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Abstract. We describe the process and outcome of our efforts to port a
legacy Fortran benchmark code to heterogeneous GPU-accelerated com-
puting architectures using OpenMP. The benchmark code is one of the
multi-zone NAS Parallel Benchmarks (NPB-MZ) called SP-MZ. This
“mini-app” mimics the computation and data movement that is found in
popular legacy and modern implicit computational fluid dynamics (CFD)
solvers. Our objective was to examine how efficiently legacy Fortran
codes can be ported to accelerators by leveraging OpenMP directives.
We describe the development and optimization process and demonstrate
the performance impact of various code modifications. We show select
profiling results from the NVIDIA Visual Profiler (nvpp) to help others
diagnose and overcome performance issues in their own applications. We
present results for two compute systems endowed with NVIDIA V100
accelerators.

Keywords: Accelerator · Fortran · GPU · OpenMP · Implicit CFD

1 Introduction

The latest computing architectures that are deployed in existing supercomputing
installations have very closely followed hardware trends that were propelled by
emergent fields of computational science, such as machine learning, data mining
and artificial intelligence. These emergent fields use methodologies that can take
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advantage of large numbers of low-power processors, as they require simple linear
algebra operations to be performed on compactly sized chunks of independent
data. As a result, high levels of parallelism are possible because concurrency
is relatively easy to realize when processing data without the need of frequent
exchanges of information. The pipelining that is possible by means of forming
and executing small kernels on streams of data can be done very efficiently on
large numbers of co-processors, similar to how graphics processing units (GPU)
operate to form graphics pipelines. This hardware model was adopted as a means
to provide a large number of theoretical floating point operations for the cost
incurred; here we note that cost implies powering, packaging, and cooling the
processing units.

While these GPU architectures are generally optimal in data-science fields,
they are more difficult to exploit for the traditional algorithms of physical prob-
lems, which involve the solution to partial-differential equations that have inher-
ent strong coupling of the data structures. However, this shift in hardware is
also inevitable due to the exhaustion of raw computational power achievable
by increasing processor clock-speeds and physically compacting the processor
footprints. As a result, researchers in the physical sciences that require more
computational power and performance have to undergo a paradigm shift, where
the methods must take advantage of the new architectures. Legacy codes gen-
erally have a history of testing, user bases, I/O, and other aspects that make
them staples of the HPC landscape. Thus refactoring and porting them to GPU
accelerated nodes is critically important. Our work specifically explores a path
forward for porting codes written in Fortran that are already OpenMP enabled
on the CPU. For reasons of portability, the OpenMP API [3] is an appropriate
direction. Alternative APIs such as OpenACC [2] will require similar modifica-
tions, with similar syntax, and can benefit from the work presented here.

Other avenues for porting methodologies exist, for example frameworks that
act as “middle-writers” for executing code such that porting, data movement
and portability are entirely opaque to the programmer. Kokkos [15] and Raja
[17] are two such frameworks that have been demonstrated to make simulation
software portable. However, this is not a viable option for porting legacy codes,
and especially codes written in legacy Fortran.

This manuscript is organized as follows. First, we discuss the OpenMP frame-
work, and in particular the “Target” constructs that are used for programming
co-processor accelerators. We then describe our general porting strategy and
discuss some related work. Section 2 discusses the parallel benchmark mini-app
that we have chosen for this study. Section 3 describes the evaluation systems,
compiler directives and run-time execution environment for our experiments.
Results are presented alongside the code modifications that were made and are
found in Sects. 4 and 5. We provide some concluding remarks in the final section.

1.1 Programming with OpenMP Target Offload

There are various methods of programming co-processor accelerators. Vendor
specific libraries, for example, such as NVIDIATM cuBLAS [4] or cuFFT [1]
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usually provide good performance with a small programming effort. However,
they limit portability and require that the application kernels match the pat-
tern of the library routines. Low level frameworks such as CUDATM [5] or
OpenCL [16] are suitable for general kernel patterns but require higher pro-
gramming effort. The use of CUDA also limits portability.

Compiler directive based APIs, such as OpenMP, require only moderate pro-
gramming effort with acceptable performance for multi-core nodes. OpenMP
is a well established programming API for shared memory systems that was
first standardized in 1997. It has since been augmented such that it includes
directives for support of accelerators. It provides compiler directives, runtime
library routines and environment variables. Accelerator programming support
has been available since OpenMP 4.0 and the functionality was greatly extended
in OpenMP 4.5. Support is provided to

– Identify kernels for offloading to the accelerator device
– Semi-explicitly specify parallelism
– Manage data transfer between the host and accelerator device.

The new OpenMP 4.5 functionality seamlessly integrates into existing OpenMP
code and is supported by many compilers such as GNU Fortran (gfortran) [12],
CrayTM ftn, and IBMTM xlf.

1.2 Porting Strategy

As alluded to earlier, there are three high-level aspects of porting solvers to het-
erogeneous accelerated systems that must be evaluated in advance of committing
to a given approach:

– performance: the amount of performance that is desirable and is realizable
when using accelerators

– portability: what level of abstraction can be maintained to allow for a desired
level of portability across systems

– intrusiveness: the amount of alteration to the baseline code and to the data
structures that is necessary or is tolerated.

The focus of this work is high performance for the accelerator. We aimed towards
portability by employing the OpenMP standard for accessing accelerators. In
terms of code alteration, minimal modification to the baseline code was desired
and we tried to limit re-factoring of code and changes in data structures. During
the development process we documented the code changes and their impact on
GPU and CPU performance. In essence, our effort consisted of an assessment of
performance gains as a function of the level of alteration made to the mini-app.

1.3 Related Work

Previously, the C implementations of the single zone NAS Parallel Benchmarks
FT, LU and BT [10]. Were ported to accelerators using OpenMP 4.5, which
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was presented at OpenMPCon 2018 [14]. The focus of the current work differs
from the previous work in that we targeted multi-zone codes, and chose SP-
MZ implemented in Fortran as an example. Use of OpenACC to parallelize
CFD algorithms is described in [22]. Various other work has been done using
OpenACC for CFD codes [19]. The focus of the current work differs from previous
efforts in that we targeted multi-zone CFD codes implemented in Fortran and
we are using OpenMP 4.5 as the API.

The basis of our work was established during a Hackathon event sponsored
by the Department of Energy [7].

2 NAS Parallel Benchmark SP-MZ

This effort centered on legacy computational fluid dynamics solvers written in
Fortran and their potential for porting to and acceleration with heterogeneous
computing systems. In order to avoid the complexity of porting a production
solver, we restricted this effort to a mini application that retains the character of
the Navier-Stokes equations and employs a common numerical method. While
modern CFD solvers employ a mix of structured and unstructured grids, we
restricted this work to a structured discretization, which is typical of legacy
codes, to avoid the complexity of building kernels out of unstructured data.

We used the multi-zone NAS parallel benchmark suite in this work. The
NPB-MZ [23] suite consists of three mini applications. These are multi-zone
versions of the well known NAS Parallel Benchmarks BT, SP and LU [10,
21]. SP-MZ supports distributed and shared-memory parallelism with MPI and
OpenMP. Zone-level parallelism is exploited using MPI and parallelism within
each zone is exploited using OpenMP. Version 3.4 of the SP-MZ mini-app has
3,515 total lines of code (LoC). The mini-app contains only 1809 LoC associated
with the implicit integration (i.e. the core arithmetic computation of the CFD
solver), which includes MPI function calls and OpenMP directives. The small
size of the mini-app allows an end-to-end refactoring and several iterations on
offloading strategies. The general execution flow of the original SP-MZ hybrid
code is depicted in Fig. 1.

2.1 The Underlying Numerical Method

The mini application is intended to mimic the performance characteristics of
CFD applications that use the diagonalized Beam-Warming [11] alternating
direction implicit (ADI) algorithm (i.e. the Pulliam-Chaussee algorithm). Major
CFD software packages use this algorithm to simulate a wide variety of com-
pressible flows for external aerodynamics applications. SP-MZ uses this implicit
integration algorithm and it is designed to model the key performance charac-
teristics of larger CFD applications.

Key features include the formation of the explicit right-hand-side (RHS)
vector with finite differences and the factorization of the scalar pentadiagonal
(SP) matrices along each grid line in all three directional sweeps. For a mesh
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Fig. 1. Execution flow of the SP-MZ Benchmark

with N3 points, the ADI scheme requires that N2 SP line matrices (with N
rows) be factored and equations solved in each of the sweeps. Fast assembly
and factorization of the SP matrices is key to achieving high performance in the
mini-app (and similar real CFD applications). In any refactoring effort of similar
algorithms, efficient linear solvers on GPUs are needed for scalar and block tri-
and penta-diagonal matrices.

Briefly, the SP-MZ benchmark solves a set of discretized nonlinear partial
differential equations (PDEs) based on the Navier-Stokes equations. When dis-
cretized on a structured grid using 1st or 2nd-order (central) finite-differences for
spatial derivatives and an implicit backwards Euler time differencing method,
the three-dimensional equations result in a banded, block-matrix with three,
non-adjacent sub- and super-diagonal bands. The block-matrix elements are
5× 5 submatrices. This block-matrix system is considered too large to solve
with either direct or iterative methods. Instead, the discretized PDE system is
approximately factorized (AF) spatially such that each spatial direction can be
solved independently. That is, if the original discretized system is written as:

[I − h{Ax + By + Cz}](Un+1 − Un) = R(Un) (1)

the approximate factorization, following Beam and Warming [11], is:

[I − h Ax][I − h By][I − h Cz](Un+1 − Un) = R(Un) (2)

Here, Ax, By, Cz contain the implicit spatial difference operators, Un+1 is the
state vector solution at the next (future) time-step, h is the step size, and R
contains all forcing terms and explicit terms at the nth time level. Equation 2
can be solved in three sequential steps representing directional solution sweeps:

[I − h Ax]δUx = R(Un) (3)
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[I − h By]δUy = δUx (4)

[I − h Cz]δU = δUy (5)

with δU = Un+1 − Un. In this form, which resembles an alternating direction
implicit (ADI) algorithm, only block tridiagonal matrices must be factored. Note
that in the spatial decoupling in each directional sweep, multiple block tridiago-
nal systems must be solved. That is, if the mesh has Nx ×Ny ×Nz points, then
Ny×Nz block-tridiagonal line matrix equations must be solved in the x solution
direction sweep.

The approximate factorization form requires less storage and less computa-
tional time to solve than the nonfactorized Eq. 1. The computational cost and
storage can be reduced further by solving the diagonalized form [10,20] of Eq. 5.
The block-matrix elements have all real eigenvalues and a complete set of eigen-
vectors. As such, the coupled systems are cast into a decoupled, diagonal form
with some loss of accuracy. The diagonalization recasts the problem from one
of solving block-tridiagonal systems (with five unknowns per block) to one of
solving five decoupled scalar-pentadiagonal systems. Furthermore, three of the
SP systems have the same matrix and can be solved together. The diagonaliza-
tion requires some additional vector-matrix operations compared to the coupled
form, but uses less storage and requires fewer computations. Further details on
the diagonalization can be found in [20].

The multi-zone aspect of the SP-MZ relates to the domain decomposition
approach. The global three-dimensional mesh is partitioned into the x and y
directions. The 2nd-order spatial scheme requires an overlap of ±1 ghost (or
rind) points. The implicit AF scheme is applied independently within each mesh
zone and each MPI process is assigned one or more zones. That is, within each
time-step, each zone is integrated independently.

The major computational costs of the SP-MZ benchmark are the evaluation
of the right-hand-side terms R(Un) in Eq. 5, the assembly of the three SP matri-
ces, and solution of the five decoupled equations in the three spatial directions.
The SP systems are solved using a variant of the Thomas algorithm (TA) for
scalar matrices. The TA is inherently sequential, however, many independent
mesh-line matrices can be solved concurrently.

3 Testing Architectures

Two types of systems were used in this work: the IBM-built “Ascent” system,
which is similar to the “Summit” supercomputer [9] and the Cray-built “Cori”
[6] system.

3.1 The Ascent/Summit Compute Node

The Ascent system [8] is located at the Oak Ridge Leadership Computing Facil-
ity (OLCF). Ascent is a system that is identical to the Summit supercomputer
in terms of compute node hardware, and it serves as a training system. Each
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compute node has two banks of 256 GB DDR4 memory, and each bank is con-
nected via a 170 GB/s bus to an IBM Power9 CPU with 21 physical cores. Each
core can support up to 4 hardware threads for a total of 84 threads per CPU.
The CPUs are connected to each other with a 64 GB/s bus. Each CPU has
access to 3 Volta V100 GPUs, and each of the GPU accelerators accesses 16 GB
HBM2 memory via a 900 GB/s bus. The 3 GPU accelerators on each bank are
connected to the CPU and to each other via a 50 GB/s NVLink2 bus.

One Fortran compiler available on Ascent and the one used in this work is the
Fortran compiler “xlf” that is part of the IBMTMXL compiler suite. The message
passing interface for Ascent is provided by IBM Spectrum MPI. Interactive job
submission and run-time support is provided through the IBM Spectrum Load
Sharing Facility (LSF).

For our study we used cuda/10.1 and the IBM xlf v16.1 compiler with the
following flags:

x l f −q f i x ed −qpreproce s s −O3 −g −q64 −qsmp=omp −qo f f l o ad

3.2 The Cori Compute Node

The Cori system is located at NERSC. Cori is a Cray XC40 supercomputer
that comprises of a mix of Intel Xeon “Haswell” nodes and Intel Xeon Phi
“Knights Landing” nodes. A small set of “Skylake” nodes (18 in total) with
GPU accelerators are accessible via Cori. This will henceforth be referred to
as Cori GPU. There are 2 Skylake CPU sockets on each Cori GPU node, each
containing 20 cores, and sharing 384 GB DDR4 memory. Each Cori GPU node
contains 8 Volta V100 GPUs, each with 16 GB HBM2 memory, and connected to
each other in a “hybrid cube-mesh” topology via a NVLink2 interconnect. The
Cori GPU nodes are intended to help users prepare for the GPU-accelerated
nodes in the Perlmutter supercomputer to be deployed at NERSC in 2020.

The Fortran compilers available on the Cori GPU nodes include GNU-8.1.1,
PGI-19.7, Intel-18.0.1.163, Cray-9.0.0 and LLVM/Flang-7.0. Neither PGI nor
Intel compilers currently provide OpenMP GPU offload support. We also found
that the OpenMP GPU offload support in the GNU and LLVM/Flang compilers
failed even in simple benchmark programs. Therefore, we used the Cray com-
piler in this study. The Cray compiler is accessed using the CrayTM“ftn” MPI
and math library wrapper script. A major limitation of the Cray compiler on
Cori GPU is that the Cray MPI stack is not supported and so Cray compiler
experiments were limited to single process tests only.

For our study we used Cray-9.0.0 with the following flags:

f tn −O3 −h omp −h noacc −hacce l=nvid ia70
−h cpu=haswe l l −h fp3

The reason we optimized for the Haswell processor architecture is that Cray-9.0.0
does not provide optimizations for the Skylake processor architecture.
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4 From OpenMP 3.1 to OpenMP 4.5

In this section we describe our porting strategy and discuss code transformations
that enabled performance gains.

4.1 Identifying Kernels and Describing the Parallelism

In our current implementation we focused on exploiting GPU parallelism within
the zones. We demonstrate our approach with the example in the code snippets
shown in Fig. 2, part of one of the most time-consuming routines in the module
that solves the factored system in the x-direction (running index “i”). This seg-
ment implements forward and backward substitution, and portions of the code
have been removed to ease presentation. The OpenMP directives indicate how
the loops are to be parallelized to perform forward and backward substitution
along the i-direction of the data structures.

The refactored code in Fig. 2 uses the TARGET construct to offload the code
region to the accelerator. The TEAMS DISTRIBUTE constructs create a league of
teams and distributes the loop iterations across teams. The code transformations
of our initial implementation are as follows:

– We manually inlined routines called within OpenMP target regions. An exam-
ple is routine lhsinit in the code listing.

– We transposed some of the arrays to allow for stride one memory access. This
is essential for good performance on the GPU because it enables coalesced
memory accesses. An example is the array rhst in the code listing.

– We used the OpenMP COLLAPSE clause to collapse as many loops as possible.
The code in the listing permits only 2 loop collapses; collapsing 3 loops was
possible in some other routines.

– The original code contains two-dimensional arrays which are declared as
THREADPRIVATE. However, the effect of an access to a THREADPRIVATE vari-
able in a TARGET region is unspecified according to the OpenMP Standard.
We found that OpenMP PRIVATE arrays per thread gave poor performance
because of the large size of the arrays. Therefore, we made the array shared.
This was accomplished by adding two extra dimensions. An example is the
array lhs4 in the code listing.

– To exploit some of the available zone-level parallelism within the code, we
enabled asynchronous kernel execution using deferred OpenMP target tasks
with dependencies. This is why the directive in the code listing contains the
NOWAIT and DEPEND clauses. The execution flow of SP-MZ with potential
kernel overlap is depicted in the pseudo-code in Fig. 3.

In what follows, we will refer to the implementation described above as our initial
port. We refer to the original code as the baseline version.

4.2 Further Optimizing Parallelism and Data Movement

Details on the performance analysis of our initial implementation are provided in
the next section. After profiling, we implemented some additional optimizations.
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Implementation optimized for CPUs
! $OMP PARALLEL DO DEFAULT(SHARED)
! $OMP& PRIVATE ( f a c 2 ,m, f a c 1 , i 2 , i 1 , ru1 , i , j , k )
! $OMP& SCHEDULE( STATIC ) COLLAPSE ( 2 )
do k = 1 , nz−2

do j = 1 , ny−2

ca l l l h s i n i t ( lhs , lhsp , lhsm , nx−1)
. . . . !−−− o p e r a t i o n s l o c a l i z e d a t ” i ”

do i = 0 , nx−3 !−−− Thomas a l g . f o r w a r d e l i m .
i 1 = i + 1
i2 = i + 2
fac1 = 1 . d0/ lh s (3 , i )
l h s (4 , i ) = fac1 ∗ l h s (4 , i )
l h s (5 , i ) = fac1 ∗ l h s (5 , i )
do m = 1 , 3

rhs (m, i , j , k ) = fac1 ∗ rhs (m, i , j , k )
end do
l h s (3 , i 1 ) = lh s (3 , i 1 ) −

l h s (2 , i 1 )∗ l h s (4 , i )
l h s (4 , i 1 ) = lh s (4 , i 1 ) −

l h s (2 , i 1 )∗ l h s (5 , i )
do m = 1 , 3

rhs (m, i1 , j , k ) = rhs (m, i1 , j , k ) −
l h s (2 , i 1 )∗ rhs (m, i , j , k )

end do
. . . .
lhsm (4 , i 1 ) = lhsm (4 , i 1 ) −

lhsm (2 , i 1 )∗ lhsm (5 , i )
. . . .

end do
. . . .

end do
end do

Implementation optimized for GPUs
! $OMP TARGET TEAMS DISTRIBUTE
! $OMP& PARALLEL DO SIMD COLLAPSE ( 2 )
! $OMP& NOWAIT DEPEND( i n o u t : r h s )
! $OMP& MAP( ALLOC : l h s 4 , l h s p 4 , l h sm4 , r h s t )
! $OMP& PRIVATE ( f a c 2 ,m, f a c 1 , i 2 , i 1 , ru1 , i )
! $OMP& PRIVATE ( c v im1 , c v i p 1 )
! $OMP& PRIVATE ( r h o n i p 1 , r h on im1 , r h o n i )
do k = 1 , nz−2

do j = 1 , ny−2

lhs4 ( j , 1 : 5 , 0 , k ) = 0.0 d0
lhs4 ( j , 1 : 5 , nx−1,k ) = 0.0 d0
. . . . !−−− o p e r a t i o n s l o c a l i z e d a t ” i ”

do i = 0 , nx−3 !−−− Thomas a l g . f o r w a r d e l i m .
i 1 = i + 1
i2 = i + 2
fac1 = 1 . d0/ lhs4 ( j , 3 , i , k )
lh s4 ( j , 4 , i , k ) = fac1 ∗ l h s4 ( j , 4 , i , k )
lh s4 ( j , 5 , i , k ) = fac1 ∗ l h s4 ( j , 5 , i , k )
do m = 1 , 3

rhs t ( j ,m, i , k ) = fac1 ∗ rhs t ( j ,m, i , k )
end do
l h s4 ( j , 3 , i1 , k ) = lhs4 ( j , 3 , i1 , k ) −

l h s4 ( j , 2 , i1 , k)∗ l h s4 ( j , 4 , i , k )
. . . .

end do
. . . .

end do
end do

Fig. 2. Code fragments showing base language code and OpenMP directives to execute
efficiently on CPUs and GPUs

– We eliminated some small host-to-device (“HtoD”) data transfers by using
the DECLARE TARGET construct to declare some of the constants on the
device. Furthermore, we declared some subroutine arguments to have the
VALUE attribute. We found that the xlf compiler did not transfer the asso-
ciated data as part of the kernel launch if they were passed by reference.
However, passing the data by value circumvented the issue.
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Par t i t i on domain in to zones
For a l l zones :

i n i t i a l i z e zone
For a l l time−s t eps :

Communication r ind data
For a l l zones :

Pack zone ’ s f a c e po int s in to bu f f e r .
Cal l MPI Send/Recv to exchange bu f f e r s with ne ighbors .
For a l l zones :

Unpack bu f f e r and update zone ghost po int s .
For a l l zones :

Enqueue SP/ADI s o l v e r f o r zone . Async execut ion on dev ice .
Wait f o r a l l zones to complete async execut ion .

Ver i fy r e s u l t s

Fig. 3. Pseudo-code for asynchronous execution in SP-MZ

– We improved the parallelism in the small loop over the two-dimensional slabs
of all zones to accelerate the copy in/out kernels. Instead of a kernel for each
rind copy in/out in “exch-bc” for each zone, we created a target region over
the zone loop so all the copy in/out operations run within the same kernel.
The drawback is that the number of zones shrinks since we end up with just
a few or even one gang/team/threadblock.

– Using preallocated lhs scratch memory for all zones improved performance.
The original implementation used dynamic allocation for each zone inside of
the x, y, and z solvers. This required frequent device allocations with global
barriers. We pre-allocated a large temporary array for all the lhs structures
on all zones and passed them to the x, y and z solver routines.

– We merged asynchronous kernels with communication optimizations. This
removed some unnecessary HtoD and DtoH transfers. We also combined the
PARALLEL DO directives with TARGET TEAMS DISTRIBUTE since this enables the
compiler to generate simpler code where all GPU threads execute the same
computation on different data. It allows the compiler to generate code that
maps better to GPU hardware [18].

In what follows, we refer to the implementation containing these optimizations
as the optimized version.

We monitored the incremental performance changes during the development
process on the Ascent system, which is shown in Fig. 4. The host configuration
used 21 OpenMP threads bound to 1 CPU socket and the device configuration
used 1 process bound to 1 CPU socket, which offloaded work to 1 GPU. The
intention of this graph is to show the performance in the absence of MPI.

The Roman numerals correspond to the following code changes.

(I) Baseline
(II) Transposed arrays to support coalesced memory operations; replaced

dependencies on one-dimensional, thread-private (host) scratch arrays
with four-dimensional scratch arrays.

(III) Changed index ordering in x-solve to improve memory coalescing.
(IV) Reduced or eliminated unnecessary host-to-device transfers.
(V) Merged target, teams distribute, and parallel do directives into one com-

bined directive and additionally used loop collapsing.
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Fig. 4. Incremental performance change during the development process on the Ascent
system: Dev-SU and host-SU stands for speed-up on device and host respectively. A
and C indicate the Benchmark Class. Note the Dev-SU increases but host-SU decreases
during the development process

(VI) Enabled kernel task dependencies to allow asynchronous execution.
(VII) Improved efficiency of ghost/rind data buffer fill kernels.

(VIII) Enabled asynchronous rind fill kernels.
(IX) Added loop scalars to private clauses to avoid unnecessary host-to-device

transfers before kernel execution.
(X) Added CUDA-aware MPI option to bypass host transfers during MPI

communication.
(XI) Improved parallelism and occupancy of rind fill in/out routines.

(XII) Added SIMD to the PARALLEL DO directive to improve performance when
using the Cray compiler.

(XIII) Change argument passing from by-reference to by-value to allow the IBM
OpenMP v4.5 compiler to avoid unnecessary host-to-device transfers.

(XIV) Combined all rind/ghost cell fill in/out routines to execute in one kernel
instead of one per zone. That is, changed parallelism from within each
zone to all zones at once.

The chart also shows that code changes that improved GPU performance,
at times decreased CPU performance. There are several reasons for this. Most
important is the fact that there is poorer cache locality. Furthermore, the IV
change introduced additional arrays, which hurt host performance. The XII
change modified the IBM compiler code generation in a negative way. Figure 4
shows IBM performance, although the XII change describes an optimization for
the Cray compiler.
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5 Performance Studies

In this section we show timings on our different evaluation systems and discuss
performance analysis results. We collected performance results for 3 different
benchmark classes.

– Class A: 4 × 4 zones, 128 × 128 × 16 grid points
– Class C: 16 × 16 zones, 480 × 320 × 28 grid points
– Class D: 32 × 32 zones, 1632 × 1216 × 34 grid points.

A characteristic of SP-MZ is that all zones are of equal size. Provided that
a high performance MPI library is available and that there are no memory con-
straints imposed by the problem size, it is best to exploit zone level parallelism
via MPI rather than using hybrid MPI+OpenMP. The baseline measurements
on Ascent were thus obtained in MPI-only configuration. We could not do this on
Cori GPU with the Cray compiler because of the lack of MPI support. Thus we
used the nested OpenMP implementation of SP-MZ that is part of the NPB 3.4
distribution for the CPU-only measurements. We ran this version with OpenMP
threads on the outer level parallel region to exploit zone parallelism only, mak-
ing it more of a fair comparison against the Ascent MPI-only experiment on
CPUs. We ran the MPI+OpenMP target offload implementation of SP-MZ on
Cori GPU by using a single process and a “dummy” MPI library.

The CPU-only configuration on the Ascent system used in Fig. 5 is different
from the one used in Fig. 4. The purpose of Fig. 4 is to show the performance
in the absence of MPI. In Fig. 5, on the other hand, we want to show the best
possible result that can be obtained on the CPU, which is using 42 MPI ranks on
zone level. This is the reason why speed-up on CPU versus GPU is not as high
in Fig. 5 as in Fig. 4. Using 84 ranks/threads and 168 ranks/threads on the IBM
Power9 did not yield a performance gain since the code is memory bandwidth
limited.

Figures 5 and 6 show the performance in GFLOP/s that we obtained on
Ascent and Cori GPU for different benchmark classes. The Class D problem
on a single Ascent GPU failed and thus we only have results for the smaller
problem sizes for this case. The results show that the performance is generally
highest for Class D, which is the largest problem size. The CPU-only results are
approximately a factor of 2 higher on Ascent than Cori-GPU. This is most likely
because of NUMA penalties affecting the OpenMP version of SP-MZ. The best
single GPU performance we obtained was approximately a factor of 2 slower
than the best CPU-only performance. The benefit of GPUs is only really seen
when running the Class D problem on all 6 GPUs of an Ascent compute node.
Here, performance is approximately 4x higher than the corresponding MPI-only
configuration on CPUs.

We used the nvprof profiler to collect performance statistics. We noticed
that in the optimized code, the CUDA API overhead decreased significantly
in comparison to the initial port. The biggest impact was observed on the
cuMemcpyHtoDAsync call, which we attribute to the excess HtoD transfers of
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Fig. 5. Single node performance for different classes of the SP-MZ Benchmark on
Ascent, using 1 GPU and 6 GPUs on the node. Class D for a single GPU failed.

Fig. 6. Performance for different classes of the SP-MZ Benchmark on Cori GPU

the small constants. Those issues were fixed with the OpenMP “declare tar-
get” directive to make variables available on the device across target regions. As
noted previously, we also declared some subroutine arguments to be passed by
value rather than being passed by reference. An example for this are the array
dimensions in the calls to the solver routines. Another good performance boost
came from using the pre-allocated lhs scratch memory for all zones.

As described in Sect. 4 we used the OpenMP tasking mechanism to allow for
kernel execution overlap. In principle, this allows one to “implicitly” compute
SP-MZ zones in parallel because the work per zone is independent. We used
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OpenMP dependencies for each zone to enable computation for different zones
to execute concurrently. Figures 7 and 8 display the execution timeline generated
by the NVIDIA nvvp visual profiler on Ascent and Cori-GPU, respectively. The
results were obtained by running 10 iterations of the Class C benchmark. The
“Compute” part of the timeline, shows that there was not much overlap of the
kernel execution. We observed that only 2 streams were used for the execution
of the kernels. On the Cori system, on the other hand, kernel execution over-
lapped. This can be clearly seen in the nvvp execution timeline in Fig. 8. Here
we observed that 7 streams were used for the kernel execution. Another obser-
vation is, that the IBM compiler introduces additional Memcpy (HtoD) because
variables are not passed by value as part of the kernel launch.

The lines in the “Compute” part of the timeline, show whether kernels were
running concurrently. The results show that on Ascent we did not get the amount
of overlap we were hoping for, while we could clearly observe overlapping kernels
on the Cori system. It is unclear why there was not more overlap with the IBM
compiler on the Ascent system. We could work around this manually by adding
explicit zone-level parallelism. This would be achieved by lifting the “target
teams” region to the sweep over the zones. All ADI functions will need to be
target functions that could then be called at the team level. We consider such
an implementation as an item for future work.

Fig. 7. Execution timeline of SP-MZ Class C on Ascent as seen on the profiler

We mentioned in Sect. 4 that the CPU performance degraded during the
development process. While the code is functionally portable between different
hardware platforms, its performance is clearly not. We introduced code pat-
terns that improve GPU performance, but degrade performance on the CPU.
We noticed, for example, that the solver in z dimension suffered most during
the development process. In the refactored code, the stride on the inner, non-
vectorized loop is very large. So this is an issue of terrible cache reuse, as it
will thrash the L1 cache considerably. A code snippet of the loop in question is
displayed in Fig. 9.

While performance portability is very important, this was not the focus of
our effort. We plan to address this in future work. The question of performance
portability for directive-based programming is addressed in [13], for example.
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Fig. 8. Execution timeline of SP-MZ Class C on Cori GPU as seen on the profiler

! s e qu en t i a l loop
do k = 1 , nz−2

. . .
ru1 = c3c4∗ r h o i ( i , j , k−1)
cv km1 = ws( i , j , k−1)
rhos km1 = dmax1( dz4 + con43 ∗ ru1 ,

> dz5 + c1c5 ∗ ru1 ,
> dzmax + ru1 ,
> dz1 )

. . .
l h s4 ( i , 2 , j , k ) = −dttz2 ∗ cv km1 − dttz1 ∗ rhos km1
lhs4 ( i , 4 , j , k ) = dttz2 ∗ cv kp1 − dttz1 ∗ rhos kp1
. . .

end do

Fig. 9. Inner loop in refactored z solve routine

6 Summary and Conclusions

In this study we showed that OpenMP 4.5 offers a path forward for achieving
reasonable performance on accelerators when adapting Fortran codes that are
over 10 years old. We described our experience using the OpenMP 4.5 support for
heterogeneous compute nodes. We found that the compiler directives permitted
us to port the legacy Fortran CFD mini-application for execution on compute
nodes endowed with NVIDIA V100 GPU accelerators. We collected results on
two different evaluation systems and conducted performance studies.

As a positive observation, we note that using OpenMP compiler directives
permitted us to port the code within one week of programming effort. We also
note that significant code changes were required to obtain acceptable perfor-
mance. What is important to emphasize is that our approach was one-sided, in
the sense that we targeted code execution and performance gains only on GPUs;
no effort was made to retain performance for execution on CPUs. During the
development process, we noticed that code changes that improved the perfor-
mance on the GPU accelerators actually decreased performance on CPUs. This
implies that when porting legacy codes (i.e. codes not originally designed to use
co-processors), different aspects of the numerical method at hand may have to
be handled differently and distributed across co-processors and the CPUs. An
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approach that is designed systematically to leverage GPUs/co-processors and
CPUs in a manner tailored to the numerical method can potentially yield much
higher performance gains. We envision that such an approach is a suitable path
forward.

Another positive aspect was, that we did not find a lack of functionality in
OpenMP when comparing it to OpenACC. The lack of a present clause did not
present a hurdle. Using OpenMP tasking allowed us to implement asynchronous
execution expressing the dependences more explicitly than using the OpenACC
async construct.

The flip side of using the convenience of OpenMP is that we depend very
much on compiler support. We have mentioned a number of system specific issues
we encountered. Performance optimization is also difficult, as it is often not clear
if poor performance is due to poorly chosen directives or bad code generated by
the compiler. We plan further studies to investigate such issues.

A number of paths to portability (e.g. Kokkos, Raja, and Thrust), can work
well for C++ codes, but are not appropriate for codes entirely written in For-
tran. OpenMP can play an important role here. In our work we focused on exclu-
sively porting code to GPUs, where we also observed minor degraded CPU-only
performance. However, we expect that porting of Fortran codes without such
performance decreases will be possible in the future. There are a number of
research projects on the way addressing specifically performance portability of
Fortran codes as discussed in [13]. The porting process will greatly improve as 5.0
features become available, where one will be able to use different functions and
directives for specific vendor hardware, and in that sense OpenMP can undertake
the middleware role (like Kokkos, for example), performing appropriate changes
based on hardware. Our future work will include enabling explicit zone-level
parallelism, compute kernel optimization and multi-node scaling studies.
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