
Almost Rerere: an approach for automating
conflict resolution from similar resolved conflicts

Piero Fraternali, Sergio Luis Herrera Gonzalez and Mohammad Manan Tariq

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci 32, Milan, 20133,Italy.

piero.fraternali@polimi.it, sergioluis.herrera@polimi.it,
mohammad.tariq@mail.polimi.it

Abstract. Concurrent development requires the ability of reconciling
conflicting updates to the code made independently. A specific case oc-
curs when long living feature branches are integrated to a rapid changing
code base. In this scenario, every integration test will require to manually
resolve the same conflicts at every iteration. In this paper we propose a
framework for automating the detection and resolution of conflicts in
the code updated by distinct developers, one of which may be a code
generator. The tool learns how to solve conflicts from past experience
and applies resolutions, encoded as replacement regular expressions, to
conflicts not seen before. Experiments show that the number of auto-
matically resolved conflicts and the quality of the solution increase as
the system acquires experience.

Keywords: Automatic Conflict Resolution · GIT · Code integration.

1 Introduction

The development of large and complex software applications requires distributing
programming tasks among multiple developers. In Model Driven Development,
this scenario may also include code generators that produce implementation code
from high level models. When the same code base is updated concurrently by
different actors, whether human or automatic, the possibility arises that the same
portion of the code is affected, generating inconsistencies between the changes
made by the actors and/or the code base. This occurrence is called conflict [8].

Conflict management is particularly relevant in the engineering of Web and
multi-channel applications, because the implementation of the functional and of
the presentation requirements is often assigned to distinct developers working
on the same code base. Albeit the presentation aspects of Web-based interfaces
can be factored out in CSS rules, the separation of concern is in reality par-
tial, because it is a common practice to add presentation-oriented elements to
the page structure to support the selective application of presentation styles.

2 Fraternali, Herrera & Tariq

Therefore, the concurrent update of structure and of the presentation aspects
produces conflicts, which require the continuous alignment of the two facets of
development to preserve the change of either aspect.

To support distributed development, Version Control Systems (VCS) [29] of-
fer functions to share code, track changes, and identify conflicts. When conflicts
are signalled by the VCS, the resolution is delegated to the developer, which
makes code integration a time-consuming task [17]. Conflict resolution is also
repetitive because similar or identical conflicts appear at every iteration. A sig-
nificant case occurs in Model Driven Development when the source model and/or
the model-to-text transformation templates are modified. In this case, the code
generator applies the same transformation rules to many spots in the code over-
writing the manually integrated code and producing multiple changes with the
same pattern. In our previous work [6], we have addressed the management of
the conflicts between handwritten and generated code, albeit the Virtual Devel-
oper approach helps reducing the conflicts between handwritten and generated
code, still the need persists of manually resolving many similar conflicts.

In this paper we develop a method to let a VCS learn how to resolve similar
conflicts. A conflict and its resolution can be modelled as a pair (before-state,
after-state), where the before state contains the line(s) of the code affected by
concurrent inconsistent updates and the after state comprises the code provided
by the developer to resolve the inconsistency. The key idea is to exploit the
conflict resolutions implemented by human developers in the past to create rules
applicable to future (similar) conflicts. Intuitively, this requires the following pro-
cess. When the first conflict is resolved manually, its resolution pair is processed
to derive a Conflict Resolution Rule (CRR). Then the first Conflict Cluster (CC)
is created and the rule is associated with it. When a new resolved conflict ar-
rives, its before state is compared with the existing CCs. If it is similar to some
existing CC, it is added to it and the CRR associated with the CC is applied to
resolve it; otherwise, the user is prompted to provide a resolution and a new (CC,
CRR) pair is created. A quality metrics on the resolution provided by the CRR
is monitored; as the system observes more and more manual conflict resolutions,
the quality of the resolution computed by the CRR increase and the user may
accept that the rule is applied without supervision.

The contribution of the paper can be summarized as follows: 1) We intro-
duce the problem of automating the resolution of similar conflicts in concurrent
application development and define the version control framework and work-
flow needed to handle it. 2) We apply the Hierarchical Agglomerative Clustering
(HAC) algorithm with the Jaro-Winkler string similarity measure [30] to group
similar conflicts in Conflict Clusters. A CC includes conflicts that may be re-
solved by the same rule. 3) We adapt the approach of [2] and [3] to automatically
synthesize Conflict Resolution Rules for the conflicts of a CC. A CRR is a search

Almost Rerere 3

and replace regular expression extracted from a set of conflict resolutions spec-
ified as pairs (before-state, after-state). Specifically, the CRR is the best fitted
search and replace expression that maps the before states of all the conflicts in
the CC into the respective after state. 4) We illustrate a reference implementa-
tion, called Almost Rerere, which extends the functionality of the popular Git
VCS1. Almost Rerere builds on top of the Git Rerere plug-in, which resolves
automatically conflicts identical to already seen instances and helps develop-
ers pre-check partial revisions before integrating a complete revision into the
master branch. Almost Rerere can resolve conflicts similar to those observed in
past iterations and can be used throughout the development process to support
the semi-automatic resolution of previously unseen conflicts. It learns more and
more precise CRRs as the application development progresses. 5) We evaluate
the approach in the development of a web application using a Model-Driven
Development tool that generates conflicts with the handwritten code and by
extracting conflicts and resolutions from the history of submissions of large Git
open source project repositories.

2 Related Work

The relevant related work refers to the identification of code similarities and to
the generation of string rewriting rules from input/output examples.

Code similarity has been studied for software analysis, evaluation of refac-
toring issues, clone and plagiarism detection, etc. Textual approaches use direct
string matching and comparison techniques for the detection of similarities, a
wide set of this type of algorithms is available e.g. Jaccard Coefficient [19], Lev-
enshtein Distance [18], Longest Common Subsequence (LCS) [26], Jaro [11] and
Jaro-Winkler [30] similarity, Needleman Wunsch algorithm [27], Smith Water-
man algorithm [28], etc. Ducasse et al. [9] used string-based Dynamic Pattern
Matching (DPM) to detect code clones. Marcus & Maletic [21] applied latent se-
mantic indexing (LSI) for finding similar code segments. Token-based approaches
use lexical analysis for transforming the code into sequences of lexical tokens
and the resulting sequences are then compared searching for duplicated sub-
sequences of tokens. Tools implementing this approach are CCFinder [14], DUP
[1] and CP-Miner [20]. Syntactic approaches use parsing to convert the source
code into an Abstract Syntax Tree (AST). ASTs can then be analysed using
tree-matching [4,15,12] and metrics-based methods [22]. The above-described
approaches are combined with advanced clustering techniques, e.g., to provide
intelligent recommendations or to identify bugs automatically. Kreutzer et al.
created C3 (Clustering of Code Changes) a tool that scans code repositories to

1 https://git-scm.com/

https://git-scm.com/

4 Fraternali, Herrera & Tariq

automatically detect code fixes by clustering code changes using diff-based and
AST-based metrics.

The problem of synthesizing string-to-string transformations from a set of
input/output examples is NP-Complete [10]. Nevertheless, some approaches have
been developed to solve specific instances of the problem, many of them related
to code editing. LAPIS [25] uses an assisted approach in which the user provides
an initial search & replace expression that the system can improve or a set of
positive and negative examples that are used to infer similar sections of the text.
LASE [24] uses a syntactic approach to create a context-aware edit script from
examples and uses the script to automatically identify edit locations and apply
the transformation to the code. The approach was later extended with RASE
[23], an automatic refactoring tool for clone removal. A different approach was
proposed by Bartoli et al. in [2] and [3], in which they used Genetic Programming
(GP) and cooperative co-evolution to synthesize search & replacement patterns
based on examples of the desired behaviour. The search pattern is a regular
expression (regex) that defines the portions of the string to be replaced and the
portions to be reused by the replacement pattern.

In this work, we aim at developing a language-independent tool able to han-
dle conflicts in modern web and mobile projects mixing several languages. We
base our tool on textual approaches for the similarity computation and conflict
clustering tasks and adapt the algorithm of Bartoli et al. for conflict resolu-
tion. A text-based method presents advantages over syntactic techniques that
require the creation of AST and are language-dependent. It can be applied to
any semi-structured string, is independent of the text format, and can perform
context-dependent rule extraction.

3 Background

3.1 Conflict Resolution

The concurrent development of software applications requires the management
of possibly conflicting updates to the same code base by different developers. A
typical workflow, in which the same code base is updated inconsistently by two
developers (D1 and D2) producing a conflict, proceeds as follows.

Developers D1 and D2 initialize their local code base C1 and C2 from the
current content of the central code-base C, which comprises the status of the
project resulting from n preceding revisions. D1 and D2 start working indepen-
dently on their local revisions, R1

D1 and R1
D2, initially equal. D1 introduces a new

feature by applying changes to R1
D1, creating a new local revision R2

D1. Next, D2
independently updates R1

D2 to introduce another feature, creating a new local
revision R2

D2. D1 submits his local revision to the central code-base generating a
new shared revision R2

C . No conflicts arise because D1 applied his update to the

Almost Rerere 5

shared consolidated revision (R1
C = R1

D1) . Now D2 submits his revision to the
central code-base. The operation creates a conflict because the submitted revi-
sion does not derive from the current shared revision (R2

C 6= R1
D2). D2 performs

conflict resolution and generates a new local revision R3
D2, which integrates the

feature locally developed by D2 and the current state of the central code-base
(which comprises the feature developed and submitted by D1). He submits R3

D2

to the central code-base and produces a new shared revision R3
C .

The following example illustrates the content of a conflict. The markers
<<<<<<< and >>>>>>> delimit the conflict area, and inside the conflict
area the marker ======= separates the two colliding updates.

1 <h3>List</h3>
2 <table class="table table-hover table-condensed">
3 <!-- Conflict area Start -->
4 <<<<<<<
5 <thead class = "header">
6 =======
7 <thead class= "table_header">
8 >>>>>>>
9 <!-- Conflict area End -->

10 <tr>
11 <th>#</th>
12 <th>First Name</th>
13 <th>Last Name</th>
14 </tr>
15 </thead>
16 ...
17 </table>

The conflict illustrated above can be resolved by the following CRR:

{
"regex": "(?:([^2])[^_]eader(\"))++",
"replacement": "$1table_header$2"

}

The above CRR searches for the character sequence “eader” preceded by
a case insensitive character and between quotes, and replaces the characters
between the quotes with the string "table_header", leaving the rest unmodified.

6 Fraternali, Herrera & Tariq

3.2 Git Rerere

Git Rerere (REuse REcorded REsolution)2 is a component of Git conceived
to resolve conflicts that have already been handled in previous code integration
steps. When a new conflict occurs the tool automatically records it in a pre-image
file and once the conflict has been resolved manually by the developer it stores
the conflict resolution in a post-image file. When the same conflict occurs again,
Git Rerere reuses the recorded solution to manage the conflict automatically. Git
Rerere is typically used in the development a long-lived feature branch where
developers execute several testing cycles before the release of the feature. The
pre- and post-images of a conflict are stored in a sub-directory named by hashing
the content of the conflict area of the file. When a conflict occurs, Rerere extracts
the conflict area, generates the hash, searches for the directory with that name,
extracts the post-image and uses it to perform a merge with the current state of
the file, thus resolving the conflict and preserving the rest of the non-conflicting
changes. Git Rerere is designed to automate the resolution of multiple identical
conflicts and cannot handle similar pre-images to apply a recorded solution to
a non-identical conflict. This aspect shows up also in the internal organization
of the tool. Due to the use of conflict hashes as access keys to the directory
organization, any change in the hash of a conflict prevents finding the recorded
solution. Moreover, when multiple conflicts in a source file occur, Rerere gener-
ates a single hash per source file using all conflict areas. If a new conflict occurs
in a file where a previously resolved conflict existed, a new hash is created and
the previously resolved conflict is no longer retrieved.

Almost Rerere aims at resolving automatically not only the conflicts that are
identical to previously seen instances, but also those that are similar to instances
solved in the past. It identifies conflicts with the same pattern, clusters them
based on a similarity criterion, and associates each cluster with a rule synthesized
from the conflict resolutions of the cluster. It does not depend on the stability
of the hash of the conflicts but rather exploits the changes in the conflict text
to learn a pattern that characterizes a family of related conflicts and to build a
replacement rule that can be applied to resolve future similar occurrences.

4 Proposed Approach

The proposed approach consists of three main steps: the identification of similar
conflicts using the Jaro-Winkler string similarity metrics; 2) the grouping of
similar conflicts using an agglomerative hierarchical clustering algorithm; 3) the
synthesis of conflict resolution rules by giving clusters in input to a genetic
algorithm that computes a search and replacement expression.

2 https://git-scm.com/docs/git-rerere

https://git-scm.com/docs/git-rerere

Almost Rerere 7

4.1 Almost Rerere architecture

Figure 1 shows the architecture of Almost Rerere, which comprises four main
components: the Submission Manager, the Cluster Manager, the CRR Genera-
tor, and the Conflict Resolver.

Fig. 1: Almost Rerere architecture

The Submission Manager extends Git Rerere and orchestrates the processing
of a merge or commit command issued by the developer. The Cluster Manager
implements the online hierarchical clustering algorithm that assigns an input
conflict to an existing or new cluster. The CRR Generator exploits the method
proposed in [3] and is triggered every time a conflict is added to a cluster. It
synthesizes a CRR in the form of a regex & replacement expression that can
be applied to the resolution of the conflicts of that cluster. Finally, the Conflict
Resolver is called when a new conflict occurs. It searches for the cluster with the
highest similarity index to the conflict, extracts the CRR, applies it, and returns
the result as the possible solution to the conflict.

4.2 Conflict Cluster Generator

The core contribution of Almost Rerere is the recognition that a new conflict is
similar to an occurrence already addressed in the past, so that a generalization
of the previously applied resolution can be reused to cope with the new conflict.
Generalizing a CRR requires identifying a pattern common to multiple conflicts,
which consists of a constant and of a variable part. The constant part is used to
match the conflicts that can be addressed by the CRR. The variable part enables
addressing the differences in the conflicts with the same pattern. This approach
requires two elements: a metrics for quantifying the distance between conflicts
and an algorithm to group conflicts based on such a distance.

Almost Rerere computes the distance between conflicts based on a string
similarity measure. Several string similarity algorithm were evaluated on a test
data set of about 200 code line pairs. The Jaro-Winkler similarity algorithm

8 Fraternali, Herrera & Tariq

showed the highest similarity scores of code lines in the same pair in 80% of
cases and was selected for the implementation of the clustering algorithm. A
similarity threshold was determine by calculating the precision, recall and F1 for
several thresholds, it was determine that 0.80 was the value maximizing F1. The
intuition behind the Jaro-Winkler algorithm performing better on the conflict
data set is that it gives more importance to differences near the start of the string
than to those near the end. It is common in many programming languages that
the beginning of a line of code comprises reserved words, e.g. type declarations
(int, double, String), access declarations (public, private, protected), flow control
specifications (if, while, switch), etc. that are likely to remain unchanged. The
end of a code line, on the other hand, is occupied by variables and operations
declared by the developer, which are more likely to be updated.

The conflicts are grouped using hierarchical agglomerative clustering (HAC)
[13]. When a conflict with its respective resolution is received from the Submis-
sion Manager, the cluster with the highest similarity score is searched. If the
similarity score of the retrieved cluster is below a threshold (0.80), a new cluster
is generated and the conflict is assigned to it; otherwise the conflict is added to
the cluster. In both cases, the CRR generator is called to create a new rule or
an improved version of an existing rule for the cluster. Each cluster has a unique
id and contains an array of objects composed by the conflict and its resolution.
Figure 2 shows an example.

1 {
2 "1": [
3 {
4 "conflict":"if (g instanceof UndirectedGraph){",
5 "resolution":"if (g instanceof UndirectedGraph<?,?>){"
6 },
7 {
8 "conflict":"if (!(graph instanceof DirectedGraph)){",
9 "resolution":"if (!(graph instanceof DirectedGraph<?, ?>)){"

10 },
11 {
12 "conflict":"if (this.graph instanceof UndirectedGraph){",
13 "resolution":"if (this.graph instanceof UndirectedGraph<?,?>){"
14 }
15]
16 }

Fig. 2: Example of Conflict Cluster

Almost Rerere 9

4.3 CRR generator

The CRR Generator exploits the general-purpose string search & replacement
algorithm of [3], which takes as input a series of examples, consisting of pairs
describing the original string and the desired modified string and outputs a
search pattern and a replacement expression. The former is a regular expression
that describes both the portions of the string to be replaced and those to be
reused; the latter describes how to build the output string.

The method of [3] employs a Genetic Programming algorithm inspired by
concepts of biological evolution such as reproduction, mutation, recombination,
and selection. The best regular expression is chosen based on a fitness function.
The set of examples is divided in three subsets: training, validation and testing.
The training examples are used to generate an initial population of 16 candidate
expressions for each training sample. The validation set is used to measure the
fitness of the candidates in the initial population. The candidate expressions
are applied to the test samples and the precision and recall with respect to
the ground truth are computed, as well as the expression complexity. Next, the
best candidates are selected and recombined in the next iteration of the process.
Finally, the test set is used to evaluate the best candidate expression.

The method of [3] has been adapted to take as input a conflict cluster, to
dynamically partition the input samples into the training, validation and testing
sets, and to output a CRR for each cluster. As an example of the generated
CRR, Figure 3 shows the rule generated from the cluster of Figure 2.

1 {
2 "1": [
3 {
4 "regex": "(h)(?=\))",
5 "replacement": "$1<\?,\?>"
6 }
7]
8 }

Fig. 3: The CRR generated from the CC of Figure 2

The CRR searches for a character h followed by a closed parenthesis and the
replacement expression then inserts the expression <?,?> after the character h
to implement the desired transformation.

When the number of available samples is small, the algorithm is sensitive
to the way in which the samples are assigned to the training, testing, and val-
idation sets. To mitigate this problem, the samples are randomly divided into
the training, testing and validation sets and the algorithm is executed multiple
times. If the generated CRR is the same across the executions, which indicates

10 Fraternali, Herrera & Tariq

that the algorithm has converged, it is saved. Otherwise, all solutions are kept,
and the CRR is composed as the disjunction of the computed expressions. In the
experiments, two rounds of execution proved to afford the best trade-off between
performance and accuracy of the synthesised CRRs.

4.4 Conflict resolver

This component has the responsibility to resolve the new conflicts when the
developer executes a git merge command. The component searches for the cluster
with the highest similarity measure with respect to the incoming conflict. The
CRR of the selected cluster is applied and the result is returned to the developer.

5 Evaluation

Almost Rerere was evaluated in two case studies: the development from scratch of
a web-based crowd sourcing platform using an Agile Model-Driven Development
tool and approach, and the resolution of conflicts extracted from the reproduc-
tion of commits in the Git repositories of long-run open-source projects.

5.1 Integration of handwritten and generated code

The goal of the test was to make an evaluation of how Almost Rerere could
help in resolving conflicts during the life-cycle of a Model-Driven Development
project. The application was developed using IFMLEdit.org3 [5], an online tool
for the rapid prototyping of web and mobile applications based on the Inter-
action Flow Modeling Language (IFML)[7]. The developed application was a
web-based crowd-sourcing platform for the selection and annotation of images.
The development process of the application was divided into seven sprints. At
each sprint, the developers applied changes to the IFML model, to the code gen-
eration templates, which combine HTML, JavaScript and CSS, and manually
modified the automatically generated code to add non-modelled features. Two
developers worked in parallel, the main repository of the code was the master
branch, each developer worked on his own branch and integrated the changes to
the master branch once completed. During the sprints, both developers updated
the code generation templates. When the code was generated from the modified
templates, the changes would propagate to all the relevant pages. In other cases,
the changes were made directly on the generated code. Both developers commit-
ted changes to their local branch. When the local branches were merged into the
main repository, conflicts arose because independent changes were applied to the
same lines of code. Whenever a conflict was detected, Almost Rerere intervened
3 https://ifmledit.org/

https://ifmledit.org/

Almost Rerere 11

to resolve the conflict or to record the manual resolution provided by the devel-
oper. During the seven sprints about 200 conflicts were resolved. Figure 4 shows
the total number of conflicts and the number of those resolved by Almost Rerere
at each sprint. In the first sprint, it can be observed that no conflict is resolved,
because no recorded conflicts existed at that point. In the second sprint, only 4
conflicts were resolved, because the number of samples available was small. As
the number of occurring conflicts increased, also the number of resolutions by
Almost Rerere grew.

Fig. 4: Total conflicts vs. Conflicts resolved by Almost Rerere

Overall Almost Rerere proposed a resolution for 57% of conflicts occurred
during development. The quality of the resolution depends on the intra-cluster
similarity. Almost Rerere created 21 clusters for 121 different conflicts. 7 of
those clusters have an intra-cluster similarity above 90%. By manual inspection,
it was observed that for those clusters the CRR provided a good result directly
applicable to solve the conflicts. In other 7 cases, clusters have intra-cluster
similarity below 90% and the proposed resolutions required manual inspection
to verify that they were syntactically and semantically correct. In the remaining
cases, the cluster contained only 1 or 2 samples and Almost Rerere could not
generate a CRR for such isolated cases. It was observed that when a cluster had
few samples, the generated CRR was very sensitive to small variations, such as
spaces. As the number of conflicts in a cluster increased, the tool was able to
generalize the CRR by taking into account the possible variations.

12 Fraternali, Herrera & Tariq

5.2 Large project repositories

To evaluate the quality of the automatic resolution provided by Almost Rerere,
it was necessary to know the actual resolutions committed by developers and
use them as ground-truth. In [16], nine data sets based on Git repositories from
active Java open-source projects were created by extracting all the differences
between the sequential commits to the master branch. From six such repositories,
we extracted all the single-line changes and used them as conflicts resolved by
developers. For each single-line change, the original state was considered as the
conflict and the after state as the resolution. Almost Rerere was fed with the
content of each conflict file, to execute the cycle of resolving the conflict, adding
it to the corresponding cluster and updating the generated CRR. The provided
resolution for each conflict was compared to the ground-truth and the similarity
index between them was saved.

Almost Rerere provided resolutions for a high number of conflicts in each
repository: Ant 54%, Cobertura 70%, Eclipse SWT 59%, FitLibrary 54%, JGrapT
68%, JUnit 49%. Table 1 shows the statistics of the evaluated repositories. Over-
all Almost Rerere resolved 55,7% of conflicts.

Repository N° Conflicts N° Cluster N. Conflicts Resolved % Resolved
Ant 10500 1294 5667 53,97

Cobertura 1260 179 885 70,24
Eclipse SWT 1355 382 799 58,97
FitLibrary 4399 337 2371 53,90
JGraphT 3200 238 2135 66,72
JUnit 4424 388 2166 48,96

Total 25138 2818 14023
Table 1: Total conflicts, Clusters and Resolved conflicts

To verify the quality of the generated resolutions, they were classified accord-
ing to the Jaro-Winker similarity with the original resolution. Three intervals
were considered: 100 - 90 % for which synthesized resolution was equal or al-
most identical to the original one; 89 - 80 % for which the synthesized resolution
was close to the original one with only small variations; ≤ 79 %, for which the
synthesized resolution was rather different from the original one and required
the developer’s intervention (see Table 2). Out of the 14.023 conflicts resolved,
65,8% of the resolutions had a similarity score with the original resolution ex-
ceeding 90%. This shows that Almost Rerere was able to synthesize an accurate
resolution in most cases based on previously resolved similar conflicts. Table 3
classifies the clusters by their intra-cluster similarity. It can be observed that
the clusters with less than 79% intra-cluster similarity account for almost 50%
of the total clusters. They represent conflicts that are not common (occurred
only once) or not similar to other conflicts. It was also observed that in trivial

Almost Rerere 13

Repository 100 - 90 % 89 - 80 % < 79 %
Ant 3717 65,59% 791 13,95% 1159 20,45%

Cobertura 577 65,19% 100 11,29% 208 23,50%
Eclipse SWT 567 70,96% 128 16,02% 104 13,01%
FitLibrary 1690 71,27% 434 18,30% 247 10,41%
JGraphT 1748 81,87% 221 10,35% 166 7,77%
JUnit 1470 67,86% 370 17,08% 326 15,05%

Total 9229 2044 2210
Table 2: N° conflicts by resolution similarity intervals

Repository 100 - 90 % 89 - 80 % 79 - 0 %
Ant 127 485 682

Cobertura 27 33 119
Eclipse SWT 62 116 204
FitLibrary 48 132 157
JGraphT 26 86 126
JUnit 43 162 183

Total 333 1014 1471
Table 3: N° of cluster by intra-cluster similarity intervals

cases Almost Rerere could provide accurate resolutions even with very few ex-
amples, whereas in more complex cases it required more samples to generalize.
For example, in the JGraphT repository, Almost Rerere created a cluster with
40 conflicts with intra-cluster similarity of 84%. Some examples of conflicts are:

1 [
2 {
3 " c o n f l i c t " : " pub l i c Br ead thF i r s t I t e r a t o r (Graph g) {" ,
4 " r e s o l u t i o n " : " pub l i c Br ead thF i r s t I t e r a t o r (Graph<V, E> g) {"
5 } ,
6 {
7 " c o n f l i c t " : " pub l i c UnmodifiableGraph (Graph g) {" ,
8 " r e s o l u t i o n " : " pub l i c UnmodifiableGraph (Graph<V, E> g) {"
9 } ,

10 {
11 " c o n f l i c t " : " pub l i c CycleDetector (DirectedGraph graph) {" ,
12 " r e s o l u t i o n " : " pub l i c CycleDetector (DirectedGraph<V, E> graph) {"
13 }
14]

The common pattern is the addition of the generic expression <V, E>. In this
case the learning process was simple and with only four samples Almost-Rerere
converged to a CRR that provides a correct resolution:

1 [
2 {
3 " regex " : " (h) () " ,
4 " replacement " : "$1<V, $2E> "
5 }
6]

A different case is exemplified in the Cobertura repository, where a cluster con-
tained the following conflicts:

14 Fraternali, Herrera & Tariq

1 [
2 {
3 " c o n f l i c t " : " return numberOfCoveredBranches ; " ,
4 " r e s o l u t i o n " : " return getRawCoverageData () . getNumberOfCoveredBranches () ; "
5 } ,
6 {
7 " c o n f l i c t " : " return numberOfCoveredLines ; " ,
8 " r e s o l u t i o n " : " return getRawCoverageData () . getNumberOfCoveredLines () ; "
9 } ,

10 {
11 " c o n f l i c t " : " return numberOfLines ; " ,
12 " r e s o l u t i o n " : " return getRawCoverageData () . getNumberOfValidLines () ; "
13 } ,
14 {
15 " c o n f l i c t " : " return numberOfBranches ; " ,
16 " r e s o l u t i o n " : " return getRawCoverageData () . getNumberOfValidBranches () ; "
17 }
18]

In this case Almost Rerere, based on the first conflict, generated a CRR
that transforms the name of the variable into a getter method respecting the
Java notation. When the second conflict occurred, the CRR continued to work
well. For the third conflict, the expression did not generated the expected result
because the resolution added the word Valid to the name of the method. Almost
Rerere integrated the ground truth of the third example into the cluster and
generated a composite CRR, with different patterns for the two cases:

1 [
2 {
3 " regex " : " (m∗+)\w(umberOfCovered) (\w++) (;) " ,
4 " replacement " : "$1getRawCoverageData \(\) \ . getN$2$3 \(\) $4"
5 } ,
6 {
7 " regex " : "\w(\w\w\w\w\w\w\w) (\w+)" ,
8 " replacement " : "getRawCoverageData \(\) \ . getN$1Valid$2 \(\) "
9 }

10]

The composite CRR also worked when the fourth conflict occurred and pro-
vided an accurate resolution. This examples shows that Almost Rerere can adapt
quickly when different unseen examples become available. Still it is sensitive to
small changes when the number of samples available is small.

6 Conclusions

The paper describes an approach for the automatic resolution of conflicts during
code integration on Git repositories. The approach is based on the synthesis of a
search regular expression and a replacement expressions from previously resolved
similar conflicts. A reference implementation, Almost Rerere, which extends the
functionality of Git Rerere, was introduced, and the components in charge of
executing the different steps of the approach, such as conflict clustering, regular
expression generation and conflict resolution, were described. The proposed ap-
proach was evaluated in two use cases showing that it was able to resolve more
than 55% of the observed conflicts. It was also shown, in the second use case, that
more than 65% of the generated resolutions had a similarity score above 90%

Almost Rerere 15

with the ground truth. Future work will focus on improving the Cluster Man-
ager by adding a dynamic re-clustering capability to keep cluster intra-similarity
high, this would prevent the CRR and CC become outdated over time. It would
also extend the approach for the detection and resolution of multi-line conflicts.

References

1. Baker, B.S.: On finding duplication and near-duplication in large software systems.
In: Proceedings of 2nd Working Conference on Reverse Engineering. pp. 86–95.
IEEE (1995)

2. Bartoli, A., Lorenzo, A.D., Medvet, E., Tarlao, F.: Inference of regular expressions
for text extraction from examples. IEEE Transactions on Knowledge and Data
Engineering 28(5), 1217–1230 (May 2016)

3. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Automatic search-and-replace
from examples with coevolutionary genetic programming. IEEE transactions on
cybernetics (2019)

4. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection us-
ing abstract syntax trees. In: Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272). pp. 368–377. IEEE (1998)

5. Bernaschina, C., Comai, S., Fraternali, P.: Ifmledit.org: model driven rapid pro-
totyping of mobile apps. In: Proceedings of the 4th International Conference on
Mobile Software Engineering and Systems. pp. 207–208. IEEE Press (2017)

6. Bernaschina, C., Falzone, E., Fraternali, P., Herrera, S.: The virtual developer: In-
tegrating code generation and manual development with conflict resolution. ACM
Transactions on Software Engineering and Methodology (TOSEM) 28(4), 20
(2019)

7. Brambilla, M., Fraternali, P.: Interaction flow modeling language: Model-driven UI
engineering of web and mobile apps with IFML. Morgan Kaufmann (2014)

8. De Souza, C.R., Redmiles, D., Dourish, P.: Breaking the code, moving between
private and public work in collaborative software development. In: Proceedings of
the 2003 International ACM SIGGROUP conference on Supporting group work.
pp. 105–114. ACM (2003)

9. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detect-
ing duplicated code. In: Proceedings IEEE International Conference on Software
Maintenance-1999 (ICSM’99).’Software Maintenance for Business Change’(Cat.
No. 99CB36360). pp. 109–118. IEEE (1999)

10. Hamza, J., Kunčak, V.: Minimal synthesis of string to string functions from exam-
ples. In: International Conference on Verification, Model Checking, and Abstract
Interpretation. pp. 48–69. Springer (2019)

11. Jaro, M.A.: Advances in record-linkage methodology as applied to matching the
1985 census of tampa, florida. Journal of the American Statistical Association
84(406), 414–420 (1989)

12. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Deckard: Scalable and accurate tree-
based detection of code clones. In: Proceedings of the 29th international conference
on Software Engineering. pp. 96–105. IEEE Computer Society (2007)

16 Fraternali, Herrera & Tariq

13. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254
(1967)

14. Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code. IEEE Transactions on Software
Engineering 28(7), 654–670 (2002)

15. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix
trees. In: 2006 13th Working Conference on Reverse Engineering. pp. 253–262.
IEEE (2006)

16. Kreutzer, P., Dotzler, G., Ring, M., Eskofier, B.M., Philippsen, M.: Automatic
clustering of code changes. In: Proceedings of the 13th Int. Conference on Mining
Software Repositories. pp. 61–72. MSR ’16, ACM, New York, NY, USA (2016)

17. Le Nguyen, H., Ignat, C.L.: An analysis of merge conflicts and resolutions in
git-based open source projects. Computer Supported Cooperative Work (CSCW)
27(3-6), 741–765 (2018)

18. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet physics doklady. vol. 10, pp. 707–710 (1966)

19. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate
string searches. In: 2008 IEEE 24th International Conference on Data Engineering.
pp. 257–266. IEEE (2008)

20. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: Cp-miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Transactions on software Engineering
32(3), 176–192 (2006)

21. Marcus, A., Maletic, J.I.: Identification of high-level concept clones in source code.
In: Proceedings 16th Annual International Conference on Automated Software
Engineering (ASE 2001). pp. 107–114. IEEE (2001)

22. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the automatic detection of
function clones in a software system using metrics. In: icsm. vol. 96, p. 244 (1996)

23. Meng, N., Hua, L., Kim, M., McKinley, K.S.: Does automated refactoring obvi-
ate systematic editing? In: Proceedings of the 37th International Conference on
Software Engineering-Volume 1. pp. 392–402. IEEE Press (2015)

24. Meng, N., Kim, M., McKinley, K.S.: Lase: locating and applying systematic edits
by learning from examples. In: Proceedings of the 2013 International Conference
on Software Engineering. pp. 502–511. IEEE Press (2013)

25. Miller, R.C., Myers, B.A.: Lapis: Smart editing with text structure. In: CHI Ex-
tended Abstracts. pp. 496–497 (2002)

26. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algo-
rithm suitable for similar text strings. Acta Informatica 18(2), 171–179 (1982)

27. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular biology
48(3), 443–453 (1970)

28. Smith, T.F., Waterman, M.S., et al.: Identification of common molecular subse-
quences. Journal of molecular biology 147(1), 195–197 (1981)

29. Tichy, W.F.: Rcs—a system for version control. Software: Practice and Experience
15(7), 637–654 (1985)

30. Winkler, W.E.: String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. (1990)

	Almost Rerere: an approach for automating conflict resolution from similar resolved conflicts

