Detecting Responsive Web Design Bugs with
Declarative Specifications

Oussama Beroual, Francis Guérin, and Sylvain Hallé

Laboratoire d’informatique formelle
Université du Québec a Chicoutimi, Canada

Abstract. Responsive Web Design (RWD) is a concept that is born
from the need to provide users with a positive and intuitive experience, no
matter what device they use. Complex Cascading Style Sheets (CSS) are
used in RWD to smoothly change the appearance of a website based on the
window width of the device being used. The paper presents an automated
approach for testing these dynamic web applications, where a combination
of dynamic crawling and back-end testing is used to automatically detect
RWD bugs.

1 Introduction

The only functionality of a web application with which the user interacts is via the
web page. Today’s users expect a lot from a web page: it has to load fast, provide
the desired service, and be enjoyable to view on all devices: from a desktop to
tablets and mobile phones. However, due to the somewhat complex relationship
between HTML, CSS and JavaScript, the layout of web applications tends to
be harder to properly specify in contrast with traditional desktop applications.
The same document can be shown in a variety of sizes, resolutions, browsers and
even devices.

Responsive Web Design (RWD) [15] attempts to provide a solution to this
wide diversity, by providing a design methodology that easily adapts the layout
to various screen sizes. In RWD, significant portions of a site’s graphical user
interface can be modified, or even added or removed depending on the specific
type of device being used to view a page. However, this appealing feature comes
with the drawback that a single web page can now have multiple possible layouts,
making the presence of so-called layout “bugs” all the more prevalent. Such
problems can range from relatively mundane quirks like overlapping or incorrectly
aligned elements, to more serious issues compromising the functionality of the
user interface. Detecting these bugs in a responsive application imposes the
testing of the interface on all of its possible layouts, which multiplies the testing
effort required, when compared to traditional web sites and desktop applications.

It has quickly become clear that detecting GUI bugs in RWD applications
requires a new and more efficient testing approach, and especially the creation of
testing tools adapted to this specific use case. This is precisely the goal of this
paper, which presents an automated technique that provides test oracles capable

of verifying the consistency of a responsive layout over a wide range of window
widths. Contrary to existing methods, which define hard-coded algorithms that
can test a handful of predefined RWD bugs, our proposed approach defines such
bugs as statements expressed in a declarative, domain-specific language designed
especially for web interfaces. This language, implemented by the Cornipickle
web testing tool [13], includes temporal operators that allow the correlation of
elements of a page at multiple moments in time. The novelty of our approach is to
leverage this feature by using an external web crawler (in this case, Crawljax [16])
to change a browser’s window size multiple times, and instruct the UI oracle to
take each of these window sizes as a distinct page. In such a way, we show that
RWD bugs can be expressed as specifications over sequences of the same page at
different sizes.

The important side effect of expressing RWD bugs as declarative specifications
is that other types of RWD bugs, currently unforeseen, can easily be detected
by simply writing the appropriate declarative specification that corresponds to
their occurrence. To the best of our knowledge, this work is the first solution
that tackles the issue of responsive web design testing from a purely declarative
standpoint.

The rest of the paper is structured as follows. In Section [2] we describe
the concept of responsive web design, and describe common examples of RWD
bugs. Section [3] describes the current solutions and tools. In Section [the
paper describes the proposed solution, which consists of combining a declarative
language interpreter with a stateful crawler to efficiently detect behavioral bugs
in Rich Internet Applications (RIAs). Section [5| shows that with a Cornipickle
interpreter as the test oracle for an RIA crawler, one can automatically search
and detect behavioral and RWD bugs in web applications.

2 Responsive Web Design Bugs

Before a few years ago, access to websites was conditioned by assumptions about
the size of the device’s screen. Desktop computers were the dominant device to
access websites, and so designers created page layouts that assumed a minimum
window size in order to be displayed properly. The situation has changed radically
in the past decade, with the advent of smartphones and other devices with smaller
screens. A 2019 report highlights that the percentage of internet users in the
world via mobile devices and tablets is higher than the percentage of internet
users that use desktop computers [11]. An alternative approach for proper site
operation in a range of different viewport appliances and sizes was needed.

2.1 Adapting the Layout

A first solution to this problem was to use parameters extracted from HTTP
headers: the request for a resource through a browser was followed by a so-called
“user agent” string to identify the type of browser used. Reading the user agent
string on the server side causes the release of two versions: a mobile version

designed for small screen sizes, and a desktop version designed for large screens.
This approach is not without shortcomings. Among its defects, the fact that
it does not fit with new devices entering the market, such as tablets that are
somewhere in the middle of mobiles and laptops in size, brings the need for
another special version of the site. In addition, other versions of the site must be
developed in order to satisfy all user devices. Even the assumption that desktop
users have large monitors may not always hold: a browser window can share the
screen with other applications, and hence not occupy the entire space available.
Clearly, a better approach was needed.

Developers have been following the emergence of CSS media queries [1§],
that allow conditional style statements by media properties such as window size.
Adapting a site for a specific window size at runtime has become possible, by
writing different CSS rules depending on the dimensions of the viewport. Any
valid CSS property can be enclosed within a media query, making it possible to
enforce very distinct layouts depending on the result of these queries. If CSS
rules alone are not sufficient, the standard also defines JavaScript events that are
triggered when a media query fires, which makes it possible to write client-side
code that reacts to specific changes in a window’s dimensions, and to dynamically
alter the layout by directly modifying element properties.

2.2 RWD Bugs

Due to the somewhat complex relationship between HTML, CSS and JavaScript
and the multiplication of the devices in the market nowadays, the layout of web
applications tends to be harder to properly specify in contrast with traditional
desktop applications. The same document can be shown in a variety of sizes,
resolutions, browsers and even devices, making the presence of so-called layout
“bugs” all the more prevalent. Such problems can range from relatively mundane
quirks from elements overlapping to viewport protrusions.
Walsh et al. describe five types of bugs in RWD websites [19]:

1. Element Collision: A bug in which elements overlap into one another. This
bug can hamper the usability of websites if functional elements of the page
are hidden because of this collision. This is shown in Figure

2. Element Protrusion: Elements need to resize themselves when they are short
on space, but they also need be large enough to contain all of their children.
Element protrusion is a bug where an element protrudes outside of its parent
due to a lack of space. The element can then be unreachable, hidden by
another element, or on top of other elements. This is shown in Figure [TH]

3. Viewport Protrusion: This bug happens when elements are pushed outside of
the viewport and become inaccessible or hidden. This is shown in Figure
by taking the parent element as the whole viewport.

4. Wrapping Elements: This bug happens when a container is not wide enough
to contain all the items and one or more items are pushed on a supplementary
line. This is shown in Figure

5. Small-Range Layouts: Depending on the implementation, some layouts can
be correctly displayed in only a small amount of widths. For instance, a
display could be only correct between 320 and 325 pixels of width.

L& [B

(a) Element colli- (b) Element/view- (c) Wrapping ele-
sion port protrusion ments

Fig. 1: Various categories of RWD bugs.

3 Existing Solutions

Related works on testing web applications for such kinds of bugs can be roughly
divided in two families. The first concentrates on test oracles, i.e. mechanisms for
expressing conditions that must be verified by the running application. The second
family concentrates on means of finding errors in applications, by performing an
exhaustive search of their state space.

There exist a number of tools and techniques for testing web applications.
Most of them do not address the functional validation and are not able to test the
asynchronous nature and extensive dynamic nature of modern web applications;
they are not suitable to test the specific characteristics with respect to Ajax.
These tools focus on HTML validation, and static analyses, load testing, broken
link detection and protocol conformance.

We first mention web testing software such as Capybara [1], Selenium Web-
Driver, or Sahi [2]. These tools provide various languages for describing the tests
and writing assertions about the application. All these languages are imperative
(i.e. procedural), and aimed at driving an application by performing actions.
The testing part reduces to the insertion of assert-like statements throughout
the script code. By definition, such assertions relate to the current state of the
application; they are therefore ill-suited to express bugs that relate multiple
states of the application. In fact, in order to express such bugs as assertions, a
user must make use of variables to keep data about the state of the application
at various moments, and then write assertions in terms of these variables.

Several tools have been developed to provide the service to display a page
in a custom window of variable sizes using a web browser. With smart search
and quick review features, Websiteresponsivetest [3] supports all major browsers
to provide the exact preview of the website on any specific device. Similarly,
Respondr 4] allows checking the responsiveness by simply entering the URL of a
website. In addition, the device for which a website or web page is tested can also
be chosen from the list given. The page can be previewed at an appropriate width.

Screenfly [5] is a multi-device compatibility testing tool which allows previewing
web pages as they appear on different devices. Moreover, it supports different
screen sizes and resolutions.

The Responsive Web Design Bookmarklet [6] displays any web page in multiple
screen sizes for previewing, simulating the viewport of different devices. It is a
quick web design tool that can be viewed from a desktop to test any website’s
responsiveness. All these tools, however, are not automated, and the discovery
of RWD bugs still must be done by manual visual inspection of each version of
the page. Responsinator [7] helps site owners to get an idea of how their site
will work on the most popular devices. Just by typing the website URL, the site
will quickly show on screens of various sizes. ResponsivePX’s [8] process involves
entering the URL of the site and uses buttons to adjust the width and height of
the viewport to find the exact breakpoint width in pixels.

Some work has also been done on the use of image analysis techniques to
identify layout problems; in particular, WebSee [14] is a tool implemented in Java
that leverages several third party libraries to implement some of the specialized
algorithms. It applies techniques from the field of computer vision to analyze
the visual representation of web pages to automatically detect and localize
presentation failures. Applitools Eyes [9] is a commercial tool following a similar
principle; it uses the pure image segmentation of the web pages and a pixel-
by-pixel visual comparison. However, these approaches are geared towards the
detection of static, overlapping or overflow-type bugs in a document, and currently
do not support the checking of temporal patterns across multiple snapshots of
the same page. We shall see in the following that comparing multiple versions of
the same page is key to correctly identify RWD bugs.

The closest tool to our proposed approach is ReDeCheck [20], a responsive
web design testing tool. At its core, ReDeCheck builds a Responsive Layout
Graph (RLG), which accumulates information about the positioning, visibility
and relative alignment of an element in multiple versions of the same page.
It is inspired from the alignment graph used in X-PERT, a concept that was
proposed and developed by Choudhary et al. [10]. ReDeCheck defines three kinds
of constraints, respectively called Visibility, Width and Alignment, and reports a
responsive layout bug when these constraints differ for an element in the RLG of
two versions of the same page. As such, ReDeCheck can only verify a fixed set of
predefined layout problems, and does not provide a general-purpose language for
expressing assertions.

4 Proposed Solution

In this section, we propose a novel solution for the automated detection of RWD
bugs. Instead of requiring the development of special algorithms and a dedicated
setup, our approach leverages the combination of two ezisting web testing tools
to perform this detection.

The main principle of our ap-
proach is shown in Figure 2] First,

a tool for driving a browser window w w; ws

is ms.tructed to open the s'ame.web g % g

page in a web browser multiple times. —) —

Typically, the first such call opens ¢ ¢\Pmbe

the page at a standard desktop win- e st
dow size (w1), and subsequent calls
progressively decrease this width (ws,

ws, etc.). As one can see in the fig- Stateful oracle
ure, each distinct size results in a dif-
ferent page layout, with some jumps <(|>

producing more drastic changes than

others (such as the switch from w, Fig.2: The proposed framework for catch-
to ws). For each of these pages, a Ng RWD bugs.

summary of the layout is then pro-

duced; we call these summaries page

snapshots. Such snapshots can be created by the web crawler itself, or by some
external mechanism (a “probe”) fetching the state of some elements of the page
and serializing them into some format. The important point is that the succession
of such snapshots be kept, in order to form a sequence of snapshots.

The second part of our approach involves a test oracle, which is fed the
sequence of page snapshots, and evaluates a condition, ¢, on that sequence. Since
our approach involves comparing the state of elements in multiple snapshots
across the sequence, the test oracle should be stateful —that is, it must be able to
handle conditions that take into account the sequence of snapshots. The intuition
behind this setup is that a RWD bug will typically be detected as a particular
condition on the relative positioning of elements that holds for large window
sizes, and which suddenly stops to hold once reaching a smaller width.

This high-level setup constrains the tools that are available for actually
implementing the solution. The driver must be able to call a page at different
window sizes, and must provide some mechanism for automatically fetching the
page’s relevant content and produce a summary. On its side, the oracle cannot
simply evaluate an invariant condition on each page separately; on the contrary,
it must have some form of memory that makes it possible to correlate elements
of a page across multiple snapshots. Ideally, expressing these conditions should
not be done by writing low-level procedural code (such as pure Java, JavaScript
or Python), and allow the user to write RWD bug conditions at a higher level of
abstraction for increased modularity and reusability.

Based on these criteria, the solution we propose involves two well-known
testing tools: Crawljax [16] as the web driver/crawler component, and Cornipickle
[13] as the stateful test oracle. This architecture was coded in an open source
plugin for Crawljaxlﬂ We briefly describe these two components in the following,
and explain how they have been made to interact with each other.

! http://github.com/liflab/crawljax-cornipickle-plugin

4.1 A Stateful Oracle

The oracle within Cornipickle is on a server that receives requests in JSON format
to evaluate a page. These requests are sent by a client browsing the website under
test. The developer must inject a JavaScript probe generated by the application
into his website to make the requests.

In a standard use case, a developer first writes a set of declarative statements,
which are stored in Cornipickle’s memory. These statements model the JavaScript
code (called probe) that is to be inserted into the application under test so that
the client can serialize every page. This probe is designed to report a snapshot of
the relevant DOM and CSS data upon every user-triggered event. When such an
event occurs, the probe collects whatever information is relevant on the contents
of the page into JSON and relays that information to the Cornipickle server,
which saves it into a log. Optionally, information on the current status of the
assertions being evaluated (true/false) can be relayed back to the probe. An
analytics dashboard can then retrieve the saved log and be consulted by the
developer, to query the state of all properties input at the beginning of the
process.

Cornipickle’s language is constructed from first-order and linear temporal
logic, such as quantifiers and temporal operators, allowing a user to specify
complex relationships on various document elements at multiple moments in
time, a feature that is absent from many scripting languages. As a matter of fact,
Cornipickle provides operators borrowed from Linear Temporal Logic (LTL) [17]
to express assertions about the evolution of a document’s content over time. The
Always x construct allows one to assert that whatever z expresses must be true
in every snapshot of the document. Similarly, Eventually x says that z will be
true in some future document snapshot, and Next x asserts it is true in the next
snapshot.

One particular purpose of temporal operators is to compare the state of the
same element across multiple snapshots. This can be done in Cornipickle with the
construct When z is now y then z. If x refers to the state of an element captured
in some previous snapshot, then y will contain the state of the same element in
the current snapshot.

4.2 Browser Interaction with Crawljax

Crawljax is a tool for automatically exploring the dynamic state of modern web
applications. Through programmatic interfaces, it has the capacity to interact
with the client side code of the application. The detected changes in the dynamic
DOM tree are committed as new states of the behavior. Many options are
available with Crawljax to configure the crawling behavior: we can for example
specify the links or the widgets to click on or not in the course of the crawling.

This crawler (Crawljax) interacts with Cornipickle through its plugin archi-
tecture. Every time a state is created or visited, Crawljax serializes the page
and sends it to the interpreter for evaluation the same way the probe sends the
page to the Cornipickle server in the traditional architecture. After the page has

been evaluated by Cornipickle, the verdict is returned and our plugin outputs
the result.

In order to find RWD bugs, we also created a Crawljax plugin that resizes the
browser from a given width to another width. Because having a vertical scrollbar
is not a problem in responsive design, only resizing horizontally is the correct
approach in discovering RWD bugs. Since we explicitly want to find bugs related
to RWD, the plugin slowly lowers the browser’s width; these bugs show up on
lower widths where the space available becomes increasingly scarce in reference
to wider widths. It is possible to provide to the plugin the upper bound, the lower
bound and the amount of pixels for the decrement. The plugin also highlights
bugs it finds and takes a screenshot of the page. Thanks to Cornipickle’s feedback
mechanism, the user then gets screenshots where the elements responsible for
the bug have red borders.

5 Experiments and Results

In this section, we illustrate how our combination of Cornipickle and Crawljax
can be used to automatically detect RWD bugs in websites.

5.1 Defining a Common Language

Cornipickle only provides very low-level access to element properties. Since
RWD bugs involve a recurring number of higher-level concepts (containment,
overlapping, etc.), it is therefore useful to first define “macro-concepts” that will
allow expressing bugs in a more natural way.

The first part of this core constructs defines basic concepts such as alignment
and visibility. The definitions are shown in Figure[3] The first statement defines a
construct of the form “$x and $y are the same”, using the “cornipickleid” property.
This property is a unique value given to every element in the page during the
serialization phase. Since it is unique, it can be used to identify if two elements
are the same across two distinct snapshots of a page. The second statement
simply defines a “not the same” construct as the negation of the previous one; it
is only added for the sake of readability.

The definition of a visible element checks if its display property is set to
none; invisible elements can be discarded from the analysis, as they do not cause
any layout change. Also, this value is affected consciously by the developer so their
position on the page is correct. Finally, the alignment of two elements is defined
with the constructs “top-aligned” and “left-aligned”. We say that two elements
are top-aligned and left-aligned when their top and left values, respectively, are
equal.

The second part of the core constructs deals with overlapping elements.
The corresponding definitions are shown in Figure [4] The first two constructs
first define when two elements intersect horizontally and vertically, respectively.
Overlapping elements are then defined as two elements that are both visible, and
intersect both horizontally and vertically.

We say that $x and $y are the Not ($x’s display is "none")).
same when (
$x’s cornipickleid equals We say that $x and $y are
$y’s cornipickleid). top-aligned when (
$x’s top equals $y’s top).
We say that $x and $y are not
the same when (We say that $x and $y are
Not ($x and $y are the same)). left-aligned when (
$x’s left equals $y’s left).
We say that $x is visible when (

Fig. 3: Constructs for visibility, sameness and alignment.

We say that $x x-intersects $y We say that $x and $y
when ((($y’s right - 1) overlap when (
is greater than $x’s left) And (($x is visible) And
(($x’s right - 1) ($y is visible)) And (
is greater than $y’s left)). ($x x-intersects 3$y)
And
We say that $x y-intersects $y ($x y-intersects $y))).
when ((($y’s bottom - 1)
is greater than $x’s top) And We say that $x and $y do not
(($x’s bottom - 1) overlap when (
is greater than $y’s top)). Not ($x and $y overlap)).

Fig. 4: Constructs for overlapping.

One can see that the first definition uses the expression “right - 1”7, which
has for effect that in order to be declared as intersecting, elements should do so by
at least two pixels. It overcomes a problem where Cornipickle relays dimensions
and coordinates in integers (pixels), although the browser can work with floats
in case of elements having dimensions in ratios. These floats are rounded and
can cause 1 pixel differences between what is displayed and what is serialized.

Finally, RWD bugs routinely involve the concept of containment: the fact
that the boundaries of an element are entirely enclosed within the boundaries
of another. Containment constructs are shown in Figure 5] These rules define
two types of top-level containment: that of a child element within its parent, and
also that of an arbitrary element within the browser’s global viewport.

5.2 RWD Declarative Properties

Now that we have defined useful concepts at an appropriate level of abstrac-
tion, it is possible to express responsive layout bugs as statements using the
aforementioned constructs.

We say that $c is horizontally We say that $c is fully

inside $p when (inside $p when (
($c’s left is greater than If (($c is visible) And

($p’s left - 2)) ($p is visible)) Then (
And ($c is horizontally inside $p)
($c’s right is less than And

($p’s right + 2))). ($c is vertically inside $p))).

We say that $c is vertically We say that $x is fully inside

inside $p when (the viewport when (
($c’s top is greater than If ($x is visible) Then (

($p’s top - 2)) (($x’s left + 2) is greater than 0)
And And
($c’s bottom is less than ($x’s right is less than

($p’s bottom + 2))). (the page’s width + 2)))).

Fig.5: Constructs for containment.

Scrollbar bug One of the first indications of a poorly responsive website is
the presence of a horizontal scrollbar. To detect this bug, a simple Cornipickle
property can be defined:

We say that there is an horizontal scrollbar
when (
the page’s width is less than
the page’s scroll-width).

Always (Not (there is an horizontal scrollbar)).

This property is made of an auxiliary statement expressing the presence
of a scrollbar, which is then used within an LTL temporal operator (Always)
stipulating that the condition should not appear in any of the page snapshots.

Element Collision The second kind of RWD bug is element collision, which
occurs when two elements of the page overlap while they should not. Detecting
such bugs is more delicate than it looks. Indeed, it does not suffice to report
all overlapping elements inside a page, as many of them overlap for legitimate
reasons: to start with, any element nested within its parent would trigger such a
simple condition.

This is where the approach we propose, which is based on sequences of
snapshots of the same page in various dimensions, can be put to good use. Rather
than trying to guess which overlapping elements are suspect by looking at a
single rendition of the page, we compare the overlapping state of these elements
across successive snapshots. Elements are said to be colliding when they are
non-overlapping in one snapshot, and overlapping in the next.

In order to express these properties, one must use the full expressive power
of the Cornipickle language, as is shown below.

Always (
For each $x in $(body *) (
For each $y in $($x > *) (
For each $z in $($x > *) (
If (($y and $z are not the same) And

($y and $z do not overlap)) Then (Next (

When $y is now $a (When $z is now $b (

$a and $b do not overlap)))))))).

The three For each constructs gather all the elements and their immediate
children. It allows testing pairs of siblings (elements with the same parent) $x
and $y for their overlap property. The Next operator then moves the focus to
the next snapshot of the page; the two constructs When z is now y trace the
same pair of elements and places them into variables $a and $b, respectively.
This way, it becomes possible to compare the properties of a pair of elements
over two successive snapshots of the page. Overall, the property says that if two
siblings do not overlap at one point in time, these two siblings should not overlap
either at the next point in time.

Note that, in the way the property is written, it does not check whether an
element overlaps with a “cousin” (an element that shares the same grand-parent):
this is not necessary, because a colliding cousin necessarily violates the Element
Protrusion property, which we shall describe later. The property could be done
by testing every element with every other element but it is costly in performance.

Element Protrusion This property tackles the problem of elements which
overflows their container. As with the previous property, reporting all overflowing
elements is not appropriate, as overflows can also occur for legitimate reasons.
However, one can use the same device, and use LTL temporal operators to
compare an element and its direct children across two snapshots of the page. It
can be expressed in the Cornipickle language in this fashion:

Always (
For each $x in $(*) (
For each $y in $($x > *) (
If ($y is fully inside $x) Then (Next (
When $x is now $a (
When $y is now $b (
$b is fully inside $2))))))).

The property at the end has two For each constructs that return a pair
composed of any element in the page and any of its direct children. Then, if the
latter is fully inside the former in an initial screenshot, the same pair should
be fully inside in the next one. This property was able to catch a bug on the
website https://www.thelily.com/. It can be seen in Figure [where the div

https://www.thelily.com/

with the menu buttons ends up outside of the menu bar and out of sight. In the
first picture, all the buttons are correctly placed in the menu bar. In the second
picture, the highlighted “About” button is protruding outside of the menu bar,
its parent.

DISCOVER FIRSTPERSON ABO

DISCOVER FIRSTPERSON ABOUT

(a) Correct (b) Buggy

Fig. 6: The Element Protrusion bug on the website thelily.com.

Viewport Protrusion The Viewport Protrusion bug can be handled in a
manner similar to the Element Protrusion bug, but using the whole viewport as
the reference. It can be written in Cornipickle as follows:

Aways (For each $x in $(x) (
If ($x is fully inside the viewport)
Then (Next (
When $x is now $y (
$y is fully inside the viewport))))).

On the website https://www.slaveryfootprint.org, a Viewport Protru-
sion was found in a large width. Figure [7] shows how non-observable bugs can
create problems at lower widths. In the first picture, the page’s width is already
small enough for the document’s main div element to start protruding outside
the viewport. Cornipickle reports it as a bug, although there is not (yet) any
observable effect (all the graphical elements and the text inside that div are still
completely visible). However, setting the window to an even smaller width makes
the bug observable: in the second picture, the window is exactly 440 pixels wide,
and we can now see the text overflowing outside the viewport.

Wrapping Elements Wrapped elements are elements that are pushed on an
additional line, although they were aligned with other elements on a single line at
larger widths. We limited our implementation to elements that are inside a list.

We say that the list $x is ($y and $z are left-aligned)))).
aligned when (
For each $y in $($x > 1i) (Always (
For each $z in $($x > 1i) (For each $x in $(ul) (
($y and $z are top-aligned) If (the list $x is aligned)

Or Then (

thelily.com
https://www.slaveryfootprint.org

(a) Correct (b) Buggy

Fig. 7: The Viewport Protrusion bug on the website slaveryfootprint.org.

Next (When $x is now $y (
the list $y is aligned))))).

Finally, all the lists are taken in a first screenshot in order to compare their
elements’ alignment. They then need to still be aligned in the next screenshot.

An example of a wrapped element can be seen in Figure [§] It could be argued
that this is not a bug, however, at lower widths, the list is top-aligned again.
This shows that having this list top-aligned is the desired layout.

(a) Correct (b) Buggy

Fig.8: The Wrapping Element bug on the website anthedesign.fr. In the first
picture, the list is top-aligned. At a lower width (second picture), the “CGV?”
element gets pushed on an additional line. The list was highlighted in red by the
Cornipickle probe.

5.3 Scalability Considerations

In order to assess the scalability of our approach on real-world web sites, we
created a benchmark designed to measure the computation time of the Cornipickle
interpreter on web pages of various sizes. All experiments and data are available
as an external download EI, in the form of a self-contained instance of the LabPal
experimental environment .

2 https://github.com/liflab/cornipickle-benchmark

slaveryfootprint.org
anthedesign.fr
https://github.com/liflab/cornipickle-benchmark

More precisely, we generated synthetic JSON summaries of pages, in the same
format as the one produced by Cornipickle’s JavaScript probe. Each page is made
of two nested levels of lists, with each list element having a variable number of
sub-list elements. Since all properties listed in Section [5.2] compare an element
with either its direct children or its immediate siblings, this setup is sufficient
to measure the impact of page size on the evaluation of the properties. While
using “real-world” web pages seems like an appealing prospect at first sight, static
pre-recorded files do not make it possible to run a controlled experiment where
parameters can easily be varied. On the contrary, synthetic snapshots allow us
to vary the size and structure of pages so that the interpreter’s scalability can be
measured.

We varied the number of child elements that each list item can have, and ran
the Cornipickle interpreter on generated page summaries of the corresponding
size. For each snapshot, we measured the total running time of the interpreter
for evaluating each of the properties listed in Section [5.2] All experiments have
been run on relatively modest hardware, consisting of an |AMD Athlon IT X4 640
1.8 GHz running Ubuntu 18.04, with a JVM of 3566/ MB of memory.

25 T T T T 60000

oL 50000 |

40000 -
15

30000 -

Time (ms)
Time (ms)

10 -

——— 20000 -
_——
5k A B
e 10000

0 L L L L 0 —— L L
0 100 200 300 400 500 0 100 200 300 400 500
Size Size

(a) Scrollbar bug (b) Element collision

Fig.9: Interpreter evaluation time for page summaries of increasing size.

Figure [0] shows the evolution of execution time for increasing page sizes. Due
to lack of space, we only include running times for the fastest (Figure and the
slowest (Figure of all properties. As one can see, checking for the presence
of a scrollbar requires a neglgible amount of time on the order of a few tens of
milliseconds. The running time is roughly linear in the size of the page snapshot,
as it appears that Cornipickle’s design requires the ingestion and parsing of every
page snapshot, regardless of the amount of data that is actually accessed inside
this snapshot.

The running time for evaluating the Element Collision property shows a much
larger increase with respect to snapshot size. This is expected, considering the
expression of the property as three nested quantifiers (cf. Section . The first
($x) loops over all elements of the page, while the second and third ($y and $z)

M6.0
M6.0
M6.2
P4.0
P5.0

each loop over all children of $x. Barring the overhead incurred by the remainder
of the expression, a quick calculation shows that the interpreter runs in time
O(m?), where m is the total number of elements in the page; this corresponds to
the roughly quadratic execution time we observe experimentally.

To the best of our knowledge, our work is the first to rigorously measure the
running time of the Cornipickle interpreter on page snapshots. Unfortunately, the
running times we obtained cannot be compared with related works: the paper on
ReDeCheck [20], the only other automated RWD testing tool, makes no mention
of running time on the sample pages it was tested on. The other approaches
mentioned in Section [3|all involve a manual inspection, and therefore it makes
no sense to speak of running time for these tools. Nevertheless, figures gleaned
from [20] can give us a few indications. All pages studied contained fewer than
400 lines of HTML code, and no more than 196 DOM nodes. The experimental
results above indicate that pages of such a scale can be handled in under five
seconds using our Cornipickle/Crawljax approach.

It shall be noted that our proposed approach is intended to be used in a
development and testing context, where tests are run periodically, and a few
seconds of waiting is considered reasonable. Performing the same analysis on
production web sites in realtime is obviously not an option.

6 Conclusion

In this article we have presented an automated approach that allows the detection
of RWD bugs. The effectiveness of the tool has enabled us to catch automatically
some common problems encountered in real modern web applications. Cornipickle
properties ensure that the pages of an application follow various kinds of con-
straints. A small application has been developed and integrated in order to test
the visual rendering in the different possible viewports in order to catch the RWD
faults.

One main advantage of the proposed approach is that it does not require the
development of new tools or new algorithms; rather, it leverages the power of two
existing systems, and allows RWD bugs to be expressed as declarative test oracle
specifications. So far, our solution has concentrated solely on the five types of
RWD bugs proposed by Walsh et al. [19]; however, the use of a general purpose
declarative language opens the door to the elicitation of RWD bugs related not
only to layout, but also functionality. We are currently exploring this line of
research, which is left as future work.

Our solution also has some limitations. The use of Cornipickle limits us to
constraints referring only to elements that are displayed. It makes bugs that are
caused by the back end sometimes hard to catch; it is necessary to find displayed
elements that can indirectly represent server states. In the same line, if Crawljax
does not notify of a state change when the DOM changes, it is not possible to
evaluate that page where a bug could have happened. Also, when a property
evaluates to false, it is false for the rest of the crawl and no other bug can be
caught with this property. This caused a problem with finding observable RWD

bugs because most failures are non-observable and the properties had to find an
observable bug as their first bug. Finally, our solution currently does not address
cross-browser incompabilities, multi-page analysis, or incoroprate verdicts from
other kinds of approaches, such as screenshot-level analysis. Overcoming these
limitations could be the basis of future works. A comparison with bugs found
by real human testers, as well as ReDeCheck, could be used as a baseline to
calculate the precision and recall of our approach.

References
1. http://makandracards.com/makandra/1422-capybara-the-missing-api.
2. http://sahi.co.in.
3. http://www.websiteresponsivetest.com/.
4. http://respondr.io/.
5. http://quirktools.com/screenfly /.
6. https://www.sitepoint.com/responsive-web-design-tool/.
7. https://www.responsinator.com/.
8. http://responsivepx.com/.
9. http://wuw.applitools.com.

10. S. R. Choudhary, M. R. Prasad, and A. Orso. X-pert: Accurate identification of
cross-browser issues in web applications. In Proc. ICSE 2013, pages 702-711, may
2013.

11. E. Enge. Mobile vs desktop traffic in 2019, 2019. https://www.stonetemple. com/
mobile-vs-desktop-usage-study/, Accessed July 3rd, 2019.

12. S. Hallé, R. Khoury, and M. Awesso. Streamlining the inclusion of computer
experiments in a research paper. IEEE Computer, 51(11):78-89, 2018.

13. S. Hallé, N. Bergeron, F. Guérin, and O. Beroual. Declarative layout constraints
for testing web applications. Logical and Algebraic Methods in Programming, 85
(5):737-758, 2016.

14. S. Mahajan and W. G. J. Halfond. WebSee: A tool for debugging html presentation
failures. In Proc. ICST 2015, pages 1-8. IEEE, April 2015.

15. E. Marcotte. Responsive web design. Eyrolles, 4 edition, 2013.

16. A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-based web applications
through dynamic analysis of user interface state changes. ACM Transactions on
the Web (1), 6, 2012.

17. A. Pnueli. The temporal logic of programs. In Proc. FOCS 1977, pages 46-57.
IEEE Computer Society, 1977.

18. F. Rivoal. Media queries — W3C recommendation, 2012. https://www.w3.org/TR/
css3-mediaqueries.

19. T. A. Walsh, G. M. Kapfhammer, and P. McMinn. Automated layout failure
detection for responsive web pages without an explicit oracle. In Proc. ISSTA 2017.
ACM, 2017.

20. T. A. Walsh, P. McMinn, and G. M. Kapfhammer. Automatic detection of potential

layout faults following changes to responsive web pages. In Proc. ASE 2015, page
709-714. ACM, 2015.

http://www.applitools.com
https://www.stonetemple.com/mobile-vs-desktop-usage-study/
https://www.stonetemple.com/mobile-vs-desktop-usage-study/
https://www.w3.org/TR/css3-mediaqueries
https://www.w3.org/TR/css3-mediaqueries

