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Abstract. Overlap of computation and communication is critical for
good application-level performance. Modern high-performance networks
offer Hardware-assisted tag matching and rendezvous offload to enable
communication progress without involving the host CPU. However, hard-
ware based offload cannot be used in many situations due to various hard-
ware limitations and performance issues. Furthermore, hardware-based
designs cannot provide good overlap for common communication pat-
terns involving unexpected messages or non-contiguous datatypes. In this
paper, we address these limitations by designing a communication-aware
overlap engine for MPI that uses novel hardware-assisted and software-
based solutions to extract overlap for both expected and unexpected
messages. The proposed design adapts to the application’s communica-
tion requirements including message size, datatype, and relative timing
of processes using heuristics and history-driven predictions. We evalu-
ate the proposed designs against state-of-the-art MPI libraries and show
up to 41% and 22% reduction in latency for collective operations and
stencil-based application kernels on 1024 and 128 nodes, respectively, as
well as 23% improvement in communication performance of the P3DFFT
application.

1 Introduction

The massive growth in the size and scale of supercomputing systems has been
driven by the current trends in multi-/many-core architectures and the availabil-
ity of RDMA-enabled, and high-performance interconnects such as InfiniBand
(IB) and Omni-Path. The Message Passing Interface (MPI) [18] has been the de-
facto programming model for developing high-performance parallel applications
for the last couple of decades. One of the major features offered by modern high-
performance network adapters (HCAs) is called ‘RDMA’ and it is the ability to
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read from and write data to remote memory locations without involving the host
CPU. The MPI standard offers non-blocking communication primitives to take
advantage of RDMA and enable overlap of communication and computation.
Numerous studies have shown this overlap to be the critical factor for achieving
good application performance and have proposed different solutions to address
this [15,17,22].

There are generally two schemes in MPI to implement the point-to-point com-
munications — ‘Eager’ and ‘Rendezvous’. The eager protocol uses a set of pre-
allocated and pre-registered buffers for the HCA to communicate asynchronously,
without performing any handshake with peer processes. Upon receiving an eager
message, this protocol involves one extra copy from pre-registered buffers into
the application buffers, therefore, it is typically used for small messages. On
the other hand, in Rendezvous protocol, the sending process first checks for the
availability of the buffer in the receiver’s side before transferring the actual mes-
sage and it is used for medium and large message sizes. The Fig. 1(a) illustrates
the RDMA read based rendezvous. The sender sends a control signal RTS to
the receiver. The receiver after receiving the RTS issues an RDMA read signal
which fetches the data from the sender without involving the sender’s CPU. As
it is seen in this figure, there is no overlap in communication with computation.
In other words, the communication starts only after MPI wait is called by the
application, after which the application is idle [25].

(a) Rendezvous RGET (b) Rendezvous RGET with HW TM

Fig. 1. Comparison of RGET with and without HW Tag Matching [5].

To tackle this, modern HCAs such as Mellanox Infiniband ConnectX-5 and
ConnectX-6 have included the ability to perform tag-matching in hardware and
initiate RDMA operations without the involvement of the CPU on the receiver
side [5,26]. This allows the MPI library to post a receive operation along with
the address of its destination buffer to the HCA. If the posted receive request is
expected, meaning that the time that the receive request has been posted (trecv)
is before the time that incoming Tag Mathing (TM) packet has arrived (tarrive),
(tarrive > trecv), a matching receive for an incoming RTS gets offloaded to the
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HCA. Therefore, the HCA can perform an RDMA read from the sender’s buffer
as soon as it gets the RTS without any involvement of the receiver process.
Rendezvous offload using Hardware Tag Matching is depicted in Fig. 1(b).

While this feature enables the MPI library to extract more overlap in cer-
tain scenarios, it cannot be used as a universal solution due to various semantic
limitations and performance bottlenecks [5]. For instance, when no matching
receive is found for an incoming message (unexpected message), it cannot be
handled by the HCA since it does not know the destination buffer. Similarly,
small messages or non-contiguous messages may not be offloaded to the HCA due
to performance reasons. Even for expected messages, existing hardware-assisted
solutions [5,26] do not provide the HCA peak bandwidth while the posted receive
requests are offloaded. Furthermore, due to the semantic limitations of Hardware
Tag Matching, these solutions do not provide reasonable overlap of communica-
tion and computation when the application uses a combination of 1) short and
large or 2) contiguous and non-contiguous messages. These observations show
that while hardware tag matching is useful in certain scenarios, MPI libraries
need to address several challenges to mitigate its limited applicability as well as
performance bottlenecks to provide a complete and high-performance solution.

2 Challenges

In this paper, our goal is to design an overlap engine capable of adaptively
utilizing advanced hardware and software-based schemes for progress-
ing MPI operations for diverse application communication scenarios.
To achieve this, we need to answer the following five questions: 1) What are the
performance characteristics, benefits, and shortcomings of state-of-the-art hard-
ware tag-matching and offload? 2) Are the capabilities provided by the hardware
sufficient or do they need to be augmented by software-based schemes? 3) Which
communication scenarios can be improved in terms of performance and overlap

Table 1. State-of-the-art designs and features to support efficient communication and
computation overlap. In this table, we define the following design challenges for a high-
performance overlap engine: C1) Adaptability to application communication require-
ments, C2) Efficient designs to extract overlap for unexpected messages, C3) Communi-
cation progress without receiver involvement, and C4) Efficient overlap for out-of-order
messages

Design challenges State-of-the-art MPI libraries

OpenMPI+
UCX with
HW-TM

OpenMPI+
UCX

MVAPICH2 MVAPICH2+
Async

Proposed

C1 [see the caption] ✕ ✕ ✕ ✕ ✔

C2 ✕ ✕ ✕ ✕ ✔

C3 ✔ ✕ ✕ ✔ ✔

C4 ✕ ✕ ✕ ✕ ✔
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by offloading to HW? 4) Can we propose novel designs to extract overlap for
unexpected messages? Can it be done without increasing the memory footprint
of the MPI library? 5) Can the proposed designs be combined so they can be
adaptively applied to the application’s communication requirements?

Table 1 shows an overview of the state-of-the-art solutions available in differ-
ent MPI libraries to extract overlap. Four different representative open source
solutions are considered - OpenMPI+UCX with and without support for hard-
ware tag-matching [26]; and MVAPICH2 with and without software-based asyn-
chronous progress [21]. As we can see, both hardware and software-based solu-
tions enable communication progress without receiver involvement for expected
messages. However, none of the solutions provide good overlap for unexpected
messages. Furthermore, even for expected messages, existing hardware-assisted
solutions do not provide good overlap when the application uses a combination
of 1) short and large or 2) contiguous and non-contiguous messages. Similarly,
existing designs do not efficiently handle out-of-order messages. These issues
limit the performance and applicability of the existing solutions. To the best
of our knowledge, a comprehensive solution that adaptively and efficiently han-
dles different application scenarios has neither been proposed in literature nor
available as a software product.

3 Contributions

In this paper, we tackle these questions and show that neither hardware nor
software-based tag matching can provide the best performance and overlap for
different communication scenarios. Thus, a hybrid design that can take advan-
tage of both these approaches and adapt to the application’s communication
requirements is required. To this end, we propose a Communication-Aware
Hardware-Assisted MPI Overlap Engine (“CHAMPION”) that takes advan-
tage of hardware and software features to provide high overlap of computation
and communication for both expected and unexpected messages, and dynami-
cally adapt to the application’s communication requirements. To summarize, the
paper makes the following contributions:

– In-depth characterization of state-of-the-art hardware tag-matching and
offload schemes and identify regions of applicability for hardware tag match-
ing and software-based solutions.

– Design a communication-aware Hardware Tag Matching offload mechanism
that hides the performance overheads of the offload engine while maintaining
the peak performance of this engine.

– Enable the processing of out-of-order messages in hardware, using a trace-
based matching design to maximize the benefits of Hardware Tag Matching.

– Propose novel designs to extract overlap from unexpected rendezvous mes-
sages by efficient prefetching.

– Evaluate and analyze the proposed designs using various benchmarks and
application kernels.
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Compared to state-of-the-art MPI libraries, the proposed designs show up to
41% improvement for collectives on 1024 nodes, up to 23% reduction in latency,
and up to 2× improvement in overlap for a stencil-based application kernel on
128 nodes and 23% improvement in communication performance of P3DFFT
application.

4 Motivation

As the first step toward designing a high-performance and scalable overlap engine
inside the MPI library using Hardware Tag Matching, we need to systematically
analyze the key communication primitives and semantics in the MPI library. We
consider the semantic challenges as well as performance challenges of state-of-
the-art Hardware Tag Matching. To have a complete picture of the hardware
improvements in this technology, we analyze Hardware Tag Matching in two
latest models of Infiniband HCAs: ConnectX-5 EDR and ConnectX-6 HDR.

Fig. 2. Comparison of communication and computation overlap of Hardware Tag
Matching with respect to the index of the inserted non-contiguous message in the
window size of 64 on different architectures. This figure indicates that the receive
requests which were posted after the non-contiguous receive request in the window are
not getting offloaded, leading to underutilization of Hardware Tag Matching and lower
overlap.

4.1 Semantic Challenges

In this section, to realize the impact of non-contiguous datatype on the over-
lap for medium to large messages, we modified the OMB [1] suite to insert
a non-contiguous message in the window size of 64 and calculate the overlap
and total latency. Figure 2 shows the impact of this insertion on the overlap.
For instance,‘dt-idx-0’ shows that insertion of non-contiguous message as the
first transfer in the window leads to total overlap of almost 0%. On the other
hand,‘dt-idx-63’ which is the last transfer in the window almost has no impact
on the expected overlap. These results indicate that posted receive messages that
have been posted after the inserted non-contiguous message were not offloaded
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to the Hardware Tag Matching engine, leading to poor overlap and underuti-
lization of Hardware Tag Matching. Such poor performance exists for both EDR
as well as HDR models. MPI semantics mandate the MPI library to preserve
the message ordering, i.e., consecutive messages with the same tag must match
the posted receives in the same order they were posted. However, some of the
posted receives cannot be offloaded to the HCA (such as unexpected messages or
expected messages with non-contiguous datatypes) and need to be matched in
software. In this scenario, the offloaded tag-matching handled by the HCA and
software-based tag-matching handled by the CPU based communication progress
in MPI library could lead to incorrect ordering. For instance, consider a scenario
where the receiver posts two receives r1, r2, with the same tag t. However, due
to some limitation r1 cannot be offloaded to the HCA so only r2 is offloaded.
Now, the sender performs two sends s1 and s2 that should match with r1 and
r2 respectively. However, the HCA will process the incoming message from s1
first and match it to r2, violating the MPI ordering semantics. Conversely, if the
MPI library does not offload r2 to prevent this scenario, it has to be progressed
in software and benefits of hardware tag matching can not be obtained. Thus,
a high-performance MPI library should have the necessary designs to
maximize the applicability of Hardware Tag Matching.

Fig. 3. Comparison of bandwidth and overlap for different message sizes with and
without hardware rendezvous offload on different architectures. As we observe here,
Hardware Tag Matching is able to provide higher overlap compared to the software-
based solutions for point-to-point communications. On the other hand, this feature is
unable to maintain the peak bandwidth for message range less than 1 MB. HDR and
EDR are showing similar behavior.

4.2 Performance Challenges

In this section, we compare the communication performance (bandwidth) and
overlap achieved using point-to-point operations in Fig. 3. To measure overlap,
we modified the osu bw benchmark to calculate overlap similar to nonblocking
collectives in OMB [1]. We call this benchmark osu bw overlap. To observe the
effect of expected messages we introduce artificial delays at the sender to make
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sure that all the messages are expected and are handled by Hardware Tag Match-
ing. As shown in Fig. 3, Hardware Tag Matching maintains the peak overlap of
communication and computation in both EDR and HDR architectures. However,
in the ‘onload’ scenario, there is no overlap of communication and computation.
Here we assume that there is no asynchronous process/thread performing the
communication progress on behalf of the main process. Therefore, RDMA Read
is initiated only after application calls MPI Wait, which happens after compu-
tation is done. On the other hand, by comparing the bandwidth of the ‘offload’
vs. ‘onload’, we can realize that Hardware Tag Matching performs worse com-
pared to the CPU onloading. In the case of unexpected messages, RDMA Read is
always initiated by CPU, therefore, the bandwidth is same for both ‘onload’ and
‘offload’ scenarios. Hardware tag matching requires pre-posting receives to HCA
before the message has arrived at the receiver, so that the HCA can directly put
the data into the application buffer. Clearly, this scheme cannot be applied to
unexpected messages, where the message has already arrived but no matching
receive operation has been posted to the HCA. As illustrated in Fig. 7(a), this
scenario prevents overlap of computation and communication at the receiver.
Also, the delayed receiver process may increase the communication progress and
wait time at the sender side, leading to the propagation of a skew from the
receiver process to the sender process. Furthermore, since the HCA is unable to
process unexpected messages independent of the CPU, it disables hardware tag
matching once an unexpected message arrives to avoid ordering issues. Further
receives cannot be posted to the HCA until the unexpected message has been
processed by the CPU. Since the process arrival pattern of HPC applications are
often skewed [27], unexpected messages are a common scenario. Thus, a high-
performance Hardware Tag Matching assisted offload design in MPI
must avoid performance degradation of hardware rendezvous offload
while maintaining the peak overlap during the application runtime for
both expected and unexpected messages.

5 Proposed CHAMPION Design

A message in the MPI runtime can be classified as an expected or unexpected
message. Each has its own challenges and requires different considerations to
achieve better communication overlap. In view of the broad spectrum of MPI
communication, we explore the design challenges and solutions for expected
and unexpected messages. In the following sections, we show how our pro-
posed designs for hardware tag-matching semantics augmented by software-
based approaches are able to exploit better performance and overlap for various
benchmarks and applications.

5.1 Communication-Aware and Adaptive Rendezvous HCA Offload

As we discussed in Sect. 4, rendezvous offload using Hardware Tag Matching
has some performance degradations compared to the default version that all
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rendezvous protocol is initiated by host CPU. To address these limitations, we
propose a communication aware design that tries to adaptively offload the MPI
receive requests in an on-demand fashion. This design offloads only when an
overlap opportunity is presented, otherwise, it avoids offloading to mitigate the
overheads of the hardware tag-matching.

For expected messages, RDMA read needs to be performed as soon as the
incoming RTS is received. To realize this in our opportunistic design, we employ
a heuristic to find the frequency (f) of progress calls (MPI Wait, MPI Test) made
during the runtime. The frequency f is computed based on the difference between
the time (δ) when the receiver posts a receive request and when the actual RDMA
operation is triggered. The frequency f has an inverse relation to the offloading
factor e.g., the higher the progress frequency, the less the number of offloaded
tag-matching requests. This adaptive progress design is opportunistic in nature
as it continuously looks for overlap opportunities on the receiver side.

(a) High due to late sender (b) High due to low frequency of com-
munication progress

Fig. 4. In the proposed communication-aware Hardware Tag Matching design we con-
sider high value of δ as indicator of the need for hardware offload. Here we show two
different scenarios where δ can become high.

If δ is large enough (greater than a threshold K), then we try to offload the
receive request for this process peer. K depends on the number of outstanding
rendezvous requests (Crndv) and the average network latency of all outstanding
rendezvous messages. To approximate the latency, we use the LogGP [2] model.
α and β are obtained in an offline fashion and they are architecture-specific.

K = (
∑Crndv

i=1 (α × MSGi + β)
Crndv

) × Crndv =
Crndv∑

i=1

(α × MSGi + β)

Large value of δ could be caused by either (or both) of the following cases:
1) Sender’s RTS is posted later in time than the receiver has posted the
receive-request. In this case, HW TM is needed to avoid the receiver to get
blocked because of the late sender, leading to more overlap at the receiver side.
Figure 4(a) depicts this scenario. 2) Receiver process does not progress the com-
munication frequently enough and as a result, does not quickly poll the comple-
tion queue inside HCA to find the received RTS. In this scenario, HW TM is
needed to take care of the handshake required for RGET based rendezvous pro-
tocol. This scenario is shown in Fig. 4(b). On the other hand, a small value of δ
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Fig. 5. Proposed communication-aware and adaptive HW-TM design on bandwidth
and overlap benchmarks.

implies that there is no skew between the sender and the receiver processes. This
means that the receiver process is frequently progressing the communication and
there is no extra overlap gain from using HW TM, hence, we avoid offloading
to the HCA. Our proposed communication-aware design further keeps track of
the rate of canceled offloaded receive requests. If the cancelation rate passes a
threshold during a period, our proposed design avoids offloading more receive
requests until the next period. This is used to avoid the overheads of receive
request cancelations.

Figures 5(a) and (b) show that our proposed design can correctly realize the
lack of overlap opportunity in the osu bw benchmark and adaptively avoids
offloading receiver requests to the HCA. On the other hand, for osu bw overlap
benchmark, it correctly offloads the receives to achieve maximum overlap. This
benchmark is similar to osu bw but it also calculates the overlap with the same
formula as used in Nonblocking Collectives in OMB [1].

5.2 Trace-Based Matching

Scientific applications exhibit a wide variety of communication patterns involving
a range of message sizes and datatype layouts. For instance, a sender is allowed
to send a message with a derived datatype layout that cannot be offloaded,
followed by a message with a contiguous datatype layout which can be offloaded.
As discussed in Sect. 4, such variability in the message layouts limits the usability
of the offloading if we only rely on HW TM semantics.

An MPI library must make sure that there are no messages offloaded to the
network with the same tag to avoid the ordering issues which limit the usage
of HW TM. To have such a capability, we add an additional variable to the
tag-matching tuple of rank, tag, and context id so that messages which have the
same tag get differentiated. The new variable is unique and preserves the ordering
of the messages for a sequence of messages with the same tag. To achieve this,
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Fig. 6. Impact of proposed designs on variable memory layout communications. Out of
64 messages, all are using contiguous layouts while one is using MPI derived datatype.

two sequence numbers are added for each communicating peer. If an application
uses more than one unique ‘tag’ when it calls MPI Send and Recv primitives,
we allocate new sequence numbers for each new tag. Every communicator in the
application has its own set of sequence numbers so that context id remains same
for all the sequence numbers within a communicator. Both the sequence numbers
are used to keep track of corresponding Send and Recv MPI calls issued by the
application for each unique combination of rank, tag, and context id. Whenever
an application issues these operations, the sequence numbers for that specific
tag and peer are incremented, as there is always a matching Recv operation for
a Send operation. Appending this sequence number within the 64-bit value of
HW TM tag ensures that no two messages can have the same tag, while MPI
ordering of the messages is preserved.

To evaluate our design, we analyze the same benchmark that we used in
Sect. 4.1. As we mentioned before, the benchmark creates an MPI derived
datatype and during the window size number of transfers, it runs few itera-
tions with derived datatypes by using the same tag as of other transfers in each
iteration. By running this benchmark, when a software-based pending receive is
available, MPI libraries such as OpenMPI+UCX stop offloading new incoming
receives to the HCA until software takes care of the pending receives. Due to
this limitation, the hardware cannot be exploited to its full potential to achieve
maximum overlap. Figure 6 shows how our proposed trace-based matching design
overcomes this limitation. As it can be seen, the presence of even a single non-
contiguous datatype transfer can completely eliminate the benefits of naive hard-
ware tag-matching design (refer to Sect. 4). However, our proposed trace-based
matching design is able to address these limitations and offer better performance
and overlap in comparison to other state-of-the-art solutions.
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5.3 Improving the Overlap of Unexpected Messages

In this section, we discuss various design components for our overlap engine
which are applicable to ‘unexpected messages’ at the receiver side. We start
with a speculative approach and move towards an optimized design. As we dis-
cussed in Sect. 4, Hardware Tag Matching does not provide any communication
and computation overlap for unexpected messages. This is an expected behav-
ior as upon receiving an unexpected RTS, receiver process has not yet posted
the receive request and therefore, receiver HCA does not yet know where the
destination buffer is. As illustrated in Fig. 7(a), this scenario prevents overlap of
computation and communication at the receiver. Also, the delayed receiver pro-
cess may increase the communication progress and wait time at the sender side,
leading to the propagation of a skew from the receiver process to the sender pro-
cess. Since the process arrival pattern of HPC applications are often skewed [27],
unexpected messages are a common scenario.

In order to allow the sender to proceed without getting stuck on a late receiver
process to post the receive request and perform the RDMA-Read, the receiver
process selectively prefetches some of the unexpected rendezvous messages. To
achieve this, we create a memory pool and register it with HCA during MPI Init.
Whenever an unexpected RTS is received at the receive side, we query the mem-
ory pool to see if there is a memory slot available to be used for prefetching. If
a free slot is found, then based on the sender’s information obtained from RTS
packet, an RDMA read is issued to transfer the data from the sender’s buffer.
After the completion of the transfer, a FIN packet is sent to the sender indicating
that the sender is free to mark the operation as complete. This design is illus-
trated in Fig. 7(b). To decide whether or not prefetch the incoming unexpected
RTS, this design relies on the history of the previous prefetches and number of
useful prefetches (ones that receiver process posted the receive request after the

(a) Rendezvous RGET (b) Proposed Prefetch Scheme

Fig. 7. The proposed design and default MVAPICH2 approaches in handling unex-
pected rendezvous messages. In the proposed design, the receiver process prefetches
the unexpected rendezvous message, leading to better overlap and latency for sender
and receiver as the sender does not get blocked by the late receiver.
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prefetch is done) versus non-useful prefetches (ones that receiver process posted
the receive request before prefetch is done, but obviously, after RTS is received).

To measure the impact of the proposed design for unexpected messages,
we use a synthetic benchmark where we inject skew between the sender and
the receiver to force the message to arrive as unexpected at the receiver. As
it is shown in Fig. 8, closest in performance is the MVAPICH2-X library with
asynchronous progress thread enabled—referred to as MVAPICH2+Async. In
our proposed design, we also create a tm-thread that functions similar to how
MVAPICH2+Async functions [21]. The proposed design improved overall run-
time by up to 38% as well as achieved better overlap in comparison to MVA-
PICH2+Async design.

6 Performance Evaluation

In this section, we discuss the experimental results of our proposed designs and
provide in-depth analyses. We implemented our proposed designs in a pub-
licly available open-source version of MVAPICH2 [19]. To evaluate the pro-
posed designs, we provide an in-depth comparison against the state-of-the-art
designs employed by MPI libraries such as MVAPICH2-X v2.3rc2 (referred to
as “MVAPICH2”) and Open MPI v4.0.0 with UCX v1.4 (referred to as “Open-
MPI+UCX”). All the reported numbers are an average of five runs. Microbench-
mark evaluations ran for 1,000 iterations for each run and an average of five runs
is reported. Furthermore, the standard deviation between these iterations is kept
under 5%.

Fig. 8. Impact of the proposed prefetch-based design on the performance of unexpected
messages (Window size = 64)

6.1 Experimental Setup

We used the following clusters for our evaluation:
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Cluster-A—Frontera cluster at the Texas Advanced Computing Center con-
tains 8008 compute nodes equipped with the dual-socket Intel Xeon Platinum
8280 (Cascade Lake), 56-core processors (448,448 cores in total) operating at
2.70 GHz with 192 GB RAM. Each node is equipped with Mellanox HDR-100
ConnectX-6 HCAs (100 Gbps data rate).

Cluster-B—Pitzer cluster at the Ohio Supercomputing Center contains 260
compute nodes equipped with the Skylake Gold 6148 series of Xeon dual-socket,
20-core processors operating at 2.40 GHz with 128 GB RAM. Each node is
equipped with Mellanox MT4119 EDR ConnectX-5 HCAs with PCI-Ex Gen3
interfaces. For some of the motivational numbers we used our local cluster which
has similar details to this cluster but it has Broadwell series of Xeon dual-
socket, 14-core processors operating at 2.40 GHz. All the results were obtained
on Cluster-B except for the ones which are indicated that they were run on
Cluster-A.

6.2 Impact of Proposed Designs on Collective Operations

In this section, we evaluate the performance of collective operations using the
proposed designs.

Fig. 9. Impact of proposed communication-aware design on collectives with 640
processes.

Fig. 10. Performance impact of proposed designs on MPI Ialltoall and MPI Iscatterv
running on cluster A
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Impact of Proposed Communication-Aware Hardware Tag Matching
Design. Figure 9(a) shows that by using the proposed design, MPI Iscatterv
performance increases by a factor of 1.6X. In MVAPICH2, MPI Iscatterv uses
a direct algorithm, meaning that the root process directly sends the data to all
other non-root processes. Therefore, HW TM can provide nearly perfect over-
lap of communication and computation for this collective as only one receive
request is issued by non-roots during the collective runtime and this receive
request gets overlapped using HW TM. On the other hand, Fig. 9(b) shows that
for MPI Igatherv, basic TM design has around 10% to 15% degradation com-
pared to default for medium messages but the proposed design can avoid this
degradation. After profiling this test, we realized that even though Igatherv
uses a direct algorithm, more than 90% of the offloaded receive requests at root
are getting canceled, therefore, there will be no benefit from HW TM. Since
our communication-aware design keeps track of the cancel rate of the offloaded
receive requests, it avoids using HW TM for this benchmark during the runtime
leading higher performance compared to basic HW TM design.

Figure 10 shows the impact of the proposed designs at large scale for Iall-
toall and Iscatterv collectives. As it is shown in these figures, for iscatterv in
1024 node, there is up to 41% improvement in total latency while increasing the
overlap up to 80%. On the other hand, Ialltoall also shows up to 33% improve-
ment in total latency and up to 70% in overlap providing near-perfect overlap
of communication and computation on 64 nodes.

Fig. 11. Impact of proposed prefetch-based design on collectives with 320 processes.

Impact of the Proposed Designs for Unexpected Messages. By run-
ning collective tests using OMB [1] using the prefetch-based design, we did not
observe any significant difference in the performance of collective operations.
This is expected because in collective benchmarks (OMB) all the processes are
mostly synchronized e.g., all the processes enter the collective operation at the
same time. To better understand the impact of our designs, we modify some
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benchmarks to insert skew for some of the processes as the real applications typ-
ically show skewed communication. We observed that the rooted collectives such
as MPI Gather and MPI Reduce show benefits due to the prefetch design. This is
due to the fact that the rooted collectives do not have any implicit barrier dur-
ing the operation in contrast to dense collectives like MPI Alltoall. For these
communication patterns, the propagation of skew to other processes of the com-
municator can be avoided by efficiently prefetching the unexpected messages.
Figure 11 conforms to our understanding where we see up to 55% improvement
for MPI Reduce and up to 17% improvement for MPI Gather at 320 processes.

6.3 Impact of Proposed Designs on 3Dstencil Kernel

Fig. 12. Performance of 3D-Stencil application kernel running on 128 nodes using
proposed designs on cluster A

3DStencil is a common communication kernel that mimics the communica-
tion pattern of many stencil-based applications and Adaptive Mesh Refine-
ment (AMR) kernels. This communication kernel performs 7-point stencil with
neighboring processes using MPI non-blocking point-to-point primitives i.e.,
MPI Isend and MPI Irecv using contiguous datatypes. Figure 12 shows that pro-
posed design achieve up to 2× increased overlap and up to 22% improved latency
as compared to other MPI libraries running on 128 nodes. In this experiment, for
all the message sizes, the Rendezvous protocol is getting used and our profiles
showed in the proposed design, out of 579,365 receive requests that have been
offloaded, 20,050 receive request has been canceled while 559,315 offload requests
have been successful, having the offload rate of 96%. This results in more than
20% improvement in overall runtime compared to default MVAPICH2.
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6.4 Application-Level Evaluations

Fig. 13. Impact of proposed designs on P3DFFT with 32 processes per node.

In this section, we evaluate the impact of the proposed designs on performance
of P3DFFT and LAMMPS applications. The Parallel Three-Dimensional Fast
Fourier Transforms (P3DFFT) [20] library uses a 2D, or pencil, decomposition
and overcomes an important limitation to scalability inherent in FFT libraries
by increasing the degree of parallelism. This library heavily relies on nonblock-
ing Alltoall collectives to transform the data grid during each iteration [16,24].
Figure 13 shows the impact of the proposed design. As shown in this figure, the
proposed design can correctly realize the opportunity of overlap in this applica-
tion and provide 23% improvement in the communication time and up to 7%
improvement in total application time.

Our second evaluation is on Large-scale Atomic/Molecular Massively Paral-
lel Simulator (LAMMPS) [3] which is a molecular dynamics program developed
in Sandia National Laboratories. This test runs on 32 nodes with 16 processes
per node on Frontera cluster. On this configuration, we observed 3.58% improve-
ment in total execution time compared to MVAPICH2. We further profile this
application and realized that out of 266,896 rendezvous recieves, 216,517 receive
requests have been successfully offloaded and matched in the Hardware Tag
Matching engine and rest have been handled by software tag matching. This
leads to 81% success rate in the tag matching offload and improved overlap in
the application.

7 Related Work

Optimizing software-based MPI tag matching has been the interest of many
researchers. Some of these proposals [8,9,11] consider static designs to improve
tag matching operations, while others [4,10,12,13] propose adaptive and
dynamic approaches. Offloading the communication progress to NICs for MPI
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point-to-point and collective operations has been explored in the past. For exam-
ple, Researchers [28] explore the implementation of multicast in Myrinet based
NICs. Graham et al. [14] explore the overlap of computation and communica-
tion in Mellanox ConnectX2 HCA. It uses the Core-Direct API to implement
the barrier collective and study the improvements in the total time obtained
due to Hardware offloading. Subramoni et al. [23] provide designs to effectively
implement the collectives on the ConnectX2 HCA. Brightwell et al. [6] showed
that eagerly sending large messages can improve latency for pre-posted receives.
However, this scheme has to resend unexpected large messages in the presence of
application skew, which does not affect our design. Chakraborty et al. [7] inves-
tigate different approaches to increase the overlap of intra-node communication
and computation with inter-node communication. As we can see, no work exists
in literature that can provide maximum overlap of computation and communica-
tion in a communication-aware fashion while taking advantage of state-of-the-art
solutions in hardware and software in an adaptive fashion as “CHAMPION” is
able to do.

8 Conclusion and Future Work

In this paper, we characterized the semantic and performance limitations of
state-of-the-art hardware-based tag matching and rendezvous offload designs
and showed that they cannot be applied to a number of scenarios. We also show
that hardware tag-matching does not provide improved overlap for various com-
mon communication patterns such as unexpected or non-contiguous messages.
We proposed an adaptive overlap engine for MPI that is cognizant of the appli-
cation’s communication requirements and can opportunistically offload receives
to the network adapter based on factors like message size, datatype, as well as
arrival patterns of the sender and the receiver process. The proposed design uses
both hardware-assisted and history-driven software-based solutions to extract
overlap for both expected and unexpected messages in different communication
scenarios. We evaluated the efficacy of the proposed design against state-of-the-
art hardware and software-based solutions using a variety of microbenchmarks
and application kernels and showed up to 55% and 17% improvement for Reduce
and Gather collectives with 320 processes. Furthermore, we showed that our
designs can increase the performance of Iscatterv and Ialltoall up to 41% and
33% in 1024 and 64 nodes, respectively. We also show up to 2× increase in
overlap and up to 22% reduction in overall runtime for stencil-based application
kernels and 23% improvement in communication performance of P3DFFT. As
the future work, we will work on proposing HW TM aware collectives as well as
running more scientific applications to see the impact of proposed designs.
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