
Footprint-Aware Power Capping
for Hybrid Memory Based Systems

Eishi Arima1,2(B), Toshihiro Hanawa1, Carsten Trinitis2, and Martin Schulz2

1 The University of Tokyo, Tokyo, Japan
{arima,hanawa}@cc.u-tokyo.ac.jp

2 Technical University of Munich, Munich, Germany
{Carsten.Trinits,schulzm}@in.tum.de

Abstract. High Performance Computing (HPC) systems are facing
severe limitations in both power and memory bandwidth/capacity. By
now, these limitations have been addressed individually: to improve per-
formance under a strict power constraint, power capping, which sets
power limits to components/nodes/jobs, is an indispensable feature; and
for memory bandwidth/capacity increase, the industry has begun to sup-
port hybrid main memory designs that comprise multiple different tech-
nologies including emerging memories (e.g., 3D stacked DRAM or Non-
Volatile RAM) in one compute node. However, few works look at the
combination of both trends.

This paper explicitly targets power managements on hybrid memory
based HPC systems and is based on the following observation: in spite
of the system software’s efforts to optimize data allocations on such a
system, the effective memory bandwidth can decrease considerably when
we scale the problem size of applications. As a result, the performance
bottleneck component changes in accordance with the footprint (or data)
size, which then also changes the optimal power cap settings in a node.
Motivated by this observation, we propose a power management concept
called footprint-aware power capping (FPCAP) and a profile-driven soft-
ware framework to realize it. Our experimental result on a real system
using HPC benchmarks shows that our approach is successful in correctly
setting power caps depending on the footprint size while keeping around
93/96% of performance/power-efficiency compared to the best settings.

1 Introduction

Power consumption has become the major design constraint when building
supercomputers or High Performance Computing (HPC) systems. For instance,
the US DOE once had set a power constraint of 20 MW per future exascale sys-
tem to ensure their economical feasibility. To achieve orders of magnitude per-
formance improvement under such a strict power constraint, we must develop
sophisticated power management schemes. To this end, power capping (setting
a power constraint to each job/node/component) and power shifting (shifting
power among components depending on their needs under a given power bud-
get) are promising and the most common approaches [5,9,20,27,28,31,33].
c© The Author(s) 2020
P. Sadayappan et al. (Eds.): ISC High Performance 2020, LNCS 12151, pp. 347–369, 2020.
https://doi.org/10.1007/978-3-030-50743-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50743-5_18&domain=pdf
https://doi.org/10.1007/978-3-030-50743-5_18

348 E. Arima et al.

At the same time, we continue to face limited memory bandwidths and
capacities in HPC systems. On the one hand, to improve bandwidth, architect-
ing main memories with 3D stacked DRAM technologies, such as HBM [36]
and HMC [6], is an attractive approach. However, these technologies have
limited capacity-scalability compared to conventional DDR-based DRAM [16].
On the other hand, using emerging scalable NVRAMs (Non-Volatile RAMs,
e.g., PRAM [8,19,26,30], ReRAM [2], STT-MRAM [3,18,23] and 3D Xpoint
memory [14]) are promising in terms of capacity, but these technologies are gen-
erally much slower than conventional DRAM. As a consequence, the industry
has been shifting toward hybrid memory designs: main memories with multi-
ple different technologies (e.g., 3D stacked DRAM + DDR-based DRAM [16]
or DRAM + NVRAM [14]), which are usually heterogeneous in bandwidth and
capacity.

Driven by these trends, this paper focuses on a power management technique
explicitly tailored for such hybrid memory based systems. Our approach is based
on the following observation: when we scale the problem size (e.g., by using finer-
grained and/or larger-scaled mesh models for scientific applications), the perfor-
mance bottleneck can change among components. As a result, the optimal power
budget settings also change due to this bottleneck shifting phenomenon. Thus, to
exploit higher performance under a power constraint, we should also shift power
between CPU and memory system in accordance with the footprint (or data)
size of applications, which we call footprint-aware power capping (or FPCAP)
in this paper. As we often use various problem settings for each scientific appli-
cation, this footprint awareness is critically important.

To realize the concept of FPCAP, we first formulate the power allocation
problem and provide a regression-based performance model to solve it. Then,
based on the formulations, we present a profile-based software framework that
optimizes the power allocation to each component based on an efficient offline
model-fitting methodology as well as an online heuristic algorithm. Our experi-
mental results measured on a real system shows that our approach achieves near
optimal allocations under various power caps.

The followings are the major contributions of this study:

– We demonstrate the bottleneck shifting phenomenon by scaling the problem
size on a hybrid memory based system and propose a power management
concept called FPCAP.

– We quantify its potential benefit using various mini HPC applications chosen
from the CORAL benchmark suite.

– We formulate the power allocation problem and present an empirical perfor-
mance model to solve it.

– Based on this formulation, we provide a profile-based software framework
consisting of an efficient calibration method as well as an algorithm based on
a hill climbing based heuristic.

– We evaluate our approach on a hybrid memory based system. The experi-
mental result shows that our framework is successful in setting power caps to
components in accordance with the footprint size.

Footprint-Aware Power Capping for Hybrid Memory Based Systems 349

2 Background and Related Work

Various power management schemes for large-scaled systems have been proposed
so far, and such schemes generally assume hierarchical power controls and can
be classified into global or local parts. Figure 1 illustrates a typical power control
hierarchy for them. In the figure, the power scheduler distributes power budgets
or sets power constraints to nodes/jobs (global control). Then, in each node/job
the allocated power is distributed to the components with the goal of maxi-
mizing performance by shifting power from non-bottleneck components to the
bottleneck one (local control). Our paper belongs to the latter part and is the
first work that (1) focuses on the bottleneck shifting phenomenon when scaling
the problem size on the hybrid memory based nodes and (2) provides a power
allocation scheme based on the observation.

Fig. 1. Assuming hierarchical power management

The followings summarize the related work to ours.

Global Power Controls: Since the power consumption of large-scaled sys-
tems have become a significant problem, various power scheduling schemes and
implementations for them have been proposed so far [5,9,28,31,33]. These stud-
ies are usually based on the concept of overprovisioning: installing more hardware
than the system can afford in terms of power, and intelligently controlling power
supply to each job/node while keeping the total system power constraint [27].
Although these studies are very useful to improve the total throughput under the
system power constraint, they focus on how to distribute power budgets across
nodes/jobs and thus are orthogonal to ours.

Local Power Controls: The concept of power shifting firstly appeared in [10],
and power capping was proposed to enable power shifting [20]. Since then, var-
ious other local power management techniques have been proposed. However,
ours is the first work in providing a way to optimize the power allocations to
CPU and hybrid memory system in accordance with the footprint size. Sev-
eral studies focused on power shifting between processors (CPU or GPU) and
memories [7,10,12,24,29,32], but they did not target hybrid memory systems.
Others propose various approaches based on different concepts: power shifting
in a NUMA node [11], CPU-GPU power optimizations [4,17], power shifting
between CPUs and networks [21,22], and I/O-aware power shifting [35], which
do not consider memories.

350 E. Arima et al.

Power Management for Hybrid Memory Systems: As DRAM scaling is
at risk, many studies have focused on hybrid memory architectures, and some of
them proposed power control schemes for them. H. Park et al. [26] uses DRAM
as a cache in a DRAM-PRAM hybrid memory system and applies cache-decay,
a power reduction technique that turns-off unused cachelines, to save the refresh
power of DRAM. Other studies aim at optimizing data allocations on DRAM-
PRAM hybrid memories to reduce the impact of the write access energy of
PRAM [30,39]. Although these approaches are promising, they still focus only
on hybrid main memory systems—ours covers both memories and processors
and optimizes power allocations to them. Moreover, these studies are based on
architectural simulations, and thus most of them require hardware modifications,
while ours works on real systems.

#pragma omp p a r a l l e l for simd
for (i = 0 ; i < N; i ++) { A[i] = A[i] ∗ B[i] . . . ∗ B[i] ; }

Fig. 2. Tested synthetic streaming code (footprint size ∝ N, arithmetic intensity or
simply AI ∝ the number of *B[i])

Fig. 3. Measured rooflines [38] Fig. 4. Concept of our proposal

3 Motivation and Approach

The goal of this research is to provide a power management scheme suitable for
emerging HPC nodes composed of hybrid main memories under a given node
power constraint. When we execute scientific applications on HPC systems, we
usually utilize various problem inputs, which can considerably change the foot-
print size (the memory consumption of the running application). For instance,
we change the granularity/scale of mesh models and/or the number of time steps
for scientific applications. Under such scenarios, footprint-awareness is essential
to optimize the power settings of the components, which will be described in the
following subsections.

Footprint-Aware Power Capping for Hybrid Memory Based Systems 351

3.1 Motivation: Roofline Observation

We execute the synthetic streaming code shown in Fig. 2 on our hybrid memory
based system whose configurations are provided in Sect. 6. In this experiment,
we change the footprint size and the arithmetic intensity (or simply AI) of
this application by scaling the array size (N) and the number of arithmetic
operations (∗B[i]). Figure 3 describes the results. The horizontal axis indicates
the arithmetic intensity (Flops/Bytes), while the vertical axis shows the perfor-
mance (GFLOPS). The shapes of the curves can be well-explained by the roofline
model [38]: (1) for smaller arithmetic intensity, the performance is capped by the
memory system bandwidth (the slope lines), which means the memory system is
the performance bottleneck ; (2) but for higher arithmetic intensity, it is limited
by the CPU throughput (the horizontal lines)—in other words the CPU is the
performance bottleneck.

In this evaluation, we observe the phenomenon of bottleneck shifting : although
the system software attempts to optimize the data mapping on the hybrid main
memory, the effective bandwidth decreases as the footprint size scales due to
more frequent accesses to the large (but slow) memory, and as a result, the slope
line in Fig. 3 moves toward the downside1. Because of this effect, the performance
bottleneck can shift from the CPU to the memory system even for CPU intensive
workloads when we increase the footprint size. As the fundamental principle of
the power management for power constrained systems is allocating more power
budget on the bottleneck component, thus focusing on this phenomenon is a piv-
otal approach.

3.2 Concept: Footprint-Aware Power Capping

Driven by the above observation, we propose a power management concept called
footprint-aware power capping (or FPCAP) that optimizes power allocations to
CPUs/memories in a node depending on the footprint size (Ffs) as well as
the application features under a given node power constraint (Pnode) that is
assigned by the power scheduler of the system. The concept is illustrated in
Fig. 4. In this figure, we optimize the power budget allocations (or power caps)
to the CPUs (Pcpu) and the Memory i (Pmemi)i=1,2,... in accordance with these
inputs. In the figure, Pothers shows the total power limits of the other components
that are out of the scope of this paper, which we follow the prior node-level
power management studies [7,12,32]. More specifically, we assume Pothers is
reserved accordingly, and we focus on distributing the rest of the allocated node
power budget Psum(= Pnode −Pothers) to the CPUs and the memories under the
constraint of Pcpu + Pmem1 + · · · ≤ Psum.

1 This phenomenon could happen on traditional systems using monolithic main memo-
ries when the footprint size were in the neighborhood of the on-chip cache capacity
(at most few 10 MB), which is not the case for HPC applications in general.

352 E. Arima et al.

3.3 Performance Impact

Next, we demonstrate the potential performance benefit of FPCAP using our
hybrid memory based system. More specifically, we observe how the optimal
combination of {Pcpu, Pmem1, Pmem2} changes depending on the footprint sizes
using Small or Large problems while keeping the total power cap at a constant
value (here, we set

∑
Px = Psum = 260[W]). At the same time, we also confirm

the performance impacts of naive power allocations that do not consider the
footprint size of applications. The details of the system settings as well as the
workload specifications including the definitions of Small/Large problems will
be provided later in Sect. 6.

Fig. 5. Performance comparison of various power allocation settings (constraint:
Psum = 260[W]) for two different problem settings (Small/Large problems) (Color
figure online)

Footprint-Aware Power Capping for Hybrid Memory Based Systems 353

Figure 5 illustrates the evaluation results for different applications. Each spi-
der graph indicates the relative performance of two different problems along
with the power cap settings for all the possible power combinations under the
given total power constraint. Here, the performance is normalized to that of the
optimal combination for each problem/application. In the figures, the optimal
settings for Small/Large problems are highlighted with black/red lines.

Overall, the impact of power cap settings on performance is quite significant,
and some cases also a slowdown can happen when the power allocations are
not set accordingly. In addition, the optimal power allocations changes when we
scale the problem sizes for most of the applications, thus FPCAP is effective.

For miniFE, LULESH and MCB allocating more power budgets on Memory 2
is effective when we scale the footprint sizes, which matches our roofline anal-
ysis provided in the last subsection. Also, the footprint size does not affect the
performance bottleneck for very CPU intensive codes such as our synthetic code
(Streaming (AI: 10.7)) described in Sect. 3.1, thus the optimal settings do not
change for it when we change the problem size. For AMG and Streaming (AI:
0.167), reducing Pmem2 is effective when the footprint size is scaled. One major
reason of this phenomenon is that the software-based data management adopted
on our system—CPU also consumes power to handle the data transfers between
Memory 1 and Memory 2, which can also change the performance bottleneck
among the components.

Fig. 6. Overall parameters transformation

Table 1. Definitions of parameters/functions

Application related parameters

Kernel Target kernel in an application

Inputs Inputs for the application: Inputs = (arg1, arg2, · · ·)
F Feature parameters that represent the kernel + inputs (F = (Fprof ,Fdy))

Fprof Parameters obtained after a profile run (e.g., FP operations per instruction)

Fdy Parameters dynamically collected at runtime (e.g., footprint size Ffs)

Power related parameters

P Vector of power allocations to components: P = (Pcpu, Pmem1, Pmem2, · · ·)
Px Allocated power budget to a component x (x = cpu, mem1, mem2, · · ·)
SPx Set of power cap values for a component x: Px ∈ SPx (x = cpu, mem1, mem2, · · ·)
Psum Given total power constraint

Objective functions

Obj(P,F) Objective function to be maximized (e.g., Obj(P,F) = Perf(P,F))

Perf(P,F) Performance as a function of P and F

PowEff(P,F) Power efficiency: Perf(P,F)/
∑

Px

354 E. Arima et al.

4 Formulation and Modeling

Motivated by the observation in the last section, we optimize the power allo-
cations to components while taking the footprint size and other aspects into
considerations (FPCAP). In this section, we firstly formulate the problem defi-
nition. Then, we provide a simple model to solve it.

4.1 Problem Formulation

Figure 6 summarizes how parameters are transformed through our optimization.
Our approach receives a kernel code region (Kernel), inputs for the applications
such as arguments (Inputs) that determine the footprint size (Ffs), and the
total power constraint or budget (Psum) set to the power capping targets within
a node (cpu,mem1, · · ·). We then convert two of them (Kernel & Inputs) into
feature parameters (F) that represent the behavior of the kernel executed with
the inputs. The feature parameter vector is divided into profile-based statistic
(Fprof) and dynamically collected information (Fdy), of which the latter includes
the footprint size (Ffs). Finally, based on our modeling/algorithm provided later,
we optimize the power caps to different components (P).

This can be formulated as the following optimization problem:

given Kernel, Inputs, Psum(⇒ F, Psum)
max Obj(P,F)
s.t. ΣPx ≤ Psum

Px ∈ Spx
(x = cpu,mem1, · · ·)

Here, we consider maximizing the objective function Obj(P,F) under the power
constraint Psum. This objective function can be performance (Pref(P,F)),
power efficiency (PowEff(P,F)), or others. The power cap allocated to a com-
ponent x is taken from a set of pre-determined power cap values SPx

. Note that
the functions and parameters used here are summarized in Table 1.

Fig. 7. Kernel-level optimization Fig. 8. Framework overview

Footprint-Aware Power Capping for Hybrid Memory Based Systems 355

4.2 Performance Model

In this study, we utilize a widely-used linear regression model for our performance
estimation. More specifically, we estimate performance as follows:

Perf(P,F) = C1(P)H1(F) + C2(P)H2(F) + · · · = C(P) · H(F) (1)

C(P) is a vector of coefficients that are functions of the power allocations (P).
Further, H(F) is a vector of basis functions that depend on the feature param-
eters (F). We can determine C(P) by applying the method of least squares (or
regression analysis), while using the pairs of measured Perf(P,F) and H(F)—
the details of this are explained in the next section. In addition, the definitions
of H(F) used in our evaluation, which cover footprint awareness, are provided
in Sect. 6.

5 System Design

Based on the formulation/modeling provided in the last section, we introduce
a system design to realize our approach. More specifically, we first explain the
overview of our optimization framework and then describe our efficient calibra-
tion methodology to set the model coefficients. Finally, we provide our power
allocation algorithm.

5.1 Framework Overview

Figure 7 demonstrates our optimization methodology. Following the prior node-
level power management studies [4,34], we consider an application kernel-level
power optimization. The library call start power opt() in the figure first col-
lects the needed feature values (F) and then distributes the allocated power
budget to the components based on the obtained statistics. Here, we assume
the library interacts with the system resource manager and receives the total
power budget (Psum), which is given as an environment variable and manually
set in our evaluation. The library call end power opt() indicates the end point
of the kernel, and thus the optimization finishes here. In addition, we acquire
Fprof at this point during a profile run, which can be initiated by the user or
is conducted when there is no profile for the application. On the other hand,
scale/inputs dependent features (Fdy), such as the footprint size (Ffs), need to
be obtained at every execution.

Figure 8 illustrates the workflow of our framework. Before using our power
optimization approach, the offline calibration process is needed to determine the
coefficients (C(P)) in our model. This is conducted only once for a system by
using a set of benchmarks, each of which consists of a kernel and inputs. Then,
we optimize the power cap settings (P) by using C(P) as well as F and Psum

at runtime.

356 E. Arima et al.

Fig. 9. Model calibration overview

5.2 Efficient Coefficients Calibration

Figure 9 illustrates how we set the model coefficients appropriately through the
calibration process. The inputs here are a set of power cap combinations (TP) and
a set of benchmarks (TB). Then, we measure the performance (PerfM (P,B))
as well as the feature parameters (F) for each power cap combination and each
benchmark. By using these measured statistics, we identify the coefficients vector
(C(P)) for each power budget setting through the least-square curve fitting
method. Then, we store the obtained coefficients in a file which is utilized at
runtime to estimate the performance (PerfE(P,F)). Note that the definitions
of functions/parameters used here are summarized in Table 2.

We determine all coefficients by only exploring a limited area of the entire
space of all power cap combinations (UP) as examining all possible combinations
for the calibration would be practically infeasible, especially for larger numbers of
power caps and components. More specifically, we just scale the power cap value
of one of the components turn-by-turn, obtain the coefficients for these power
cap settings, and then estimate all coefficients for the entire power combination
space by applying the following simple linear interpolation:

Ci(P) = Ci(Pmax) + {Ci(Pcpu, Pmax
mem1, P

max
mem2, · · ·) − Ci(Pmax)}

+
{
Ci(Pmax

cpu , Pmem1, P
max
mem2, · · ·) − Ci(Pmax)

}
+ · · · (2)

Figure 10 illustrates how our approach improves the calibration efficiency in
terms of the exploration space reduction. Although the brute force based naive

Table 2. Parameters/functions used in our calibration

Symbols Remarks

PerfM (P,B) Measured performance as a function of P and B (benchmark)

PerfE(P,F) Estimated performance using our model: PerfE(P,F) = C(P) · H(F)

TP(⊆ UP) Set of tested power combinations: TP = {P1,P2, · · · }, Pj = (P j
cpu, P j

mem1, · · ·)
TB Set of tested benchmarks: TB = {B1,B2, · · · }, Bk = (Kernelk, Inputsk)

UP Set of all the power budget combinations: UP = {(Pcpu, Pmem1, · · ·)|∀Px ∈ SPx}
Pmax Maximum power cap settings: Pmax = (Pmax

cpu , Pmax
mem1, · · ·), Pmax

x = max(SPx)

Footprint-Aware Power Capping for Hybrid Memory Based Systems 357

Fig. 10. Efficient exploration in our calibration Fig. 11. Hill climbing algorithm

exploration examines all the power cap combinations (TP = UP), ours just moves
the space linearly. As a consequence, the number of tested power combinations
is reduced significantly from O(

∏ |SPx
|) to O(

∑ |SPx
|).

5.3 Power Allocation Algorithm

Next, based on the calibrated performance model, we optimize the power allo-
cations for the running job under the given power constraint. As the brut-force
approach searches for the best in the large number of combinations represented
as O(

∏ |SPx
|), which is practically infeasible, especially for larger numbers of

power cap values and components, we alternatively consider an algorithm based
on a hill climbing heuristic. The overview of the algorithm is illustrated in Fig. 11.
We firstly set the power cap of each component at its minimum, and then we
choose one and increase its power cap step-by-step while the total power cap
meets the constraint. In each step, we select the component that improves the
objective function the most with the one-step power cap increment. Although,
the algorithm can finish at a locally optimal point, it does work well for mono-
tonically increasing functions, such as performance, which increases with higher
power cap allocations (Px).

The precise form of our approach is described in Algorithm 1. The algorithm
returns an estimated optimal power allocations vector (P) for the given objective
function, job features, and power constraint (Obj, F, Psum). The Lines 1 to 4
represent the initialization process: setting all power caps to minimums and
sorting the set of power caps of each component in the ascending order. Then,
the main loop follows after this—here, we increase the power caps of components
step-by-step. In the inner-most loop (Line 7 to 13), we increase the power cap of
each component by one step in each turn and register both its ID and the value
of the objective function, if it meets all of the following conditions (Line 10): (1)
the power cap did not reach the maximum in this previous; (2) the objective
function returns the temporal optimum; and (3) the sum of the power caps is
less than or equal to the power constraint. When this inner-most loop finishes,
we decide whether we need to update the power cap combinations (Line 14 to
18). If the objective function value is improved in the above inner-most loop, we
select the registered component and update its power cap by popping the front
one from the associated power cap set; otherwise we just abort here. Finally, at
the Line 20, we return the chosen power cap combinations.

358 E. Arima et al.

Algorithm 1: Power allocation algorithm
Input: Obj(P,F),F, Psum // Maximize Obj under the power constraint
Output: P = (Pcpu, Pmem1, · · ·) // Return optimal power cap values
Preset parameters: SPcpu , SPmem1 , · · · // All possible power caps for each component

/* Set each element of P to the minimum */
1 foreach c ∈ {cpu, mem1, ...} do
2 S′

Pc
← SortAscending(SPc);

3 Pc ← PopFront(S′
Pc

); // Take out the minimum power cap

4 end
/* Main loop (go to the best direction step-by-step) */

5 while S′
Pcpu

∪ S′
Pmem1

∪ ... �= φ do

6 bestv ← Obj(P,F); bestc ← Null;
7 foreach c ∈ {cpu, mem1, ...} do

/* Increase the power cap of c by one step */

8 P′ ← P; // Set P’ (= temporal next point) as P (= current)

9 P ′
c ← Front(S′

Pc
); // Update P’ by increasing the power cap of c

/* Existence/improvement/constraint checks */

10 if (P ′
c �= Null) ∧ (Obj(P′,F) > bestv) ∧ (

∑
P ′

x ≤ Psum) then
11 bestv ← Obj(P′,F); bestc ← c; // Update the temporal best
12 end

13 end
14 if bestc �= Null then
15 Pbestc ← PopFront(S′

Pbestc
);// Take out the front element from the power cap

set of bestc and update P

16 else
17 break; // Already reached at an optimal point
18 end

19 end
20 return P;

6 Evaluation Setup

Environment: Our approach is applicable to any system that meets the follow-
ing conditions: (1) the main memory is heterogeneous in terms of capacity and
performance; and (2) component-wise power/performance controls are possible.
In this evaluation, we use the platform summarized in Table 3, which follows the
above conditions. As shown in the table, our main memory consists of DDR4

Table 3. System configurations

Name Remarks

CPU Package Xeon Gold 6154 Processor (Skylake) x2 sockets, 36 cores

Memory System DRAM (Memory 1): DDR4-2666 x12 DIMMs, 12ch, 192 GB,
256GB/s(max), NVRAM (Memory 2): Intel Optane SSD
P4800X x2 cards, 750 GB, 4.8 GB/s (read max), 4.0 GB/s (write
max), Data management: IMDT [14]

OS Cent OS 7.4

Compiler Intel C++/Fortran Compiler 17.0.4, Options: -O3 -qopenmp
-xCORE-AVX512

Power caps[W] Spcpu = {160, 170, · · · , 280}, Spmem1 = {20, 30, · · · , 60},
Spmem2 = {20, 30, 40}

Footprint-Aware Power Capping for Hybrid Memory Based Systems 359

DRAM and PCIe attached NVRAM (Intel 3D Xpoint Optane [14]). By using
Intel Memory Drive Technology (IMDT) [14], we can use the NVRAM as a part
of the main memory2. More specifically, it works as a virtual machine monitor
dedicated to the data management among the different kinds of memories, and
these memories are used in a hierarchical manner: the DRAM is accessed first,
and if it turns out to be a miss, then data swap happens (at page-level granu-
larity). Note that our approach is applicable/extensible to any other emerging
platforms with hybrid main memories such as 3D stacked DRAM + DIMM-
based DRAM like Knights Landing [16] or DRAM + DIMM-based NVRAM
like DCPMM [15], if they accept component-wise power managements. Only
one thing we need to do to apply our method to them is just calibrating the
model coefficients beforehand (or for finer tuning, adding/optimizing the basis
functions for the target system is one option).

Power Controls: For the power management, we set various power cap values
to the CPU and the DRAM through an interface based on RAPL (Running
Average Power Limit) [13], which are listed in Table 3. Since power capping is
not supported on our NVRAM, we emulate it by limiting the PCIe link speed
(Gen1/2/3). More specifically, the link speed (Genx, x = 1, 2, 3) is selected so
that the NVRAM power cap (Pmem2) fits the following:

Pmem2 = Pdynamic(x) + Pstatic + Pmargin(x) (3)
Pdynamic(x) = Blink(x)/Blink(3) ∗ Pdynamic(3) (4)

The first equation ensures that the power cap value (Pmem2) is dividable into the
dynamic power part (Pdynamic), the static power (Pstatic) and the accordingly
set margin to round up (Pmargin < 10[W]). The second equation ensures that
the dynamic power limit is proportional to its link bandwidth (Blink). We use
this because (1) the link speed limits the memory access frequency, and (2) the
dynamic power consumption is, in principle, equal to the product of the energy
consumption per access and the access frequency. We take Blink(x), Pstatic and
Pdynamic(3) + Pstatic from the official specs and determine the link speed for
a given Pmem2. More specifically, we set the link as Gen1/2/3 for Pmem2 =
20/30/40 [W], respectively.

Methodology: To evaluate our approach, we use the synthetic code
(Streaming) shown in Fig. 2 (Sect. 3.1) as well as several mini applications cho-
sen from the CORAL benchmark suite [25]: AMG, LULESH, MCB and miniFE. For
each application, we regard the main loop as a target kernel. The benchmark set
(TB) used for our calibration process is listed in Table 4; we test various inputs
for each application kernel. Then, by using the obtained coefficients, we optimize
the power allocations for the workloads listed in Table 5. Here, the data footprint
fits within the fast memory (192[GB]) for Small problems, but it does not for
Large problems.

2 Persistent Memory Development Kit (PMDK) also supports an automatic data man-
agement feature and can be used for this purpose [1].

360 E. Arima et al.

Table 4. Benchmarks (TB) used for our calibration

(Kernel, Inputs)

(miniFE, I1=“-nx 512 -ny 512 -nz 512”), (miniFE, I2= “ -nx 896 -ny 896 -nz 640”),

(miniFE, I3=“-nx 1024 -ny 512 -nz 512”), (miniFE, I4= “-nx 1024 -ny 768 -nz 640”),

(miniFE, I5=“-nx 1024 -ny 1024 -nz 512”), (miniFE, I6=“-nx 1024 -ny 1024 -nz 640”),

(LULESH, I1=“-s 400”), (LULESH, I2=“-s 450”), (LULESH, I3=“-s 500”),

(LULESH, I4=“-s 550”), (LULESH, I5=“-s 600”), (LULESH, I6=“-s 645”),

(MCB, I1=“–nZonesX=2048 –nZonesY=2048”), (MCB, I2=“–nZonesX=4096

–nZonesY=2048”),

(MCB, I3=“–nZonesX=4096 –nZonesY=3072”), (MCB, I4=“–nZonesX=4096

–nZonesY=4096”),

(MCB, I5=“–nZonesX=5120 –nZonesY=4096”), (MCB, I6=“–nZonesX=6144

–nZonesY=4096”),

(Streaming(AI: 10.7), I1= “N = 16G”), (Streaming(AI: 10.7), I2= “N = 24G”),

(Streaming(AI: 10.7), I3= “N = 32G”), (Streaming(AI: 10.7), I4= “N = 48G”),

(Streaming(AI: 10.7), I5= “N = 64G”), (Streaming(AI: 10.7), I6= “N = 80G”),

(AMG, I1=“-n 512 512 256”), (AMG, I2=“ -n 512 521 512”), (AMG, I3=“-n 640 512 640”),

(AMG, I4=“-n768 768 512”), (AMG, I5=“-n 640 640 640”), (AMG, I6=“-n 1024 640 512”),

(Streaming(AI: 0.167), I1= “N = 16G”), (Streaming(AI: 0.167), I2= “N = 24G”),

(Streaming(AI: 0.167), I3= “N = 32G”), (Streaming(AI: 0.167), I4= “N = 48G”),

(Streaming(AI: 0.167), I5= “N = 64G”), (Streaming(AI: 0.167), I6= “N = 80G”)

Table 5. Problem settings for our power allocation evaluation

Application [Problem]: (Inputs, Footprint Size[GB])

miniFE [Small]: (“-nx 1024 -ny 512 -nz 512”, 129), [Large]: (“-nx 1024
-ny 1024 -nz 640”, 321)

LULESH [Small]: (“-s 400”, 62), [Large]: (“-s 645”, 258)

MCB [Small]: (“–nZonesX= 2048 –nZonesY= 2048”, 57), [Large]:
(“–nZonesX= 5120 –nZonesY= 4096”, 279)

AMG [Small]: (“-n 512 512 512”, 141), [Large]: (“-n 1024 640 512”, 354)

Stream(AI:*) [Small]: (“N = 8G”, 64), [Large]: (“N = 32G”, 256)

Next, Table 6 describes the feature parameters (F) utilized in our evaluation.
On one hand, we measure Fdy at every run, while on the other hand, we collect
Fprof only once for an application, especially with the Small problems shown in
Table 5. By using PAPI [37], we collected these feature parameters3. Note that,
through our preliminary evaluation, we confirmed that all of Fprof , including the
LLC (Last Level Cache) access statistics (Fp3 and Fp4), are almost constant when
we scale the problem sizes from few GiB to few 100 GiB for these applications,
thus we consider them as scale-independent, yet application-specific parameters
in this work.
3 We disable IMDT when collecting Fprof as it prevents us from accessing hardware

counters. But, this is not the case when we use PMDK for the data management.

Footprint-Aware Power Capping for Hybrid Memory Based Systems 361

Table 6. Feature parameter selections (F = (Fprof ,Fdy))

Types Parameter remarks

Fprof Fp1=(# of FP operations)/(# of instructions),
Fp2 = (# of non FP arithmetic instructions)/(# of instructions),
Fp3 = (# of LLC misses)/(# of instructions),
Fp4 = (# of LLC misses)/(# of LLC accesses),

Fdy Fd1 = (footprint Feature parameter selections size Ffs)/(capacity
of Memory1)

Table 7. Basis function setups (H(F) = (H1(F), H2(F), · · ·))

Function Definitions

H1 = Fp1, H2 = Fp2, H3 = Fp3, H4 = Fp3 ∗ Fd1 H5 = Fp3 ∗ Fp4, H6 = Fp3 ∗ Fp4 ∗ Fd1,
H7 = 1 (constant)

Table 7 shows the list of the basis functions (H(F)) utilized in our evaluation.
By using H1 and H2, we detect the CPU load and how much it affects the power
capping settings. In addition to them, we also consider the traffic on the overall
hybrid memory system and how each of them are accessed by using the functions
H3, H4, H5, and H6. Because Fp3 is equal to the frequency of accesses to the
memory system, H3 indicates how heavily it is used. In addition, we utilize Fp4

and/or Fd1 for H4, H5 and H6 due to the following reasons: (1) because the
LLC hit rate Fp4 is sensitive to the memory access pattern, we can use it to
cover this aspect; (2) to take problem scale into account, we further utilize Fd1

here as well. These parameters are multiplied by Fp3 as the impacts of access-
pattern/problem-scale on performance depend on the access frequency, and we
thus take the correlation of these parameters into consideration.

Although this selection of parameters and the function settings are effective,
as shown in the next section, it may be possible to further improve the accuracy
by consider additional aspects. For instance, adding other memory-access related
parameters, such as working-set size, could be a good option for workloads with
more complicated inputs. We can provide such an extensibility in a straightfor-
ward manner by making the model parameters/terms modifiable by users and
then making them available to the other parts of the framework, like calibration
and power allocation.

7 Experimental Results

In Figs. 12 and 13, we compare performance/power-efficiency across methods
using different problem sizes. Here, we set Psum to 300[W] and utilize
Perf()/PowEff() as the objective function in our approach through the mea-
surements of Figs. 12 and 13. The vertical axis indicates relative performance or
power-efficiency, normalized to the optimal power cap combinations that max-
imize the given objective function. The Worst combination is chosen from the

362 E. Arima et al.

Fig. 12. Performance comparisons at Psum = 300[W] for different problem sizes (U:
Small, D: Large)—the objective function for our approach is Perf()

Fig. 13. Power-efficiency comparisons at Psum = 300[W] for different problem sizes
(U: Small, D: Large)—the objective function for our approach is PowEff()

settings that meet
∑

Px = Psum or
∑

Px ≤ Psum in Fig. 12 or Fig. 13 so that the
objective function is minimized4. GeometricMean indicates the geometric mean
of performance or power efficiency across all workloads for each method. Over-
all, our approach achieves near optimal performance/power-efficiency: on aver-
age, our approach keeps 93.7%/96.2% or 92.3%/95.4% of performance/power-
efficiency compared to the optimal for Small or Large problems. Note that these
numbers are quite important as we consider the situation where the power sched-
uler distributes power budgets to the nodes, and each node needs to optimize the
power allocations to the components while keeping the given power constraint,
which is regarded as common in future power-constrained supercomputers.

Then, we scale the total power budget (Psum) and observe performance
and power efficiency for all the above methods. In Fig. 14, we summarize the

4 If we choose the worst of {∀P| ∑Px ≤ Psum} for the performance evaluation, it will
always mean setting all power caps to the minimum. Therefore, we set the constraint
as

∑
Px = Psum for Worst in the performance evaluation.

Footprint-Aware Power Capping for Hybrid Memory Based Systems 363

Fig. 14. Performance (U) and Power efficiency (D) as functions of the node power
constraint for different problem sizes

experimental result using the geometric mean of performance/power-efficiency
across all workloads. In the graphs, the X-axis indicates the node power con-
straint (Psum), while the Y-axis shows relative performance or power efficiency
normalized to the maximum power cap setting (P = Pmax). As shown in the
figures, our approach is very close to the optimal regardless of the problem size,
the objective function, or the total power budget.

Next, we demonstrate how our approach distributes the given power budget
(Psum) depending on several aspects by using miniFE as an example. Figure 15
illustrates the breakdowns of power allocations in accordance to the given power
constraint (Psum) as well as the objective function for different problem sizes
(Small/Large). The horizontal axis represents the power constraint (Psum),
while the vertical axis indicates the breakdown or relative performance/power-
efficiency normalized to P = Pmax. Note that the performance or power-
efficiency curves in the figures are the estimated values provided by our model,
and the allocations are based on them.

According to the figures, even for the same application, the power alloca-
tion decisions can change considerably depending on the objective function as
well as the problem settings. For Small, our method initially allocates power to
the memory system side and then shifts to the CPU side until reaching 340[W]
to maximize performance (upper left figure). However, when the problem size
is scaled, the CPU and the first memory need less power. This is because the
second memory becomes the significant bottleneck, and allocating more power
to the others does not help with improving performance (upper right figure).

364 E. Arima et al.

Fig. 15. Power cap settings determined by our approach for miniFE

Fig. 16. Comparison of measured (left) and estimated (right) performance for different
Pcpu (Pmem1 = Pmax

mem1 = 60[W], Pmem2 = Pmax
mem2 = 40[W])

Footprint-Aware Power Capping for Hybrid Memory Based Systems 365

As for the power efficiency (lower figures), our approach stops the power alloca-
tions earlier because it requires large enough performance gain that is worthwhile
putting additional power. For most of the evaluated workloads, we also observe
the exact same situation: the given power budget cannot be fully used, especially
when the problem size is scaled. We regard this as an opportunity to improve
the whole system efficiency (e.g., by returning such extra power budget to the
system manager and allocating it to other jobs).

Further, in Fig. 16, 17, and 18, we demonstrate the model calibration result
using the workloads described in Table 4. For each graph, the horizontal axis
indicates the power capping value set at each component, while the vertical axis
represents relative performance which is normalized to that at best—namely,
setting P at Pmax. Each legend is associated with the problem (or inputs) set-
tings shown in Table 4. Here, we applied the method of least squares using sets
of relative performance and feature parameters brought by the workloads. Over-
all, our approach successfully captures the characteristics of these applications
including the footprint size dependency, and the estimated result is close to the
measured performance for almost all the cases (the average error is only 6.00%).

Finally, we measured the time overhead of our approach, which turned out
to be negligible. More specifically, it took only around 200µs, 1µs, and 80µs for

Fig. 17. Comparison of measured (left) and estimated (right) performance for different
Pmem1 (Pcpu = Pmax

cpu = 280[W], Pmem2 = Pmax
mem2 = 40[W])

366 E. Arima et al.

Fig. 18. Comparison of measured (left) and estimated (right) performance for different
Pmem2 (Pcpu = Pmax

cpu = 280[W], Pmem1 = Pmax
mem1 = 60[W])

accessing feature parameters through PAPI, conducting our decision algorithm
(completed at P = Pmax), and setting a power cap through RAPL, respectively.

8 Conclusions

In this article, we firstly focused on the bottleneck shifting phenomenon
when scaling the problem size on a real system that consists of a hybrid
main memory. Based on this observation, we introduced the concept of
footprint-aware power capping (or FPCAP) and demonstrated its potential ben-
efit using various HPC benchmark applications. Motivated by this preliminary
result, we defined the problem, formulated a solution and provided a software
framework to realize our concept. Finally, we quantified the effectiveness of
our approach, which showed that it achieves near optimal performance/power-
efficiency.

As a next-step, we will evaluate our approach using more complicated real-
world applications and show the effectiveness with them. Another direction will
be the coordination between our framework and a power scheduler to optimize
both intra- and inter-node power budget settings at the same time. We expect
that this will have a significant impact on full system energy efficiency, as the
power budget to a node is prone to be under-utilized when the footprint size

Footprint-Aware Power Capping for Hybrid Memory Based Systems 367

is large. Consequently, sending this as feedback to the power scheduler will help
whole system performance/energy-efficiency under the total power constraint.
Another promising direction is an extension of our work to cover other kinds
of systems (e.g., CPU + GPU/FPGA + hybrid memory) or other application
areas, such as data analytics or machine learning using various types of hybrid
memories. Although we may have to update the parameters/terms of the regres-
sion model, the concept of FPCAP and the approaches used in our framework
will carry forward and improve system efficiency.

Acknowledgments. We would like to express our gratitude to the anonymous review-
ers for their valuable suggestions. We also thank all the members of CAPS at TU
Munich and the folks in ITC, U Tokyo for discussions. This work is partly supported
by the following grants: Research on Processor Architecture, Power Management, Sys-
tem Software and Numerical Libraries for the Post K Computer System of RIKEN;
JSPS Grant-in-Aid for Research Activity Start-up (JP16H06677); and JSPS Grant-in-
Aid for Early-Career Scientists (JP18K18021).

References

1. PMDK: Persistent Memory Development Kit. http://www.pmem.io
2. Akinaga, H., et al.: Resistive random access memory (ReRAM) based on metal

oxides. Proc. IEEE 98(12), 2237–2251 (2010)
3. Arima, E., et al.: Immediate sleep: reducing energy impact of peripheral circuits

in STT-MRAM Caches. In: ICCD, pp. 149–156 (2015)
4. Bailey, P.E., et al.: Adaptive configuration selection for power-constrained hetero-

geneous systems. In: ICPP, pp. 371–380 (2014)
5. Cao, T., et al.: Demand-aware power management for power-constrained HPC

systems. In: CCGrid, pp. 21–31 (2016)
6. Consortium, H.M.C.: Hybrid memory cube specification 2.1. Last Revision (Jan-

uary 2015)
7. Deng, Q., et al.: CoScale: coordinating CPU and memory system DVFS in server

systems. In: MICRO, pp. 143–154 (2012)
8. Dhiman, G., et al.: PDRAM: a hybrid PRAM and DRAM main memory system.

In: DAC, pp. 664–669 (2009)
9. Ellsworth, D.A., et al.: Dynamic power sharing for higher job throughput. In: SC,

pp. 80:1–80:11 (2015)
10. Felter, W., et al.: A performance-conserving approach for reducing peak power

consumption in server systems. In: ICS, pp. 293–302 (2005)
11. Ge, R., et al.: Application-aware power coordination on power bounded NUMA

multicore systems. In: ICPP, pp. 591–600 (2017)
12. Hanson, H., et al.: Processor-memory power shifting for multi-core systems.

In.: 4th Workshop on Energy Efficient Design (2012). http://research.ihost.com/
weed2012/pdfs/paper%20A.pdf. Accessed 4 June 2020

13. Imes, C., et al.: CoPPer: soft real-time application performance using hardware
power capping. In: ICAC, pp. 31–41 (2019)

14. Intel: Intel R© Memory Drive Technology, Set Up and Configuration Guide (2017)
15. Izraelevitz, J., et al.: Basic Performance Measurements of the Intel Optane DC

Persistent Memory Module. arXiv preprint arXiv:1903.05714 (2019)

http://www.pmem.io
http://research.ihost.com/weed2012/pdfs/paper%20A.pdf
http://research.ihost.com/weed2012/pdfs/paper%20A.pdf
http://arxiv.org/abs/1903.05714

368 E. Arima et al.

16. Jeffers, J., et al.: Intel Xeon Phi Processor High Performance Programming:
Knights, Landing edn. Morgan Kaufmann Publishers Inc., San Francisco (2016)

17. Komoda, T., et al.: Power capping of CPU-GPU heterogeneous systems through
coordinating DVFS and task mapping. In: ICCD, pp. 349–356 (2013)

18. Kültürsay, E., et al.: Evaluating STT-RAM as an energy-efficient main memory
alternative. In: ISPASS, pp. 256–267 (2013)

19. Lee, B.C., et al.: Architecting phase change memory as a scalable dram alternative.
In: ISCA, pp. 2–13 (2009)

20. Lefurgy, C., et al.: Power capping: a prelude to power shifting. Clust. Comput.
11(2), 183–195 (2008)

21. Li, J., et al.: Power shifting in thrifty interconnection network. In: HPCA, pp.
156–167 (2011)

22. Miwa, S., et al.: Profile-based power shifting in interconnection networks with
on/off links. In: SC, pp. 37:1–37:11 (2015)

23. Noguchi, H., et al.: 7.2 4Mb STT-MRAM-based cache with memory-access-aware
power optimization and write-verify-write/read-modify-write scheme. In: ISSCC,
pp. 132–133 (2016)

24. Nugteren, C., et al.: Roofline-aware DVFS for GPUs. In: ADAPT, pp. 8:8–8:10
(2014)

25. ORNL, ANL, LLNL: CORAL Benchmark Codes (2013). https://asc.llnl.gov/
CORAL-benchmarks/

26. Park, H., et al.: Power management of hybrid DRAM/PRAM-based main memory.
In: DAC, pp. 59–64 (2011)

27. Patki, T., et al.: Exploring hardware overprovisioning in power-constrained, high
performance computing. In: ICS, pp. 173–182 (2013)

28. Patki, T., et al.: Practical resource management in power-constrained, high per-
formance computing. In: HPDC, pp. 121–132 (2015)

29. Paul, I., et al.: Harmonia: balancing compute and memory power in high-
performance GPUs. In: ISCA, pp. 54–65 (2015)

30. Ramos, L.E., et al.: Page placement in hybrid memory systems. In: ICS, pp. 85–95
(2011)

31. Sakamoto, R., et al.: Production hardware overprovisioning: real-world perfor-
mance optimization using an extensible power-aware resource management frame-
work. In: IPDPS, pp. 957–966 (2017)

32. Sarood, O., et al.: Optimizing power allocation to CPU and memory subsystems
in overprovisioned HPC systems. In: CLUSTER, pp. 1–8 (2013)

33. Sarood, O., et al.: Maximizing throughput of overprovisioned HPC data centers
under a strict power budget. In: SC, pp. 807–818 (2014)

34. Sasaki, H., et al.: An intra-task DVFS technique based on statistical analysis of
hardware events. In: CF, pp. 123–130 (2007)

35. Savoie, L., et al.: I/O aware power shifting. In: IPDPS, pp. 740–749 (2016)
36. Standard, J.: High Bandwidth Memory (HBM) DRAM. JESD235 (2013)
37. Terpstra, D., et al.: Collecting performance data with PAPI-C. In: Müller, M.,

Resch, M., Schulz, A., Nagel, W. (eds.) Tools for High Performance Computing
2009, pp. 157–173. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11261-4 11

38. Williams, S., et al.: Roofline: an insightful visual performance model for multicore
architectures. Commun. ACM 52(4), 65–76 (2009)

39. Wu, K., et al.: Unimem: runtime data managementon non-volatile memory-based
heterogeneous main memory. In: SC, pp. 58:1–58:14 (2017)

https://asc.llnl.gov/CORAL-benchmarks/
https://asc.llnl.gov/CORAL-benchmarks/
https://doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-642-11261-4_11

Footprint-Aware Power Capping for Hybrid Memory Based Systems 369

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Footprint-Aware Power Capping for Hybrid Memory Based Systems
	1 Introduction
	2 Background and Related Work
	3 Motivation and Approach
	3.1 Motivation: Roofline Observation
	3.2 Concept: Footprint-Aware Power Capping
	3.3 Performance Impact

	4 Formulation and Modeling
	4.1 Problem Formulation
	4.2 Performance Model

	5 System Design
	5.1 Framework Overview
	5.2 Efficient Coefficients Calibration
	5.3 Power Allocation Algorithm

	6 Evaluation Setup
	7 Experimental Results
	8 Conclusions
	References

