Lecture Notes in Electrical Engineering

Volume 679

Series Editors

Leopoldo Angrisani, Department of Electrical and Information Technologies Engineering, University of Napoli Federico II, Naples, Italy

Marco Arteaga, Departament de Control y Robótica, Universidad Nacional Autónoma de México, Coyoacán, Mexico

Bijaya Ketan Panigrahi, Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, India Samarjit Chakraborty, Fakultät für Elektrotechnik und Informationstechnik, TU München, Munich, Germany Jiming Chen, Zhejiang University, Hangzhou, Zhejiang, China

Shanben Chen, Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Tan Kay Chen, Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore

Rüdiger Dillmann, Humanoids and Intelligent Systems Laboratory, Karlsruhe Institute for Technology,

Karlsruhe, Germany Haibin Duan, Beijing University of Aeronautics and Astronautics, Beijing, China

Gianluigi Ferrari, Università di Parma, Parma, Italy

Manuel Ferre, Centre for Automation and Robotics CAR (UPM-CSIC), Universidad Politécnica de Madrid, Madrid, Spain

Sandra Hirche, Department of Electrical Engineering and Information Science, Technische Universität München, Munich, Germany

Faryar Jabbari, Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA

Limin Jia, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Alaa Khamis, German University in Egypt El Tagamoa El Khames, New Cairo City, Egypt

Torsten Kroeger, Stanford University, Stanford, CA, USA

Qilian Liang, Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, USA Ferran Martín, Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Tan Cher Ming, College of Engineering, Nanyang Technological University, Singapore, Singapore Wolfgang Minker, Institute of Information Technology, University of Ulm, Ulm, Germany

Pradeep Misra, Department of Electrical Engineering, Wright State University, Dayton, OH, USA

Sebastian Möller, Quality and Usability Laboratory, TU Berlin, Berlin, Germany

Subhas Mukhopadhyay, School of Engineering & Advanced Technology, Massey University,

Palmerston North, Manawatu-Wanganui, New Zealand

Cun-Zheng Ning, Electrical Engineering, Arizona State University, Tempe, AZ, USA

Toyoaki Nishida, Graduate School of Informatics, Kyoto University, Kyoto, Japan

Federica Pascucci, Dipartimento di Ingegneria, Università degli Studi "Roma Tre", Rome, Italy

Yong Qin, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China Gan Woon Seng, School of Electrical & Electronic Engineering, Nanyang Technological University,

Singapore, Singapore

Joachim Speidel, Institute of Telecommunications, Universität Stuttgart, Stuttgart, Germany

Germano Veiga, Campus da FEUP, INESC Porto, Porto, Portugal

Haitao Wu, Academy of Opto-electronics, Chinese Academy of Sciences, Beijing, China

Junjie James Zhang, Charlotte, NC, USA

The book series *Lecture Notes in Electrical Engineering* (LNEE) publishes the latest developments in Electrical Engineering—quickly, informally and in high quality. While original research reported in proceedings and monographs has traditionally formed the core of LNEE, we also encourage authors to submit books devoted to supporting student education and professional training in the various fields and applications areas of electrical engineering. The series cover classical and emerging topics concerning:

- Communication Engineering, Information Theory and Networks
- Electronics Engineering and Microelectronics
- Signal, Image and Speech Processing
- Wireless and Mobile Communication
- Circuits and Systems
- Energy Systems, Power Electronics and Electrical Machines
- Electro-optical Engineering
- Instrumentation Engineering
- Avionics Engineering
- Control Systems
- Internet-of-Things and Cybersecurity
- Biomedical Devices, MEMS and NEMS

For general information about this book series, comments or suggestions, please contact leontina.dicecco@springer.com.

To submit a proposal or request further information, please contact the Publishing Editor in your country:

China

Jasmine Dou, Associate Editor (jasmine.dou@springer.com)

India, Japan, Rest of Asia

Swati Meherishi, Executive Editor (Swati.Meherishi@springer.com)

Southeast Asia, Australia, New Zealand

Ramesh Nath Premnath, Editor (ramesh.premnath@springernature.com)

USA, Canada:

Michael Luby, Senior Editor (michael.luby@springer.com)

All other Countries:

Leontina Di Cecco, Senior Editor (leontina.dicecco@springer.com)

** Indexing: The books of this series are submitted to ISI Proceedings, EI-Compendex, SCOPUS, MetaPress, Web of Science and Springerlink **

More information about this series at http://www.springer.com/series/7818

Millimeter-wave Integrated Technologies in the Era of the Fourth Industrial Revolution

Wynand Lambrechts University of Johannesburg Johannesburg, Gauteng, South Africa Saurabh Sinha University of Johannesburg Johannesburg, Gauteng, South Africa

ISSN 1876-1100 ISSN 1876-1119 (electronic) Lecture Notes in Electrical Engineering ISBN 978-3-030-50471-7 ISBN 978-3-030-50472-4 (eBook) https://doi.org/10.1007/978-3-030-50472-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The Fourth Industrial Revolution (Industry 4.0) will take advantage of ubiquitous connectivity to grow economies. There is a vast difference between the telecommunications infrastructure of developed countries and that of emerging markets; emerging markets often lack broadband Internet infrastructure. A sustainable solution is required to bridge the digital divide and enable emerging markets to participate in Industry 4.0. Such a solution, however, has numerous facets and requires introducing technology that is sustainable and future-proof and ensures scalable, feasible, and affordable access. Unfortunately, globally, the cost of accessing broadband Internet in unequal markets remains high, with current solutions reaching their thresholds in terms of available bandwidth on the mass consumer level.

Spectrum demand and allocation in emerging markets often lag behind what is happening in developed countries and expensive to (unfairly) maximize profit for local regulators and frequently for local governments as well. Arguments typically refer to the limited amount of available spectrum, which is true of current-generation networks. However, millimeter-wave (mm-Wave) frequencies (30—300 GHz) offer unprecedented amounts of bandwidth for wireless broadband connectivity. Built on the premise of mm-wave connectivity is the fifth-generation (5G) networks, a clear contender to spearhead connectivity for Industry 4.0, also in emerging markets.

This book focuses on researching the capabilities of mm-wave-based 5G networks, specifically for emerging markets. The technology is researched from several perspectives, including technological advantages and disadvantages, as well as its unique characteristics to offer scalable and affordable connectivity to grow emerging economies. In the current information age, bringing connectivity to as many people as possible (ideally everyone) boosts socioeconomic benefits through innovation in science and technology, with the common goal of bringing about positive change in the lives of individuals. The importance of connectivity has recently been further emphasized with the global pandemic, COVID-19, forcing millions of people to adopt an online approach to conduct business and communicate with one another.

vi Preface

The research presented in this book is structured to investigate not only the economic benefits of mm-wave and 5G. It also gives a strong theoretical background on the underlying technologies required to realize transmitters and receivers that are capable of operating at extremely high frequencies. The technical contribution of this book is in its presentation of electronic subsystem analysis and review of high-frequency active circuits that are capable of operating at mm-wave frequencies. These subsystems include frequency mixers, oscillators, low-noise amplifiers, and power amplifiers. To implement feasible future-generation technologies and ensure future-proof infrastructure that is easily expandable, it is of the utmost importance to understand the principles that influence the integrity of transmitted information. This book researches the importance of identifying, describing, and analyzing technology from a purely technological standpoint, but equally so, acknowledges and investigates the challenges in introducing such technologies into emerging markets.

A detailed investigation of techniques to introduce mm-wave 5G networks to emerging markets is presented in the latter part of this book. As the digital service sector evolves, certain key characteristics remain universal, such as adequate digital infrastructure, technology-literate end users, innovative skilled entrepreneurs, and business environments that encourage creative thinking. A core characteristic and major advantage of 5G are its potentially dynamic pricing and low dependence on the infrastructure of previous-generation wireless networks. This book aims to investigate these features thoroughly and provide potential solutions to introduce 5G, possibly in a staggered approach, to emerging markets. In emerging markets, the complexity and challenges of distributing critical products and services in significantly unequal markets are much higher. Governments have been forced to innovate policies and strategies to achieve the successful distribution of products and services to poor households and rural areas. 5G is a future-proof and sustainable technology with numerous advantages not associated with previous-generation mobile technologies that offer governments and local entrepreneurs a means to innovate modern policies and strategies to bridge the digital divide.

The primary audience of this book is learners in the fields of engineering and information technology who want to identify and act upon ways of advancing connectivity in emerging markets and rural areas by bringing high-bandwidth, low-latency mobile connectivity to individuals through future-proof technologies. The audience is presented with an introduction to the role of mm-wave and 5G in Industry 4.0, followed by a theoretical background on mm-wave circuit design, and finally, an in-depth investigation into potential solutions to prepare emerging markets to participate in Industry 4.0 through mm-wave broadband connectivity.

Preface vii

Acknowledging the Technical Peer-Review Process

The authors would like to recognize the support of the numerous technical reviewers, as well as language and graphics editors, who have participated in the development of this research contribution. We value the system of scholarly peer review and the perspective that this adds to the production of research text that augments the body of scientific knowledge.

Johannesburg, South Africa

Wynand Lambrechts Saurabh Sinha

Contents

ı	The I	Role of I	Villimeter-Wave and 5G in the Fourth Industrial	
	Revo	lution		1
	1.1	Introdu	ction	1
	1.2	Commu	unication and Information Theory	2
	1.3		olution of Communication	6
		1.3.1	Ancient Communication Evolution	6
		1.3.2	Evolution of Modern Communication	7
	1.4	Fixed V	Wireless Access Versus Mobile Broadband	8
	1.5	mm-Wa	ave: An Overview 1	0
		1.5.1	mm-Wave Frequency Principles	0
		1.5.2		1
		1.5.3	mm-Wave Integrated Technologies	13
		1.5.4	5G Technical Specifications and Architecture	5
		1.5.5	Service Layer 1	5
		1.5.6	Management and Orchestration Layer	5
		1.5.7	Control Layer	5
		1.5.8	Multi-domain Network Operating System Facilities 1	6
		1.5.9	Data Layer	6
	1.6	5G Nev	w Radio	6
	1.7	5G Net	work Slicing 1	8
	1.8	Aggreg	ation in 5G	20
		1.8.1	Data Aggregation	20
		1.8.2	Network Traffic Aggregation	23
	1.9	5G Spe	ectrum Considerations	23
		1.9.1	mm-Wave Massive IoT Systems	25
	1.10	5G Bus	siness Cases and Investor Appetite	27
		1.10.1	The South African 5G Milieu	30
		1.10.2	The North American 5G Milieu	31

x Contents

		1.10.3 The 5G Milieu in BRICS Nations				
		(Excluding South Africa)				
		1.10.4 The European 5G Milieu				
	1.11	Costing Approaches in Unequal Markets				
	1.12	Conclusion				
	Appe	ndix 1				
		ndix 2				
		ndix 3				
		ndix 4				
		rences				
2		nd Millimeter-Wave Key Technologies for Emerging Markets				
	to Pa	rticipate in the Fourth Industrial Revolution 49				
	2.1	Introduction				
	2.2	5G Network Slicing				
	2.3	5G New Radio Massive MIMO				
	2.4	Beamforming				
	2.5	Small Cell Base Stations				
	2.6	Other Key Enabling Technologies of 5G and mm-Wave 65				
		2.6.1 Network Ultra-densification 66				
		2.6.2 Mobile Cloud Computing 67				
		2.6.3 Scalable Internet-of-Things				
		2.6.4 Device-to-Device Connectivity with High Mobility 69				
		2.6.5 Green Communications (Energy Efficiency) 71				
		2.6.6 New Radio Access Techniques				
	2.7	Conclusion				
	Refer	References				
3	Tron	sceivers for the Fourth Industrial Revolution.				
3		meter-Wave Frequency Mixers and Oscillators				
	3.1	Introduction				
	3.1	Traditional Transceiver Architecture Considerations				
	3.2	3.2.1 Traditional Receivers				
		3.2.2 Traditional Transmitters				
	3.3	Transceiver Architecture Considerations in mm-Wave				
	3.3	3.3.1 mm-Wave 5G Receivers				
		3.3.2 mm-Wave 5G Transmitters				
	3.4					
	3.5	1 •				
	3.6					
	3.7					
	3.1	Mixer Performance Metrics				
		3.7.1 Conversion Loss				
		3.7.2 Isolation				
		a ca carret compression ur				

Contents xi

		3.7.4	Multi-tone Intermodulation Distortion	96	
		3.7.5	Noise Figure	100	
		3.7.6	Additional Performance Metrics	103	
	3.8	CMOS	/BiCMOS Mixers for 5G Communication	103	
		3.8.1	Down-Conversion Mixers	103	
		3.8.2	Up-Conversion Mixers	105	
	3.9	Integra	ted mm-Wave Oscillators	108	
		3.9.1	Oscillator Phase Noise	108	
		3.9.2	Oscillator Topologies	109	
		3.9.3	CMOS mm-Wave Oscillators for 5G Systems	113	
	3.10	Conclu	ısion	114	
	Appe	ndix 1 .		115	
	Refer	ences		120	
4	Tron	cooivorc	for the Fourth Industrial Revolution.		
7			Wave Low-Noise Amplifiers and Power Amplifiers	123	
	4.1		action	123	
	4.2		indamentals of LNAs	125	
	4.3		wave LNA Performance Metrics	125	
	4.4		Design Considerations	129	
	4.5		Topologies Applicable to 5G mm-Wave	12)	
	1 & 11		unication	133	
		4.5.1	LNA Topologies: The Common-Gate	134	
		4.5.2	LNA Topologies: The Common-Source	137	
		4.5.3	LNA Topologies: The Common-Source	137	
		T.J.J	with Inductive Source Degeneration	140	
		4.5.4	LNA Topologies: The Cascode	142	
		4.5.5	LNA Topologies: Differential	144	
	4.6		Copologies: Comparison and Tradeoffs	146	
	1.0	4.6.1	Comparison of LNA Topologies	146	
		4.6.2	LNA Transistors: FET Versus BJT	147	
	4.7		indamentals of PAs	149	
	4.8		licrowave PA Performance Metrics		
		4.8.1	Output Power	151	
		4.8.2	Power Gain	152	
		4.8.3	Power-Added Efficiency	152	
		4.8.4	Linearity	152	
	4.9		pologies	153	
		4.9.1	Envelope Elimination and Restoration	155	
		4.9.2	Linear Amplification Using Non-linear Components	156	
		4.9.3	Doherty RF PA	157	
		4.9.4	Distributed RF PA	158	
	4.10		wave PA Design Considerations	159	
			sion	160	

xii Contents

	Appe	ppendix 1		
Appendix 2				160
	Refer	ences		162
5	Prepa	aring Em	nerging Markets to Participate in a New Era	
			ation. A Technical and Economic Perspective	165
	5.1		ction	165
	5.2		onomic Potential of 5G and mm-Wave	168
	5.3		le of 5G on Productivity and Economic Growth	172
	5.4			
		and mm	n-Wave Networks	176
	5.5		nic and Pricing Models of 5G	178
		5.5.1	Non-cooperative Game Theory	178
		5.5.2	Stackelberg Game	179
		5.5.3	Auction	181
		5.5.4	NUM-Based Pricing	182
		5.5.5	Paris Metro Pricing Model	183
	5.6	5G Reso	earch Challenges	184
	5.7	Techno-	-economic Perspective on 5G and mm-Wave	188
	5.8	Internet	Affordability	196
	5.9 Competition and Productivity in Unequal Markets		ition and Productivity in Unequal Markets	198
		5.9.1	Competition and Market Power	199
		5.9.2	Inequality and Productivity	202
		5.9.3	Sustainable Policies in an Unequal Market	205
	5.10	Internet	Pitfalls in Emerging Markets	207
		5.10.1	Divergence Between Consumer Needs and Business	
			Opportunity	208
		5.10.2	Data Monetization	208
		5.10.3	Personal Data in Exchange for Free Digital Services	208
		5.10.4	Net Neutrality	209
		5.10.5	Free Internet	211
	5.11		sion	212
	Refer	ences		213
6 5G and Millimo			neter-Wave Broadband Internet Costing	
	in Un	_	[arkets	215
	6.1		ction	215
	6.2	_	of Medicine in Emerging Markets	216
		6.2.1	Access to Essential Medicines	217
		6.2.2	Rational Selection and Use	217
		6.2.3	Affordable Pricing	219
		6.2.4	Sustainable Financing	220
		6.2.5	Reliability	221

Contents xiii

6.3	Pricing	of Energy in Emerging Markets	224
	6.3.1	Accessibility	224
	6.3.2	Availability	225
	6.3.3	Acceptability	226
	6.3.4	Energy Costing Strategies in Emerging Markets	226
	6.3.5	Cost-of-Service Ratemaking	229
	6.3.6	Marginal Cost Pricing	230
	6.3.7	Opportunity Cost Pricing	231
	6.3.8	Market Pricing	233
	6.3.9	The Substitution Effect	234
	6.3.10	Knock-on Effects	234
	6.3.11	Larger Effect on the Already Wealthy	235
	6.3.12	Removal of Subsidies	235
	6.3.13	Economies of Scale	236
6.4	Pricing	of Petroleum in Emerging Markets	236
	6.4.1	Hedging	240
	6.4.2	Import Discounts and Bulk Purchasing	241
	6.4.3	Strengthening the Infrastructure	242
	6.4.4	Promoting Price Competition	242
6.5	Pricing	of Water in Emerging Markets	245
6.6	Pricing	of Broadband in Emerging Markets	257
	6.6.1	From Dial-up to Always-on	259
	6.6.2	New Ways of Monetizing Always-on Broadband	
		Internet Traffic	263
6.7	Conclu	sion	269
Refe	rences		270

About the Authors

Dr. Wynand Lambrechts, SMIEEE, obtained his B.Eng., M.Eng., and Ph.D. degrees in electronic engineering from the University of Pretoria (UP), South Africa. He achieved his M.Eng. with distinction. He has authored two publications in peer-reviewed journals and has presented at various local and international conferences. Wynand is the lead author on four books; in the fields on sustainable energy and in microelectronic engineering, published by international publishers. He has co-authored four contributing chapters in other books in the fields of green energy and technology and the Fourth Industrial Revolution. He previously held a position as an electronic engineer at Denel Dynamics, a state-owned company in South Africa. He is currently employed by SAAB Grintek Defence (SGD) and is also serving as a part-time research associate at the University of Johannesburg (UJ), South Africa.

Prof. Saurabh Sinha, Ph.D.(Eng), Pr. Eng., SMIEEE, FSAIEE, FSAAE, MASSAf. Prof. Sinha obtained his B. Eng. (with distinction), M. Eng. (with distinction), and Ph.D. degrees in electronic engineering from the University of Pretoria (UP). As an established researcher, rated by the National Research Foundation (NRF), he has authored or co-authored over 130 publications in peer-reviewed journals and at international conferences. He served UP for over a decade; his last service being as the director of the Carl and Emily Fuchs Institute for Microelectronics, Department of Electrical, Electronic and Computer Engineering. On October 1, 2013, he was appointed as an executive dean of the Faculty of Engineering and the Built Environment (FEBE) at the University of Johannesburg (UJ). As of December 1, 2017, he is the UJ deputy vice-chancellor: Research and Internationalization. Among other leading roles, he also served the IEEE as a board of director and IEEE vice-president: Educational Activities.