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ABSTRACT
Oral cancer incidence is rapidly increasing worldwide. The
most important determinant factor in cancer survival is early
diagnosis. To facilitate large scale screening, we propose a
fully automated pipeline for oral cancer detection on whole
slide cytology images. The pipeline consists of fully convo-
lutional regression-based nucleus detection, followed by per-
cell focus selection, and CNN based classification. Our novel
focus selection step provides fast per-cell focus decisions at
human-level accuracy. We demonstrate that the pipeline pro-
vides efficient cancer classification of whole slide cytology
images, improving over previous results both in terms of ac-
curacy and feasibility. The complete source code is made
available as open source1.

Index Terms— CNN, Whole slide imaging, Big data, Cy-
tology, Detection, Focus selection, Classification

1. INTRODUCTION

Cancers in the oral cavity or the oropharynx are among the
most common malignancies in the world [1,2]. Similar as for
cervical cancer, visual inspection of brush collected samples
has shown to be a practical and effective approach for early
diagnosis and reduced mortality [3]. We, therefore, work to-
wards introducing screening of high risk patients in General
Dental Practice by dentists and dental hygienists. Computer
assisted cytological examination is essential for feasibility of
this project, due to large data and high involved costs [4].

Whole slide imaging (WSI) refers to scanning of con-
ventional microscopy glass slides to produce digital slides.
WSI is gaining popularity among pathologists worldwide,
due to its potential to improve diagnostic accuracy, increase
workflow efficiency, and improve integration of images into
information systems [5]. Due to the very large amount of
data produced by WSI, typically generating images of around
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100,000×100,000 pixels with up to 100,000 cells, manipu-
lation and analysis are challenging and require special tech-
niques. In spite of these challenges, the advantage to repro-
duce the traditional light microscopy experience in digital
format makes WSI a very appealing choice.

Deep learning (DL) has shown to perform very well in
cancer classification. An important advantage, compared to
(classic) model-based approaches, is absence of need for nu-
cleus segmentation, a difficult task typically required for oth-
erwise subsequent feature extraction. At the same time, the
large amount of data provided by WSI makes DL a natural
and favorable choice. In this paper we present a complete
fully automated DL based segmentation-free pipeline for oral
cancer screening on WSI.

2. BACKGROUND AND RELATED WORK

A number of studies suggest to use DL for classification of
histology WSI samples, [6–9]. A common approach is to
split tissue WSIs into smaller patches and perform analysis
on the patch level. Cytological samples are, however, rather
different from tissue. For tissue analysis the larger scale ar-
rangement of cells is important and region segmentation and
processing is natural. For cytology, though, the extra-cellular
morphology is lost and cells are essentially individual (espe-
cially for liquid based samples); the natural unit of examina-
tion is the cell.

Cytology generally has slightly higher resolution require-
ments than histology; texture is very important and accurate
focus is therefore essential. On the other hand, auto-focus
of slide scanners works much better for tissue samples be-
ing more or less flat surfaces. In cytology, cells are partly
overlapping and at different z-levels. Tools for tissue analy-
sis rarely allow z-stacks (focus level stacks) or provide tools
for handling such. In this work we present a carefully de-
signed complete chain of processing steps for handling cy-
tology WSIs acquired at multiple focus levels, including cell
detection, per-cell focus selection, and CNN based classifica-
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tion.
Malignancy-associated changes (MACs) are subtle mor-

phological changes that occur in histologically normal cells
due to their proximity to a tumor. MACs have been shown to
be reproducibly measured via image cytometry for numerous
cancer types [10], making them potentially useful as diagnos-
tic biomarkers. Using a random forest classifier [11] reliably
detected MACs in histologically normal (normal-appearing)
oropharyngeal epithelial cells located in tissue samples adja-
cent to a tumor and suggests to use the approach as a nonin-
vasive means of detecting early-stage oropharyngeal tumors.
Reliance on MAC enables using patient-level diagnosis for
training of a cell-level classifier, where all cells of a patient
are assigned the same label (either cancer or healthy) [12].
This hugely reduces the burden of otherwise very difficult and
laborious manual annotation on a cell level.

Cell detection: State-of-the-art object detection methods,
such as the R-CNN family [13–15] and YOLO [16–18], have
shown satisfactory performance for natural images. How-
ever, being designed for computer vision, where perspective
changes the size of objects, we find them not ideal for cell
detection in microscopy images. Although appealing to learn
end-to-end the classification directly from the input images,
s.t. the network jointly learns region of interest (RoI) selec-
tion and classification, for cytology WSIs this is rather im-
practical. The classification task is very difficult and requires
tens of thousands of cells to reach top performance, while a
per-cell RoI detection is much easier to train (much fewer an-
notated cell locations are needed), requires less detail and can
be performed at lower resolution (thus faster). To jointly train
localization and classification would require the (manual) lo-
calization of the full tens of thousands of cells. Our proposal,
relying on patient-level annotations for the difficult classifica-
tion task, reaches good performance using only around 1000
manually marked cell locations. Methods for detecting ob-
jects with various size and the bounding boxes also cost un-
necessary computation, since all cell nuclei are of similar size
and bounding box is not of interest in diagnosis. Further,
these methods tend to not handle very large numbers of small
and clustered objects very well [19].

Many DL-based methods specifically designed for the
task of nucleus detection are similar to the framework sum-
marized in [20]: first generate a probability map by sliding a
binary patch classifier over the whole image, then find nuclei
positions as local maxima. However, considering that WSIs
are as large as 10 giga-pixels, this approach is prohibitively
slow. U-Net models avoid the sliding window and reduce
computation time. Detection is performed as segmentation
where each nucleus is marked as a binary disk [21]. However,
when images are noisy and with densely packed nuclei, the
binary output mask is not ideal for further processing. We find
the regression approach [22–24], where the network is trained
to reproduce fuzzy nuclei markers, to be more appropriate.

Focus selection: In cytological analysis, the focus level

has to be selected for each nucleus individually, since differ-
ent cells are at different depth. Standard tools (e.g., the micro-
scope auto-focus) fail since they only provide a large field-of-
view optimum, and often focus on clumps or other artifacts.
Building on the approaches of Just Noticeable Blur (JNB)
[25] and Cumulative Probability of Blur Detection (CPBD)
[26], the Edge Model based Blur Metric (EMBM) [27] pro-
vides a no-reference blur metric by using a parametric edge
model to detect and describe edges with both contrast and
width information. It claims to achieve comparable results to
the former while being faster.

Classification: Deep learning has successfully been used
for different types cell classification [28] and for cervical can-
cer screening in particular [29]. Convolutional Neural Net-
works (CNNs) have shown ability to differentiate healthy and
malignant cell samples [12]. Whereas the approach in [12] re-
lies on manually selected free lying cells, our study proposes
to use automatic cell detection. This allows improved perfor-
mance by scaling up the available data to all free lying cells
in each sample.

3. MATERIAL AND METHODS

3.1. Data

Three sets of images of oral brush samples are used in this
study. Dataset 1 is a relatively small Pap smear dataset im-
aged with a standard microscope. Dataset 2 consist of WSIs
of the same glass slides as Dataset 1. Dataset 3 consist of
WSIs of liquid-based (LBC) prepared slides. All samples
are collected at Dept. of Orofacial Medicine, Folktandvården
Stockholms län AB. From each patient, samples were col-
lected with a brush scraped at areas of interest in the oral cav-
ity. Each scrape was either smeared onto a glass (Datasets
1 and 2) or placed in a liquid vial (Dataset 3). All samples
were stained with standard Papanicolau stain. Dataset 3 was
prepared with Hologic T5 ThinPrep Equipment and standard
non-gynecologic protocol. Dataset 1 was imaged with an
Olympus BX51 bright-field microscope with a 20×, 0.75 NA
lens giving a pixel size of 0.32 µm. From 10 Pap smears (10
patients), free lying cells (same as in “Oral Dataset 1” in [12])
are manually selected and 80×80×1 grayscale patches are ex-
tracted, each with one centered in-focus cell nucleus. Dataset
2: The same 10 slides as in Dataset 1 were imaged using a
NanoZoomer S60 Digital slide scanner, 40×, 0.75 NA objec-
tive, at 11 z-offsets (±2 µm, step-size 0.4 µm) providing RGB
WSIs of size 103936×107520×3, 0.23 µm/pixel. Dataset 3
was obtained in the same way as Dataset 2, but from 12 LBC
slides from 12 other patients.

Slide level annotation and reliance on MAC appears as a
useful way to avoid need for large scale very difficult man-
ual cell level annotations. Both [11] and [12] demonstrate
promising results for MAC detection in histology and cytol-
ogy. In our work we therefore aim to classify cells based on
the patient diagnosis, i.e., all cells from a patient with diag-



(a) Original image, I

(b) Fuzzy ground truth, D

(c) Predicted density map D′ (in pseudo color)

(d)Detected (blue ×) and true (green +) nuclei locations

Fig. 1: A sample image at different stages of nucleus detection

nosed oral cancer are labeled as cancer.

3.2. Nucleus Detection

The nucleus detection step aims to efficiently detect each in-
dividual cell nucleus in WSIs. The detection is inspired by
the Fully Convolutional Regression Networks (FCRNs) ap-
proach proposed in [22] for cell counting. The main steps of

the method are described below, and illustrated on an example
image from Dataset 3, Fig. 1.
Training: Input is a set of RGB images Ii, i = 1 . . .K, and
corresponding binary annotation masks Bi, where each indi-
vidual nucleus is indicated by one centrally located pixel.

Each ground truth mask is dilated by a disk of radius
r [21], followed by convolution with a 2D Gaussian filter of
width σ. By this, a fuzzy ground truth is generated. A fully
convolutional network is trained to learn a mapping between
the original image I (Fig. 1a) and the corresponding “fuzzy
ground truth”, D (Fig. 1b). The network follows the archi-
tecture of U-Net [30] but with the final softmax replaced by a
linear activation function.
Inference: A corresponding density map D′ (Fig. 1c) is gen-
erated (predicted) for any given test image I . The density map
D′ is thresholded at a level T and centroids of the resulting
blobs indicate detected nuclei locations (Fig. 1d).

3.3. Focus Selection

Slide scanners do not provide sufficiently good focus for cy-
tological samples and a focus selection step is needed. Our
proposed method utilizes N equidistant z-levels acquired of
the same specimen. Traversing the z-levels, the change be-
tween consecutive images shows the largest variance at the
point where the specimen moves in/out of focus. This novel
focus selection approach provides a clear improvement over
the Edge Model based Blur Metric (EMBM) proposed in [27].

Following the Nucleus detection step (which is performed
at the central focus level, z = 0) we cut out a square region
for each detected nucleus at all acquired focus levels. Each
such cutout image is filtered with a small median filter of size
m×m on each color channel to reduce noise. This gives us
a set of images Pi, i = 1, . . . , N , of an individual nucleus
at the N consecutive z-levels. We compute the difference of
neighboring focus levels, P ′i = Pi+1 − Pi, i = 1, . . . , N−1.
The variance, σ2

i , is computed for each difference image P ′i :

σ2
i = 1

M

∑M
j=1

(
p′ij − µi

)2
, where µi =

1
M

∑M
j=1 p

′
ij ,

M is the number of pixels in P ′i , and p′ij is the value of pixel
j in P ′i . Finally the level l corresponding to the largest σ2

i is
selected,

l = argmax
i=1,...,N−1

σ2
i .

To determine which of the two images in the pair P ′l is in best
focus, we use the EMBM method [27] as a post selection step
to choose which of images Pl and Pl+1 to use.

3.4. Classification

The final module of the pipeline is classification of the
generated nucleus patches into two classes – cancer and
healthy. Following recommendation from [12], we evaluate
ResNet50 [31] as a classifier. We also include the more re-
cent DenseNet201 [32] architecture. In addition to random



Fig. 2: Example of focus sequences for experts to annotate

(Glorot-uniform) weight initialization, we also evaluate the
two architectures using weights pre-trained on ImageNet.

Considering that texture information is a key feature for
classification [11, 33], the data is augmented without interpo-
lation. During training, each sample is reflected with 50%
probability and rotated by a random integer multiple of 90◦.

4. EXPERIMENTAL SETUP

4.1. Nucleus Detection

The WSIs at the middle z-level (z = 0) are used for nu-
cleus detection. Each WSI is split into an array of 6496×
3360×3 sub-images using the Open Source tool ndpisplit
[34]. The model is trained on 12 and tested on 2 sub-images
(1014 resp. 119 nuclei) from Dataset 3. The manually marked
ground truth is dilated by a disk of radius r=15. All images,
including ground truth masks, are resized to 1024×512 pixels,
using area weighted interpolation. A Gaussian filter, σ=1, is
applied to each ground truth mask providing the fuzzy ground
truth D.

Each image is normalized by subtracting the mean and
dividing by the standard deviation of the training set. Im-
ages are augmented by random rotation in the range ±30◦,
random horizontal and vertical shift within 30% of the to-
tal scale, random zoom within the range of 30% of the total
size, and random horizontal and vertical flips. Nucleus detec-
tion does not need the texture details, so interpolation does
not harm. To improve stability of training, batch normaliza-
tion [35] is added before each activation layer. Training is
performed using RMSprop with mean squared error as loss
function, learning rate α = 0.001 and decay rate ρ = 0.9.
The model is trained with mini-batch size 1 for 100 epochs,
the checkpoint with minimum training loss is used for testing.

Performance of nucleus detection is evaluated on Dataset 3.
A detection is considered correct if its closest ground truth
nucleus is within the cropped patch and that ground truth nu-
cleus has no closer detections (s.t. one true nucleus is paired
with at most one detection).

4.2. Focus Selection

100 detected nuclei are randomly chosen from the two test
sub-images (Dataset 3). Every nucleus is cut to an 80×80×3
patch for each of the 11 z-levels. For EMBM method the

contrast threshold of a salient edge is set to cT = 8, following
[27].

To evaluate the focus selection, 8 experts are asked to
choose the best of the 11 focus-levels for each of the 100 nu-
clei (Fig. 2). The median of the 8 assigned labels is used as
true best focus, lGT . A predicted focus level l is considered
accurate enough if l ∈ [lGT − 2, lGT + 2].

4.3. Classification

The classification model is evaluated on Dataset 1 as a bench-
mark, and then on Dataset 2, to evaluate effectiveness of the
nucleus detection and focus selection modules in comparison
with the performance on Dataset 1. The model is also run on
Dataset 3 to validate generality of the pipeline. Datasets are
split on a patient level; no cell from the same patient exists
in both training and test sets. On Dataset 1 and 2, three-fold
validation is used, following [12]. On Dataset 3, two-fold
validation is used. Our trained nucleus detector with thresh-
old T = 0.59 (best-performing in Sec. 5.1) is used for Dataset
2 and 3 to generate nucleus patches. Some cells in Dataset 2
and 3 lie outside the ±2 µm imaged z-levels, and the best fo-
cus is still rather blurred. We use the EMBM to exclude the
most blurred ones. Cell patches with an EMBM score < 0.03
are removed, leaving 68509 cells for Dataset 2 and 130521
for Dataset 3.

We use Adam optimizer, cross-entropy loss and parame-
ters as suggested in [36], i.e., initial learning rate α = 0.001,
β1 = 0.9, β2 = 0.999. 10% of the training set is randomly
chosen as validation set.

When using models pre-trained on ImageNet, since the
weights require three input channels, the grayscale images
from Dataset 1 are duplicated into each channel. Pre-trained
models are trained (fine-tuned) for 5 epochs. The learning
rate is scaled by 0.4 every time the validation loss does not
decrease compared to the previous epoch. The checkpoint
with minimum validation loss is saved for testing.

A slightly different training strategy is used when train-
ing from scratch. ResNet50 models are trained with mini-
batch size 512 for 50 epochs on Dataset 2 and 3, and with
mini-batch size 128 for 30 epochs on Dataset 1, since it con-
tains fewer samples. Because DenseNet201 takes larger GPU
memory, mini-batch sizes are set to 256 on Dataset 2 and 3.
To mitigate overfitting, DenseNet201 models are trained for
only 30 epochs on Dataset 2 and 3, and 20 epochs on Dataset
1. When the validation loss has not decreased for 5 epochs,
the learning rate is scaled by 0.1. Training is stopped after 15
epochs of no improvement. The checkpoint with minimum
validation loss is saved for testing.

5. RESULTS AND DISCUSSION
5.1. Nucleus Detection

Results of nucleus detection are presented in Fig. 3. Fig. 3a
shows Precision, Recall, and F1-score as the detection thresh-
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Fig. 3: Results of nucleus detection

old T varies in [0.51, 0.69]. At T = 0.59, F1-score reaches
0.92, with Precision and Recall being 0.90 and 0.94 respec-
tively. Using T = 0.59, 94,685 free lying nuclei are detected
in Dataset 2 and 138,196 in Dataset 3.

The inference takes 0.17 s to generate a density map D′

of size 1024×512 on an NVIDIA GeForce GTX 1060 Max-
Q. To generate a density map of the same size based on the
sliding window approach (Table 4 of [20]), takes 504 s.

5.2. Focus Selection

Performance of the focus selection is presented in Fig. 4. The
“human” performance is the average of the experts, using a
leave-one-out approach. We plot performance when using
EMBM to select among the 2(k + 1) levels closest to our se-
lected pair l; for increasing k the method approaches EMBM.

It can be seen that EMBM alone does not achieve sat-
isfying performance on this task. Applying a median filter
improves the performance somewhat. Our proposed method
performs very well on the data and is essentially at the level
of a human expert (accuracy 84% vs. 85.5%, respectively)
using k = 0 and a 3×3 median filter.
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Fig. 4: Accuracy of focus selection

Table 1: Classification performance. The best F1-score for
each dataset is presented in bold.

Dataset Network Accuracy Precision Recall F1-score

1

ResNet50 70.5±0.5 63.1±1.2 34.8±1.4 44.8±1.3
ResNet50(pre-trained) 72.0±0.9 66.4±2.0 37.5±2.0 48.0±2.1

DenseNet201 70.4±0.5 63.1±1.8 33.8±0.9 44.0±0.7
DenseNet201(pre-trained) 70.6±0.7 63.4±1.6 34.3±1.7 44.5±1.8

2

ResNet50 74.4±1.9 83.3±2.9 46.3±3.8 59.5±3.8
ResNet50(pre-trained) 74.0±0.1 83.9±0.5 44.6±0.7 58.2±0.5

DenseNet201 75.4±0.8 84.3±1.5 48.3±1.1 61.4±1.3
DenseNet201(pre-trained) 73.3±0.7 81.7±2.8 44.4±0.3 57.5±0.6

3

ResNet50 81.6±0.7 71.7±1.2 73.8±0.9 72.8±1.0
ResNet50(pre-trained) 81.3±1.5 72.1±3.0 71.6±0.6 71.8±1.8

DenseNet201 81.3±0.5 71.4±0.7 73.0±0.8 72.2±0.7
DenseNet201(pre-trained) 81.5±1.3 71.2±2.4 74.5±2.4 72.8±1.9

5.3. Classification

Classification performance is presented in Table 1 and Fig. 5.
The two architectures (ResNet50 and DenseNet201) perform
more or less equally well. Pre-training seems to help a bit for
the smaller Dataset 1, whereas for the larger Datasets 2 and 3
no essential difference is observed. Results on Dataset 2 are
consistently better than on Dataset 1. This confirms effective-
ness of the nucleus detection and focus selection modules; by
using more nuclei (from the same samples) than those man-
ually selected, improved performance is achieved. The re-
sults on Dataset 3 indicate that the pipeline generalizes well
to liquid-based images. We also observe that our proposed
pipeline is robust w.r.t. network architectures and training
strategies of the classification.

In Fig. 6 we plot how classification performance decreases
when nuclei are intentionally selected n focus levels away
from the detected best focus. The drop in performance as we
move away from the detected focus confirms the usefulness
of the focus selection step.

If aggregating the cell classifications over whole mi-
croscopy slides, as show in Fig. 5, comparing Fig. 5a-5b and
Fig. 5d-5e, we observe that the non-separable slides 1, 2, 5,
and 6 in Dataset 1 become separable in Dataset 2. Global
thresholds can be found which accurately separate the two
classes of patients in both datasets processed by our pipeline.
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(a) Dataset 1, manual cell selection, 10274 cells,
ResNet50
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(b) Dataset 2, fully automatic pipeline, 68509 cells,
ResNet50
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(c) Dataset 3 (LBC), fully automatic, 130521 cells,
ResNet50
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(d) Dataset 1, DenseNet201(pre-trained)
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(e) Dataset 2, DenseNet201(pre-trained)
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(f) Dataset 3, DenseNet201(pre-trained)

Fig. 5: Cell classification results per microscope slide; green samples (bars to the left) are healthy, red samples (bars to the
right) are from cancer patients. ResNet50 is used for (a)-(c) and DenseNet201 pre-trained on ImageNet is used for (d)-(f).
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6. CONCLUSION

This work presents a complete fully automated pipeline for
oral cancer screening on whole slide images; source code (uti-
lizing TensorFlow 1.14) is shared as open source. The pro-
posed focus selection method performs at the level of a human
expert and significantly outperforms EMBM. The pipeline
can provide fully automatic inference for WSIs within reason-
able computation time. It performs well for smears as well as
liquid-based slides.

Comparing the performance on Dataset 1, using human
selected nuclei and Dataset 2, using computer selected nu-
clei from the same microscopy slides, we conclude that the

presented pipeline can reduce human workload while at the
same time make the classification easier and more reliable.
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