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Abstract. Sexual dimorphism in the human retina has recently been
connected to gonadal hormones. In the study herein presented, texture
analysis was applied to computed mean value fundus (MVF) images
from optical coherence tomography data of female and male healthy
adult controls. Two separate age-group analyses that excluded the prob-
able perimenopause period of the women in the present study were per-
formed, using a modified MVF image computation method that fur-
ther highlights texture differences present in the retina. While distinct
texture characteristics were found between premenopausal females and
age-matched males, these differences almost disappeared in the older
groups (postmenopausal women vs age-matched men), suggesting that
sex-related texture differences in the retina can be correlated to the hor-
monal changes that women go through during the menopausal transi-
tion. These findings suggest that texture-based metrics may be used as
biomarkers of physiology and pathophysiology of the retina and the cen-
tral nervous system.
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1 Introduction

Sexual dimorphism is a well-known phenomenon, manifested at different organ
systems. In the visual system, sex-based differences exist both in the physiology
and in the pathology of the eye and, more specifically, the retina [26]. Sex-based
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differences in the human retina have been extensively reported for the full reti-
nal thickness [2,9,17,19,32,35] and less often, for the different retinal layers [27].
Furthermore, there is a link between sex and retinal disorders, which has been
attributed to gonadal hormones [26]. Importantly, these hormones have a signif-
icant role in neurological disorders, such as Alzheimer’s disease (AD) [28], which
are closely related to the physiological processes within the retina, given the
well-established relationship between the retina and the central nervous system
(CNS) [21,33].
Optical coherence tomography (OCT) studies addressing the sex-related differ-
ences in the retina rely mostly on layer thickness measurements. While most of
these studies report thickness differences amongst the retinas of female and male
healthy individuals [2,9,17,19,27,32,35], inconclusive results [6,13] have been re-
ported as well. One limitation of these studies that may be influencing the sex-
related differences found (or lack thereof) is the typical inclusion of study groups
with a wide age range and an unbalanced female-to-male ratio. On the other
hand, the use of thickness as the metric of choice in these studies is somewhat
restrictive, as new methodologies, notably the ones using texture analysis [25,3],
have shown to reveal information not conveyed by thickness.
Recently, our group has been applying texture analysis to OCT data to gain fur-
ther insight on the differences in the retinal structure, between distinct healthy
control groups [23] and between healthy individuals and patients diagnosed with
several neurodegenerative disorders, namely Alzheimer’s and Parkinson’s dis-
eases [25] and multiple sclerosis [24]. Furthermore, the same analysis methodol-
ogy was applied to animal studies, in which OCT data from a mouse model of
AD and control mice groups were examined [22,10]. These studies further con-
firmed the power of texture analysis to unveil information from OCT data, yet
unexplored.
The present study constitutes a follow-up analysis of previous work [23], where
texture features were computed from OCT data of female and male healthy adult
controls, to identify differences in the retina associated with the subjects sex. In
the work herein presented, the same texture analysis methodology was applied
to a larger population. Furthermore, this population was split into younger and
older age-groups, leaving out females at the menopausal transition period. As the
sexual dimorphism in both the healthy and the diseased retina is correlated to
hormonal differences [26], the goal of this grouping of the subjects in the present
study is to examine how the cessation of menstrual cycles manifests in the retina,
namely by analysing its impact on the previously identified sex-based differences
[23]. Also, this study aims to assess the impact of two distinct methods to com-
pute fundus images for each retinal layer in spotting texture differences.
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2 Material and Methods

2.1 Participants

Data from 100 healthy controls, 50 females and 50 males, with no previous reti-
nal pathologies, were gathered from the authors institutional database. The data
collection protocol used for gathering OCT data was approved by the Ethics
Committee of the Faculty of Medicine of the University of Coimbra and per-
formed according to the tenets stated in the Declaration of Helsinki [36].
Female subjects were split into two groups: one younger, premenopausal group
(30 women) and one older, postmenopausal group (20 women). As no informa-
tion regarding the phase of the menstrual cycle/onset of menopausal transition
at the time of image acquisition was available for any of the females in the
present study, the median age of menopause, 51 years old [12], was the reference
used. To exclude the probable perimenopause period, and maximise the num-
ber of included subjects amongst the ones available in the authors’ institutional
database, women aged 42–54 years old were not considered for analysis.
Male subjects were selected to ensure an exact age-match to the female sub-
jects, where possible. All females and males were perfectly age-matched for the
younger groups, while for the older groups, 7 out of 20 female/male pairs (35%)
were not perfectly age-matched.
Both eyes of each subject were analysed, except for one right eye from the
younger female group, one right eye from the older female group, and one left
eye from the older male group, which were excluded due to scan quality, yielding
a total of 197 eye scans. Demographic data for the four groups in the present
study are shown in table 1.

Table 1. Demographic data of the groups at study.

Group N
Age (years) Age (years) Eyes

# Eye scans
Mean(STD) Min(Max) Right(Left)

Younger Females 30 30(6.9) 19(42) 29(30) 59
Younger Males 30 30(6.9) 19(42) 30(30) 60
Older Females 20 64(5.3) 54(74) 19(20) 39
Older Males 20 68(8.8) 54(79) 20(19) 39

2.2 OCT imaging

The Cirrus SD-OCT 5000 (Carl Zeiss Meditec, Dublin, CA, USA) was used to
gather all eye scans. The 512 × 128 Macular Cube protocol was used, centred
on the macula.
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2.3 Image processing

OCT data were processed using the OCT Explorer software (Retinal Image Anal-
ysis Lab, Iowa Institute for Biomedical Imaging, Iowa City, IA, USA) [20,11,1]
to segment the six innermost layers of the retina: the retinal nerve fibre layer
(RNFL), the ganglion cell layer (GCL), the inner plexiform layer (IPL), the in-
ner nuclear layer (INL), the outer plexiform layer (OPL) and the outer nuclear
layer (ONL).
For each of the six layers at study, a mean value fundus (MVF) image was com-
puted where each pixel is the average of the A-scan zeroing all A-scan values
outside the layer of interest (see figure 1). This MVF image computation method
is a modified approach based on the method originally developed by our group
[14], where each pixel in the image is computed as the average of the A-scan
values within the respective layer. The rationale for the use of the alternative
MVF method is described in section 2.5.

Fig. 1. Colour-coded MVF images from the right eye of a male healthy control, in
which each pixel is the average of the corresponding A-scan zeroing all A-scan values
outside the layer of interest. From left to right and top to bottom: RNFL, GCL, IPL,
INL, OPL and ONL layer fundus images. For reference purposes only: images were
intensity-corrected, pseudo-colour coded and downsampled to 128 × 128, for ease of
visualisation.

As both eyes from each subject were considered for analysis, all left-eye MVF
images were horizontally flipped to match the temporal and nasal regions across
all eye scans.
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2.4 Texture analysis

Texture features were computed for each MVF image, following an approach
used previously [25,24]. Two different texture analysis approaches were consid-
ered: the grey-level co-occurrence matrix (GLCM) [16], used to highlight local
intensity variations, and the dual-tree complex wavelet transform (DTCWT)
[30], used to identify coarser texture properties [18].
For the GLCM analysis, each image was down-sampled to 128× 128 pixels and
split into 7× 7 blocks (see figure 2), which were independently analysed, except
for the blocks in the central (4th) row and column, which were not considered
to exclude the foveal region. For each block, four GLCMs were computed for
distinct pixel pair orientations (0◦, 45◦, 90◦, and 135◦), using the distance of
one pixel and considering 180◦ apart angles to be the same. For each block and
orientation, 20 features (defined in [16,15,8,31,7]) were computed. The maxi-
mum value across the four orientations was selected as the feature value for each
block. Blocks were then aggregated into quadrants: the temporal-superior (Q1),
nasal-superior (Q2), temporal-inferior (Q3) and nasal-inferior (Q4) quadrants,
composed of 3 × 3 blocks each (figure 2). The average feature value, across the
3× 3 blocks, was used as the final quadrant feature value.

Fig. 2. Computed fundus image from the volumetric macular cube scan of the right
eye of a healthy control subject [25]. Each of the 7 × 7 blocks show the individually
analysed areas which results were later aggregated into larger regions (shaded areas).
Image axes are: x-axis (horizontal) - temporal (left) to nasal (right) and y-axis(vertical)
superior (top) to inferior (bottom).
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The DTCWT method was applied to the full macular area covered by the
MVF image. The variance of the magnitude of the DTCWT complex coefficients
was computed for six image subbands (±15◦, ±45◦ and ±75◦), as described in
[5,34]. These six variance values were used as the global features from each MVF
image.
In total, 86 texture features were computed from each MVF of each of the six
retinal layers being considered: 80 (20 × 4 quadrants) local GLCM-based fea-
tures, and six global DTCWT-based features.

2.5 MVF image computation methods

Let IA and IB be the average intensity values (of a particular layer of the retina)
from two A-scans located at two neighbour locations A and B that will produce
two pixels of the corresponding fundus image (the MVF [14]). For our demon-
stration, we assume that IB = IA + ∆I. Also, let tA and tB be the number of
samples within the layer (thickness) in the positions of the considered A-scans,
with tA ≈ tB (because these are side-by-side A-scans). Let IM e Im, respectively,
be the maximum and minimum intensity values in a block where the GLCM is
to be computed. Finally, let us consider N the number of grey-levels considered
to compute the GLCM, and K the total number of samples in an A-scan. We
will illustrate that the alternative method to compute a MVF image considering
the average over the entire A-scan has a more discriminative power to small
differences in intensity (∆I), except for the case where the thickness is constant
across the GLCM block where both methods will produce the same results.

The original MVF computation method

The intensity amplitude within the GLCM block, as given by

ho =
IM − Im

N
.

Therefore, the level within the greyscale for IA and IB is given by

αo(IA) =
IA − Im
ho

and αo(IB) = αo(IA +∆I) = αo(A) +
∆I

ho
,

where the mapping of computed intensities to the individual greyscale levels
(from 0 to N-1) is given by bα(.)c, and b.c is the floor operation. Therefore, the
difference between the two intensity levels (IA and IB) is given by

∆αo =
∆I

ho
.

The alternative MVF computation method
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In this case, using the same notation, the new intensity values are given by
(IA tA)/K and (IB tB)/K. Similarly, one defines the intensity amplitude within
the GLCM block as

ha =
max(I t)−min(I t)

NK
≤ IM max(t)− Im min(t)

NK
. (1)

Then one gets the level in greyscale for the computation of the GLCM given
by

αa(IA) =
IA tA − Im min(t)

Kha

and, by straightforward computations,

αa(IB) =
(IAtA − Im min(t)) +∆ItA +∆tIB

Kha
= αa(A) +

∆ItA +∆tIB
Kha

,

with ∆t = tB − tA and ∆I = IB − IA, which means that the difference in
greyscale is given by

∆αa =
∆ItA +∆tIB

Kha
.

Comparison between the discriminant powers

In the original method, IA and IB are assigned the levels of, respectively,
αo(IA) and αo(IB), which differ by ∆I/ho. On the other hand, for the alternative
method, the difference in assigned levels is (∆ItA + ∆tIB)/(Kha), being the
latter higher than the former. One can compute the ratio (γ) of the differences
and show that this ratio is over the unit, meaning that the latter approach
presents a better discriminative power.

γ =
∆ItA+∆tIB

Kha

∆I
ho

=
ho
haK

(
tA +

∆tIB
∆I

)
. (2)

Therefore one has from (1)

ho
haK

=
IM−Im
N

Kmax(I t)−min(I t)
NK

≥ IM − Im
IM max(t)− Im min(t)

≈ 1

t̄
(3)

with t̄ the average thickness within the GLCM block.

From (2) and (3), one gets the approximate lower bound for γ as

γ &
tA
t̄︸︷︷︸
≈1

+
∆tIB
t̄∆I

& 1 +
∆t

t̄
.
IB
∆I

.

The lower bound for γ, as defined above, is based on the assumption that
the amplitude in thickness within a GLCM blocks is small – which verifies for
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the block divisions used (see figures 2 and 3), hence the ratio between tA and
the average thickness is close to 1 – and differences in image intensity across two
neighbour pixels is small in comparison to their average value – which verifies
in general except for lower intensity image regions, in which case both methods
will map to the same greyscale level, therefore, producing the same result.

Fig. 3. Cropped OCT B-scan image from the right eye of male subject of the younger
group. This B-scan crosses the third and fourth quadrants (Q3 and Q4) and shows the
limits for the GLCM blocks in white solid vertical lines. The central block (4th) is not
used in our analysis (see figure 2). Red lines show the segmentation of the different
layers of the retina as computed by the method used [20,11,1]. Image axes are: x-axis
(horizontal) - temporal (left) to nasal (right) and z-axis (vertical) anterior (vitreous –
top) to posterior (choroid – bottom).

As shown, the discriminative power of the alternative method is superior to
that of the original method for small differences between neighbour pixel inten-
sities, which is the default scenario in healthy or close to the health condition
retinas. Moreover, it is also clear that both approaches have similar results in
the cases of small variations in thickness for a given layer.

2.6 Statistical analysis

All texture features were tested for normality using the Kolmogorov-Smirnov
test (10% significance level for a conservative normality decision). For each fea-
ture, when both the female and the male groups followed a normal distribution,
the two-sample t-test was used to test mean differences. Otherwise, the Mann-
Whitney U-test (non-parametric) was used. The obtained p-values were sepa-
rated into three significance levels: p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001.
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3 Results

The first analysis concerns the younger females and males in the present study.
Table 2 shows the list of texture features presenting statistically significant differ-
ences between the two younger groups. Differences between the younger female
and male groups are shown using the symbols ○, �, and *, and can be found
in every single layer. The highest statistical differences can be found in the IPL
(local GLCM features) and the GCL, INL and ONL (global DTCWT features).
In the INL, texture differences are spread the most, as they cover three consec-
utive quadrants. Q2, the nasal-superior quadrant, holds consistent differences
at consecutive layers of the retina – from the IPL to the ONL, while the same
occurs for Q3, the temporal-inferior quadrant, from the GCL to the INL.
The second analysis concerns the older females and males. Overall, a minimal
number of statistically significant differences was found between the two older
groups: only two local features in the GCL, and three local features the ONL,
all at the 5% significance level (shown in square-brackets – table 2).

4 Discussion

In order to reach a better understanding of the effect of gonadal hormones in
different physiological and pathophysiological mechanisms, research, where the
menopausal transition is taken into consideration, is particularly valuable, as
it leverages the natural interruption of the production of the female hormones.
Estrogen, for instance, is believed to have a major role in the sexual dimorphism
observed not only in retinal disorders [26] but also in neurodegenerative diseases
such as AD [28]. Since the study of retinal biomarkers for disorders like AD using
the retina as a window to the CNS has been gaining momentum in recent years
[21,33], understanding the interactions of estrogen and other gonadal hormones
in the physiological mechanisms taking place in the retina, both pre- and post-
menopause, is of utmost importance.
The main goal of the present work is a more in-depth exploration of the sex-
based differences that were previously identified in the retinas of healthy adult
subjects [23]. For this purpose, we studied a larger population than the one used
before [23] and performed two separate age-group analyses that excluded the
probable perimenopause period of the women in the present study, in order to
have pre- and postmenopause sex group comparisons.
Our results reveal numerous texture differences in all retinal layers between the
two younger groups, which almost disappear in the older groups. These results
suggest that texture analysis is an adequate tool to identify sex-based differences
in the retina since it highlights them before the menopause when sexual dimor-
phism is more pronounced. Furthermore, it reveals that the observed sex-related
differences become negligible after women reach menopause when gonadal hor-
mones eventually stabilise at their permanent postmenopausal levels [29].
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Table 2. Texture features presenting statistically significant differences between the
female and male subjects for the retinal nerve fibre layer (RNFL); ganglion cell layer
(GCL); inner plexiform layer (IPL); inner nuclear layer (INL); outer plexiform layer
(OPL), and; outer nuclear layer (ONL). Hyphens (–) represent a p-value > 0.05
(non-significant statistical difference), the green-coloured circles (○) represent a p-
value ≤ 0.05, the orange-coloured squares (�) represent a p-value ≤ 0.01 and the
red-coloured asterisks (*) represent a p-value ≤ 0.001 for the younger groups. Square-
brackets ([ ]) denote differences found between the older female and male groups (all
at the 5% significance level). Q1 – Superior-temporal quadrant, Q2 – Superior-nasal
quadrant, Q3 – Inferior-temporal quadrant and Q4 – Inferior-nasal quadrant. IDN
stands for Inverse Difference Moment Normalized; in the features IMC1 and IMC2,
IMC stands for Information Measure of Correlation; and INN stands for Inverse Dif-
ference Normalized.

Layer Parameter Q1 Q2 Q3 Q4 Layer Parameter Q1 Q2 Q3 Q4

RNFL

Autocorrelation – ○ – –

GCL

Autocorrelation – – ○ –
Cluster Prominence � – – – Cluster Prominence – ○ � –
Cluster Shade � – – – Correlation – – � –
Correlation � � – – Difference Entropy – ○ � –
Difference Entropy � ○ – – Difference Variance – – � –
Difference Variance � � – – Dissimilarity – – � –
Dissimilarity � � – – Entropy – ○ ○ –
Entropy � ○ – – Homogeneity – ○ � –
Homogeneity � ○ – – IDN – – � –
IDN � � – – IMC1 – – � –
IMC1 � ○ – – IMC2 – – � –
IMC2 � � – – Inertia – – � –
Inertia � � – – INN – – � –
INN � ○ – – Maximum Probability – ○ � –
Maximum Probability ○ � – – Sum Entropy – ○ ○ –
Sum Average � – – – Sum of Squares – – [–] ○
Sum Entropy ○ ○ – – Sum Variance – [–] ○ –
Sum Variance – ○ – – Uniformity – ○ � –

Uniformity � � – – Variance 15+ (Global) *

Variance 45+ (Global) ○ Variance 15− (Global) *

Variance 45− (Global) ○ Variance 45+ (Global) *

Variance 75+ (Global) � Variance 45− (Global) *

Variance 75− (Global) � Variance 75+ (Global) *

Variance 75− (Global) *

IPL

Autocorrelation ○ – * –

INL

Autocorrelation – – ○ –
Cluster Prominence – ○ * – Cluster Prominence � � ○ ○
Correlation – ○ * – Cluster Shade – ○ – –
Difference Entropy – – � – Correlation � � ○ ○
Difference Variance – ○ � – Difference Entropy � � ○ –
Dissimilarity – ○ � – Difference Variance � � ○ –
Entropy – – * – Dissimilarity � � ○ –
Homogeneity – ○ * – Entropy – – ○ –
IDN – ○ * – Homogeneity � � ○ –
IMC1 – – � – IDN � � ○ ○
IMC2 – ○ � – IMC1 ○ � ○ –
Inertia – ○ � – IMC2 � * ○ –
INN – ○ * – Inertia � � ○ –
Maximum Probability – – � – INN � � ○ –
Sum Entropy – – � – Maximum Probability ○ � ○ –
Sum Variance ○ – * – Sum Entropy ○ � ○ –
Uniformity ○ ○ * – Sum Variance – – ○ –

Variance 45+ (Global) ○ Uniformity � � ○ –

Variance 75− (Global) ○ Variance 15+ (Global) *

Variance 15− (Global) *

Variance 45+ (Global) *

Variance 45− (Global) *

Variance 75+ (Global) *

Variance 75− (Global) *

OPL

Autocorrelation – � – –

ONL

Cluster Shade [○] ○ – –
Cluster Prominence – � – – Correlation – ○ – –
Difference Entropy – � – – Difference Entropy – � – ○
Difference Variance – � – – Difference Variance – � – –
Dissimilarity – � – – Dissimilarity – � – –
Entropy – � – – Entropy – ○ – –
Homogeneity – � – – Homogeneity – ○ – ○
IDN – � – – IDN – ○ – ○
IMC1 – � – – IMC1 – � – –
IMC2 – � – – IMC2 – ○ – –
Inertia – � – – Inertia – � – –
INN – � – – INN – ○ – ○
Maximum Probability – ○ – – Sum Average [–] ○ [�] –
Sum Entropy – ○ – – Sum Entropy [–] ○ – –
Sum of Squares – ○ – – Sum of Squares – – � –

Sum Variance – � – – Variance 45+ (Global) �

Uniformity – � – – Variance 45− (Global) *

Variance 75+ (Global) *

Variance 75− (Global) *
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These results add to those from [23] where the menopause transition pe-
riod was not taken into consideration. The results from that ([23]) menopause-
independent study showed numerous statistically significant differences between
the female and male groups. In the present study, the differences across the two
age group-analyses are very noticeable. The contrast in the number and signifi-
cance of the sex-based differences across the younger and older groups supports
the hypothesis that the differences across the younger and older groups can be
correlated to menopause-based hormonal alterations.
Our group has been studying texture-based methods to extract new information
from retinal fundus images computed from OCT data. Preliminary analyses sug-
gested the MVF computation method herein presented may be more sensitive
to differences present in the retina than the original method [14].
One limitation of the work herein reported is the fact that it is a retrospective
study, which prevented the authors from collecting information regarding the
phase of the menstrual cycle and the onset of menopausal transition for any of
the females in the present study. The age of menopause has been defined as the
age at the last menstrual period, which can only be determined retrospectively
after a woman has stopped menstruating for 12 consecutive months [4]. The
authors believe that the used reference mean age of menopause (51 years old) is
reasonably accurate, as most studies focusing on the menopausal transition are
longitudinal [12], and so there is little risk of distortion on the reported timing
of the last menstruation.
Nevertheless, in the present study, the older female group’s lower age limit (54
years old) is reasonably close to the reference age of menopause (51 years old),
so the youngest women in this group may be still menstruating. However, these
women are most likely already going through the menopause transition period.
Nevertheless, the limit of 54 years old was chosen to include the largest possible
number of female/male pairs to populate both older groups, from all healthy
control subjects in the authors’ institutional database. Concerning the younger
females’ group (upper age limit of 42 years old), it is unlikely that the oldest
women are already going through the menopausal transition, assuming that none
of them had premature menopause (< 40 years) [37]. For reference, Bromberger
[4] used 47.5 years as the approximate age over which females would presumably
be close to the time of menopause.

5 Conclusion

The present study confirms the existence of sex-based differences in the human
retina, as measured by texture analysis of MVF images computed from OCT
data. In this study, we first provide evidence suggesting that the neuroretina, the
only part of the CNS directly accessible through optical means, presents distinct
texture characteristics for premenopausal females and age-matched males and
that differences almost disappear after women have gone through the menopausal
period. Second, we apply a modified MVF image computation method that fur-
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ther highlights the retinal texture differences found.
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