Skip to main content

Residual Networks for Pulmonary Nodule Segmentation and Texture Characterization

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12132))

Abstract

The automated analysis of Computed Tomography scans of the lung holds great potential to enhance current clinical workflows for the screening of lung cancer. Among the tasks of interest in such analysis this paper is concerned with the segmentation of lung nodules and their characterization in terms of texture. This paper describes our solution for these two problems in the context of the LNdB challenge, held jointly with ICIAR 2020. We propose a) the optimization of a standard 2D Residual Network, but with a regularization technique adapted for the particular problem of texture classification, and b) a 3D U-Net architecture endowed with residual connections within each block and also connecting the downsampling and the upsampling paths. Cross-validation results indicate that our approach is specially effective for the task of texture classification. In the test set withheld by the organization, the presented method ranked 4th in texture classification and 3rd in the nodule segmentation tasks. Code to reproduce our results is made available at http://www.github.com/agaldran/lndb.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The challenge website at https://lndb.grand-challenge.org/Evaluation/ contains rigorous definitions of each of these quantities.

References

  1. National Lung Screening Trial Research Team: Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365(5), 395–409 (2011)

    Google Scholar 

  2. Aresta, G., et al.: Towards an automatic lung cancer screening system in low dose computed tomography. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA 2018. LNCS, vol. 11040, pp. 310–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_31

    Chapter  Google Scholar 

  3. Aresta, G., Cunha, A., Campilho, A.: Detection of juxta-pleural lung nodules in computed tomography images. In: Medical Imaging 2017: Computer-Aided Diagnosis, vol. 10134, p. 101343N. International Society for Optics and Photonics, March 2017

    Google Scholar 

  4. Aresta, G., et al.: iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  5. Bonavita, I., Rafael-Palou, X., Ceresa, M., Piella, G., Ribas, V., González Ballester, M.A.: Integration of convolutional neural networks for pulmonary nodule malignancy assessment in a lung cancer classification pipeline. Comput. Methods Programs Biomed. 185, 105172 (2020)

    Article  Google Scholar 

  6. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  7. Ferreira, C.A., Cunha, A., Mendonça, A.M., Campilho, A.: Convolutional neural network architectures for texture classification of pulmonary nodules. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 783–791. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13469-3_91

    Chapter  Google Scholar 

  8. Galdran, A., et al.: Non-uniform label smoothing for diabetic retinopathy grading from retinal fundus images with deep neural networks. Translational Vision Science and Technology, June 2020

    Google Scholar 

  9. Galdran, A., Costa, P., Bria, A., Araújo, T., Mendonça, A.M., Campilho, A.: A no-reference quality metric for retinal vessel tree segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 82–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_10

    Chapter  Google Scholar 

  10. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 4th International Conference on 3D Vision (3DV), pp. 565–571, October 2016

    Google Scholar 

  11. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 4696–4705. Curran Associates, Inc. (2019)

    Google Scholar 

  12. Pedrosa, J., et al.: LNDb: a lung nodule database on computed tomography. arXiv:1911.08434 [cs, eess], December 2019. http://arxiv.org/abs/1911.08434

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2019. CA Cancer J. Cin. 69(1), 7–34 (2019)

    Article  Google Scholar 

  15. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826, June 2016

    Google Scholar 

  16. Wu, J., Qian, T.: A survey of pulmonary nodule detection, segmentation and classification in computed tomography with deep learning techniques. J. Med. Artif. Intell. 2 (2019)

    Google Scholar 

  17. Zhang, M., Lucas, J., Ba, J., Hinton, G.E.: Lookahead optimizer: k steps forward, 1 step back. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 9593–9604. Curran Associates, Inc. (2019)

    Google Scholar 

  18. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39, 1856–1867 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adrian Galdran or Hamid Bouchachia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galdran, A., Bouchachia, H. (2020). Residual Networks for Pulmonary Nodule Segmentation and Texture Characterization. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12132. Springer, Cham. https://doi.org/10.1007/978-3-030-50516-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50516-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50515-8

  • Online ISBN: 978-3-030-50516-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics