vocabulary from one field of study, to describe
the properties of another field of study. This is what allowed Pythagoras and
Plato to study astronomy and physics using the vocabulary of music theory. It
also allows us today to discuss and understand much of music theory using the
vocabularies of science.

The disciplines of computer programming and music composition demon-
strate how instructors can use shared vocabularies as teaching tools. Melodies
for example, are described by the Harvard Dictionary of Music as “successions
of pitch-plus-duration values.” This concept is easily described to a student of
computer science as an array of pitch-value objects.

To continue this example, instructors might describe musical counterpoint as
the execution of two or more well-constructed arrays of pitch-value objects that
are cycled through on separate, but concurrent threads.

The object of drawing parallels between programming and music composi-
tion in this way is not to circumnavigate the study of traditional music theory.
Instead, the object of drawing these parallels is to use musical concepts such
as melodies and counterpoint to help computer science students gain a deeper
understanding of computer programming concepts such as arrays, loops, struc-
tures and classes, and concurrency and multi-threading.

4 Pedagogical Areas

This section provides concrete examples of how musical components and con-
structs are used a pedagogical tools to approach concepts of computation, algo-
rithm design, artificial intelligence, and kinetics.

4.1 Algorithm Design

In most algorithmic compositions, the output of the program is different each
time, but it is still recognizable from hearing to hearing. In the following code
sample, complex musical phrases are created algorithmically from a single base
pitch and an array of pitch changing values. The program derives rhythmic
components by dividing a predetermined time interval (one second for example)
into a variable number of parts. This code sample was written in the ChucK
music programming language [6].

// Clarinet Solo
36 => int rootPitch;
[0,2,4,5,6,7,9,11] @=> int myPitches[];

void writeMusic(int beats, int pitches[])
// PRE: The number of measures in the composition is predefined
// FUNCTION: Determines notes and pitches for the current measure

664 R. Roth and W. Pierce

// POST: The computer has composed and played one measure
{

Math.random2(1,4) => int octaves; // Determine octave
Math.random2f(-1.0,1.0) => s_pan.pan; // sound placement

for(0 => int j; j < beats; j++){ // generate music
Std.mtof((rootPitch + (12 * octaves))
+ pitches[j]) => s.freq;
MAX / (ROUNDTRIP / beats) => float stepsize;
// MAX 0.9, ROUNDTRIP 200

for (0 => float i; i < MAX; stepsize +=> i){
i => s.gain;
tempo => now;

}
for (s.gain() => float i; i > 0; stepsize -=> i){

i => s.gain;
tempo => now;

}}}

4.2 Artificial Creativity

In this example, two arrays are used to store separate parts of a repeated drum
pattern. The main function (not shown) uses concurrent threads, thus creating
a complete pattern at run time. The program incorporates a simple algorithm
that makes decisions on how to keep the pattern interesting over time.

// Drum Pattern
0.0625 => float VARIETY; // Variety Factor

// SETUP PATTERN:
// Measures are divided into four groups of 16th notes.
// 1 and 2 are drum beats, 0 is silence
[1,0,0,0, 2,0,0,2, 1,0,1,0, 2,0,0,0] @=> int kickSnareBeats[];
[2,0,1,0, 2,0,1,0, 2,0,1,0, 2,0,3,0] @=> int highHatBeats[];

// ADD VARIETY: Determine the likelihood array values will change
[0,1,0,2, 0,2,0,3, 0,3,0,4, 0,4,0,5] @=> int varietyLevel

for(0 => int b_ctr; b_ctr < bNum; b_ctr++){ //Play 1 measure
beats[b_ctr] => theBeat; // Get either a drum beat or silence
vBeat(b_ctr, theBeat) => theBeat; // Maybe change the beat setting
if (theBeat == 1)
0 => k1.pos;
}

Bringing Harmony to Computational Science Pedagogy 665

4.3 Geometry in Motion

Figures one through four show two excerpts from “Gradus ad Parnassum,”
Johann Fux’s 1725 pedagogical treatise on musical counterpoint. In these fig-
ures, pitches are shown first as notes in music notation, and second as frequency
in Hz on a two-dimensional graph. It may be tempting to look at this set of
pitches mathematically and conclude that there are two entities; one is a sound
whose fundamental vibration frequency is x, and another sound whose funda-
mental vibration frequency is y. With this view one can observe that there is a
distance in frequency space of y – x. This is shown in Fig. 1.

Fig. 1. The image on the left is an excerpt from Fux’s Gradus ad Parnassum showing
two pitches on a musical staff. The image on the right shows the fundamental frequency
in Hz of the two pitches on a two-dimensional graph.

If however, an alternate view is taken, and one considers that a single sound
source, or voice in musical terms, started at point x, and then moved over time,
and in frequency space, to point y, then we can observe a direct parallel to
kinetics; the study of geometry in motion. This is shown in Fig. 2.

Fig. 2. The same two pitches from figure one, shown in Hz on a two-dimensional graph.

If we now consider a sound object consisting of several voices (v1, v2,...,v6)
we can map the movement of an object in two dimensional space, to music as
shown in Fig. 3.

666 R. Roth and W. Pierce

Fig. 3. In this example, each leg of the tripod on the left, is represented on the right by
two voices in a musical mapping. A variation on Bresenham’s circle drawing algorithm
is used to rotate the tripod and to generate musical information.

Lastly if we add amplitude (loudness) as a third dimension as shown in Fig. 4,
we can study properties of motion and force in a way that may by seen and heard.

Fig. 4. In this example, the elegance of motion is translated to music using frequency
(pitch), and amplitude (loudness) to create three dimensions for sound objects to travel
through. A variety of three-dimensional motion algorithms drive the movement of the
cube, and generate the musical content [7].

5 A Proposed Curriculum for Computational Music

To facilitate the discussion of music and computational science, the term com-
putational music is introduced. This term is used in this paper to encompass the
following:

– Discussions of musical properties such as harmony, melodic movement, con-
sonance, and dissonance, in purely scientific terms.

– Creation of musical models as approachable pedagogical tools for creating
models related to science and mathematics.

Bringing Harmony to Computational Science Pedagogy 667

5.1 Modifying Existing Programs

A problem many colleges and universities face, is the challenge of implementing
new elements such as computational music courses into firmly established math
and science programs.

One possible way to do this might be to design a single elective course in
Computational Music where students complete projects that incorporate math-
ematical elements such as numeric patterns or evolving functions. Other projects
might explore the creation of computer models that emulate musical instruments
or natural sounds. This solution has been implemented successfully by many col-
leges and universities. A problem with this approach, however, is the possible
novelty or survey course perception that has no path forward for interested
students.

Another possible solution is to add topics such as music programming and
music computation to graduate and advanced undergraduate courses in topics
such as artificial intelligence or robotics. This approach however, provides no
preparatory support in music programming, nor the scientific and mathematical
properties of music. Students might therefore be limited in what they could
accomplish in a semester, and the time spent teaching the musical material,
might deter from the main objectives of the course.

The solution proposed in this paper is to offer a small but broad curriculum of
computational music courses that allow students from different disciplines, and
different stages of their education, to find courses that align with their objectives
and interests.

5.2 Design Principles

This proposed curriculum is built on three design principles. Principle one: any
course in the curriculum can serve as a possible entry point. Principle two:
students may complete courses in an order that suits their interests and goals
provided that prerequisites are met. Principle three: allowable prerequisites for
advanced courses include other courses in the curriculum, and related courses
from other disciplines. This flexible approach makes the curriculum available
and accessible to the largest possible number of students.

Principle one allows for students to enter the computational music curriculum
in a way that aligns with their academic year, or their major. First-year or
second-year undergraduate students for example, may choose a survey course
with no prerequisite as their entry point. Survey courses for this curriculum
might include an introductory course in computer music, or a course on the
scientific properties of music.

Third and fourth-year undergraduates, as well as graduate students, may
choose a more advanced course that does have prerequisites for their entry point.
More advanced courses in this curriculum might include a course in digital signal
processing, or a course in music programming.

Principle two is concerned with the course or courses a student may take
after completing their entry-point course. Students that started with a survey

668 R. Roth and W. Pierce

course now have the option of taking another survey course, or moving to a more
advanced course. Students that started with a more advanced course may take
another advanced course, a survey course, or move on to a specialty course.

Principle three allows students to work their way up to advanced or specialty
courses within the curriculum, or to take these courses using prerequisites earned
from other disciplines. Specialty courses in a computational music curriculum
might have titles such as Music and Sound for x, where x might be an area in
which the college or university already specializes, such as Robotics, Cognitive
Psychology, or Algorithm Design.

An example of an implementation of these three design principles in a com-
putational music curriculum follows in the next section.

6 A Case Study: Hood College, Frederick Maryland

6.1 Hypotheses

Computational music began in the Computer Science Department at Hood Col-
lege, a small traditionally liberal arts college in Frederick Maryland, with a
single summer-session course entitled Musical Computing. The starting hypoth-
esis behind this course was that the cognitive, creative, and structural processes
involved in both musical composition, and computer programming, are similar
enough that skilled computer scientists, with or without musical backgrounds,
can learn to use programming languages to compose interesting, expressive, and
sophisticated musical works. The overall structure of the course is shown in
Fig. 5.

This single course offering expanded into a six course curriculum designed
to use musical models to assist in the pedagogy of computational science, and
computer science. As this curriculum evolved, the original hypothesis expanded
to the following: The links between music, mathematics, and several branches
of science are strong enough that skilled computational scientists can create
musical models that are able to be designed using vocabularies of mathematics
and science.

Table 1 lists the course titles and prerequisites for the Hood College compu-
tational music curriculum. The following sections contain descriptions of each
course. The descriptions include course overviews, special topics, and explana-
tions of how the courses support computational science pedagogy.

6.2 The Science of Music

This is a course that approaches all aspects of music using the vocabularies of
science, mathematics, and computational models. Specific topics include: the
physics of sound, auditory perception, derivation of intervals and scales, conso-
nance and dissonance, and structures used in music composition. The value of
this course in computational science pedagogy lies in its emphasis on physical
properties. Furthermore, several lectures and class projects focus specifically on
computational model creation. There are no prerequisites for this course.

Bringing Harmony to Computational Science Pedagogy 669

Fig. 5. A basic course structure in the music computation curriculum.

Table 1. Hood College curriculum for computational music.

Course Title Prerequisite

The Science of Music None

Introduction to Computer
Music

None

Digital Signal Processing The Science of Music, Intro. to Computer
Music, or an introductory course in electrical
engineering

Musical Computing Intro. to Computer Music, or a previous course
in a modern object-oriented programming
language

Algorithms and Music
Composition

Musical Computing, or a Previous course in
Data Structures and Algorithms

Music and Sound in
Embedded Systems and
Robotics

Musical Computing, Algorithms and Music,
Composition, or a previous course in embedded
systems programming, or robotics

6.3 Introduction to Computer Music

This course is an introduction to the use of computers for creating, recording
and editing musical information. Specific topics include: music history leading to
the advent of computer music, physical properties of sound, human perception of
sound, and current trends in the musical applications of computers. Pedagogical

670 R. Roth and W. Pierce

objectives related to computational science include studies in computational
thinking and algorithmic music. There are no prerequisites for this course.

6.4 Digital Signal Processing (DSP)

This course is concerned with the representation, transformation and manipu-
lation of signals using computer technology. Specific topics include DSP theory,
methods, and algorithms. This course supports computational science pedagogy
in that the concepts, methods, and algorithms discussed in this class are directly
related to digital representations of sound, speech, and music; and are used in the
creation of any acoustic model. Allowable prerequisites for this course are The
Science of Music, Introduction to Computer Music, or an introductory course in
electrical engineering.

6.5 Musical Computing

This is a course in the musical applications of computer programming and com-
putational science. This course in many ways resembles the Introduction to Com-
puter Music course described earlier. Musical Computing however, assumes a
higher level of skill and experience in programming and mathematics. In this
course, students use the structural elements of computer programming such as
arrays, loops, classes, objects, and multi-threading, to compose music and design
sounds. Students enhance their coding skills by writing programs that produce
sophisticated musical compositions. This course supports computational science
pedagogy through programming projects that model and support human musical
composition processes. Allowable prerequisites for this course are Introduction to
Computer Music, or a previous course in a modern object-oriented programming
language.

6.6 Algorithms and Music Composition

This is a course in composing music using algorithms and computational mod-
els. Specific topics include: algorithmically processing data for music creation,
creating algorithms that write music based on minimal input, and live algorith-
mic music performance. Computational science pedagogy is supported in this
class through the study of creative algorithm design. Allowable prerequisites for
this course are Musical Computing, or a previous course in data structures and
algorithms.

6.7 Music and Sound for Embedded Systems

This is a course in the musical and sonic applications of embedded systems
programming. In this course, students write programs that run on stand-alone
microcomputers such as those found on Arduino and Raspberry Pi development

Bringing Harmony to Computational Science Pedagogy 671

boards. Specific topics include: efficient coding, multi-threading, use of actua-
tors and sensors to generate and respond to sound, processing of sound informa-
tion, and robotic music performance. This course supports computational sci-
ence pedagogy through lectures and student projects relating to the processing
of sound information. Allowable prerequisites for this course are Musical Com-
puting, Algorithms and Music Composition, or a previous course in embedded
systems programming or robotics.

7 Implementing a Computational Music Curriculum

7.1 Required Resources and Expenses

Realizing the pedagogical benefits of a computational music curriculum can start
with little or no resources beyond what a typical college or university already
has. These resources include computers, access to freely available software tools,
and a standard classroom audio system.

As programs mature, institutions may focus on, or specialize in a specific
area. At this point, additional expenses may be incurred. For example, consider
a school wishing to create a psychoacoustic modeling lab. This type of model-
ing and experimentation uses meticulously created sound samples. Researchers
accomplish this either by recording natural sounds, or by synthesizing them on
a computer. The sound creation process, and subsequent playback both require
that a sound’s full frequency spectrum is preserved. This normally requires an
acoustically treated environment that is equipped with sensitive and high quality
microphones, amplifiers and speakers that can preserve a sound’s full frequency
spectrum. These expenses can be preventative in early stages, but may become
possible as a program grows.

7.2 Textbooks

There are excellent texts on this subject, including Elaine Chew’s text, “Math-
ematical and Computational Modeling of Tonality [3].” There is also an abun-
dance of scholarly research in journals and conference proceedings that profes-
sors can incorporate into these courses. Nominal expenses may be incurred in
subscribing to the societies and organizations that provide this information.

7.3 Faculty

Teaching this curriculum requires faculty who can discuss sound and music using
the following vocabularies: traditional music theory, particularly the principles of
harmony, and music composition; the sciences, particularly mathematics, engi-
neering, and physics; as well as computer science and auditory perception.

In the Hood College curriculum, the courses are taught by professors who
have fluency in music and one or more of the scientific vocabularies listed. Cross-
disciplinary approaches however, are also used at Hood College and might be an
effective alternative for many institutions.

672 R. Roth and W. Pierce

8 Conclusion

The rapid growth of the computational music curriculum in the Hood College
case study are promising indicators that a curriculum such as the one outlined
in this paper, may resonate with prospective students who view computation,
science and mathematics as creative endeavors. Due to the success of the Hood
College case study, the authors conclude that computational music, if imple-
mented as a sub-curriculum in a larger program, is an effective and motivational
tool for computational science pedagogy.

There are several trends in higher education that support this conclusion,
including the growing number of Ph.D programs in Human-Centered Computing
(HCC) such as those at Clemson University and Georgia Tech. Evidence that
computational music can play a pivotal role in HCC, is provided by Nicu Sebe
in his chapter on Human-Centered Computing in the “Handbook of Ambient
Intelligence and Smart Environments” [8]. In this chapter, Professor Sebe states
“Perhaps one of the most exciting application areas of HCC is art.” To support
this statement, Sebe points to an example where computing is used to translate
human gestures to music.

Other trends where computational music can play a key role are STEM and
STREAM. STREAM is an extension of STEM that includes A for the arts,
and R which, depending on the context, can stand for reading and writing, or
religion. The authors of this paper have concluded from the case study presented
in this paper, that the study of computational music not only aligns with the
objectives of STREAM initiatives, but maintains the scientific and mathematical
foundations on which STEM is built.

In closing, perhaps the primary reasons why computational music brings
harmony to computational science pedagogy, are the effectiveness with which one
can define musical properties using the vocabularies of science and mathematics;
and the fact that music has been a part of scientific and mathematical analysis
since ancient times.

Acknowledgement. We thank the Hood College Graduate School and our corre-
sponding departments for their support. We are indebted to our students who embraced
this curriculum and worked with us along the way while we rethought, re-planned, and
refined it. Sound files that accompany this paper, are available from the Hood College
Computer Science Department.

References

1. Apel, W.: Harvard Dictionary of Music. Harvard University Press, Cambridge (1950)
2. Burkholder, J., Peter, G., Jay, D., Palisca, C.V.: A History of Western Music, 9th

edn. W.W. Norton & Company, New York (1999)
3. Chew, E.: Mathematical and Computational Modeling of Tonality. ISORMS, vol.

204. Springer, Boston, MA (2014). https://doi.org/10.1007/978-1-4614-9475-1
4. Chew, E.: Slicing it all ways: mathematical models for tonal induction, approxima-

tion, and segmentation using the spiral array. INFORMS J. Comput. 18(3), 305–320
(2006)

https://doi.org/10.1007/978-1-4614-9475-1

Bringing Harmony to Computational Science Pedagogy 673

5. Gingras, B.: Johannes Kepler’s Harmonice Mundi: a “scientific” version of the har-
mony of the spheres. J. Roy. Astron. Soc. Can. 97(5), 228 (2003)

6. Kapur, A., Cook, P., Salazar, S., Wang, G.: Programming for Musicians and Digital
Artists: Creating Music with ChucK. Manning Publications, New York (2014)

7. Roth, R.: Music and animation toolkit: modules for multimedia composition. Com-
put. Math. Appl. 32(1), 137–144 (1996)

8. Sebe, N.: Human-centered computing. In: Nakashima, H., Aghajan, H., Augusto,
J.C. (eds.) Handbook of Ambient Intelligence and Smart Environments. Springer,
Boston (2010). https://doi.org/10.1007/978-0-387-93808-0

https://doi.org/10.1007/978-0-387-93808-0

	Bringing Harmony to Computational Science Pedagogy
	1 Introduction
	2 The Laws of Musical Motion
	3 Shared Vocabularies
	4 Pedagogical Areas
	4.1 Algorithm Design
	4.2 Artificial Creativity
	4.3 Geometry in Motion

	5 A Proposed Curriculum for Computational Music
	5.1 Modifying Existing Programs
	5.2 Design Principles

	6 A Case Study: Hood College, Frederick Maryland
	6.1 Hypotheses
	6.2 The Science of Music
	6.3 Introduction to Computer Music
	6.4 Digital Signal Processing (DSP)
	6.5 Musical Computing
	6.6 Algorithms and Music Composition
	6.7 Music and Sound for Embedded Systems

	7 Implementing a Computational Music Curriculum
	7.1 Required Resources and Expenses
	7.2 Textbooks
	7.3 Faculty

	8 Conclusion
	References

