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Model Predictive Controller for a Planar
Tensegrity Mechanism with decoupled position
and stiffness control.

JR Jurado Realpe, Salih Abdelaziz, and Philippe Poignet.

Abstract Precise trajectory tracking and stiffness modulation for tensegrity mech-
anisms are a challenging topic that can open new horizon of applications for this
type of systems. This paper presents a new control strategy of tensegrity mecha-
nisms using a model predictive controller (MPC). Based on a dynamic model, the
proposed approach allows to track trajectories with low and relatively high dynam-
ics as well as to modulate the mechanism stiffness by changing only the controller’s
parameters. Trajectories of 30s, 5s and 1s are performed showing a trajectory track-
ing improvement of up to 64% in the root mean square error when compared to
literature results.

Key words: Dynamic modeling, MPC controller, Stiffness modulation,Tensegrity
mechanism, Trajectory tracking.

1 Introduction

The word tensegrity comes from the contraction of tensional and integrity [1]. A
tensegrity system is composed by compressive and tensile elements that interacts
to define a stable volume [2]. The integrity of the structure is then ensured by only
the internal forces produced by the tensile elements (cables, springs). Their large
workspace to size ratio, their light weight and their ability to modulate stiffness,
make tensegrity systems an interesting solution for structural applications [3] [4],
deployable systems [5] [6], mobile robots [7] [8] or manipulators [9] [10].

Different control approaches have been proposed to control the motion of tenseg-
rity mechanisms. The authors are commonly focused in the generation of gait for
locomotion using open loop controllers [11] [12], neuronal networks [13] [14], kine-
matic models [10] or Lyapunov function [15]. Nevertheless, the trajectory tracking

The Autors are with the LIRMM, Université de Montpellier, CNRS, France.
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has not been a priority. To our knowledge, only two works [10] [16] propose strate-
gies to control finely trajectory tracking. On one hand, a PID controller and a ten-
sion distribution algorithm [10], inspired from cable-driven robots controllers, has
been proposed to control the position and the stiffness of a 1 DOF planar tenseg-
rity mechanism. This controller presents good position tracking for trajectories with
low dynamic but loose performance when tracking relatively high dynamics trajec-
tories. On the other hand, a Model Predictive Controller (MPC) with inverse static
optimization has been introduced to realize the trajectory tracking of a tensegrity
spine robot. Nevertheless, stiffness modulation is not addressed.

Our interest here is to fully exploit a tensegrity system by controlling its position
and stiffness. A dynamic-based control strategy would be pertinent to deliver good
trajectory tracking performance. A MPC using a dynamic model is here proposed to
modulate the stiffness and trajectory tracking of the mechanism in an asynchronous
way by only modifying the control parameters of the controller. The proposed strat-
egy is experimentally validated on a 1 DOF planar cable-driven tensegrity mecha-
nism.

This paper is organized as follow. The static, stiffness and dynamic models of the
planar tensegrity mechanism is developed in section 2. Then a MPC strategy is pro-
posed in section 3. Position tracking and stiffness modulation results are discussed
in section 4. Finally conclusions and future work are presented in section 5.

2 System modelling

The system studied here is a 1 DOF planar tensegrity mechanism, whose end effec-
tor is considered as the bar bc (Fig 1). The end effector orientation is denoted θ . The
structure is composed by an articulated equilateral parallelogram, of length L, and
is driven by two cables. Each cable is attached to one corner of the parallelogram
at one end and to a linear spring, of stiffness k, on the other end. The mechanism
is actuated by two actuators. The angular position for each motor i is denoted αi.
Pulleys, of radius R, are mounted on the actuators so that ρi = Rαi describes the dis-
placement of the cable i. This redundancy of actuation is performed so as to allow
stiffness modulation of the system.

2.1 Static and stiffness models

The static model of the system is computed using the virtual work approach. It is
described as:

Wτττ = Γ (1)

where W = [Lsin(θ/2), −Lcos(θ/2)]. Γ denotes the torque generated by the two
cables on the end effector. The components of the vector τττ = [τ1,τ2]

T describe the
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Fig. 1 planar mechanimt.

cables tensions, computed as:
{

τ1 = k∆ l1 = k
(
ρ1 +2Lcos(θ/2)−L

√
2
)

τ2 = k∆ l2 = k
(
ρ2 +2Lsin(θ/2)−L

√
2
) (2)

where ∆ li denotes the elongation of the spring i. The potential energy U of the
system is assumed to be only the elastic energy stored in the springs:

U =
1
2

k(∆ l2
1 +∆ l2

2) (3)

The static equilibrium of the platform is obtained by solving ∂U
∂θ = 0:

θ = 2arctan

(
L
√

2−ρ2

L
√

2−ρ1

)
(4)

The angular stiffness Kθ at the equilibrium configuration is obtained by:

Kθ =
∂ 2U
∂θ 2 =−∂Γ

∂θ
=−L

2

(
cos(θ/2)τ1 + sin(θ/2)τ2

)
+ kL2 (5)

2.2 Dynamic model

The dynamic model of the structure is calculated using Euler-Lagrange formulation.
The total kinetic energy Ek of the system is defined by:
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Ek =
5
6

mL2θ̇ 2 (6)

where m denotes the mass of one bar of the parallelogram. The equation of motion
is therefore given by:

fd + fq +Γext =
d
dt

∂L

∂ θ̇
− ∂L

∂θ
(7)

where Γext denotes the external torque applied on the end-effector and L = ET −U .
In this study, the friction and the gravity forces, respectively, fd and fq, are neglected.
The structure dynamics is therefore described as:

Γext =
5
3

mL2θ̈ +
∂U
∂θ

(8)

The dynamic of the actuator i is defined using Newton’s law:

Ci −Cvα̇i −Rτi = Im
dα̇i

dt
(9)

with Ci and Cv being respectively the torque and viscous coefficient of the actuator.
Finally, the complete dynamic model of the tensegrity mechanism is expressed in a
matrix formulation as:




RC1
RC2
Γext


=




Im 0 0
0 Im 0
0 0 5mL2

3






ρ̈1
ρ̈2
θ̈


+




Cvρ̇1
Cvρ̇2

0


+




R2τ1
R2τ2

∂U
∂θ


 (10)

3 Proposed control strategy

A control approach that allows to asynchronously track low/high dynamic trajecto-
ries and modulate the stiffness of the tensegrity mechanism is hereafter presented. It
consists on a linear model predictive controller based on a discrete-time state-space
model.

3.1 Dynamic model linearization

The linearization of (10) is performed around an equilibrium point (ρ10,ρ20,θ0).
Only ∂U/∂θ , τ1 and τ2 present nonlinear terms. The linearized terms are computed
using the first-order Taylor expansion as:

(
τ1
τ2

)
=

(
kρ1 − f1θ + f3
kρ2 + f2θ + f4

)
(11)
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∂U
∂θ

=− f1ρ1 + f2ρ2 − f5θ − f6 (12)

such that:
f1 = kLsin(θ0/2)
f2 = kLcos(θ0/2)
f3 = 2 f2 + f1θ0 − kL

√
2

f4 = 2 f1 − f2θ0 − kL
√

2
f5 = −L

√
2/2( f1 + f2)+ f1ρ20/2+ f2ρ10/2

f6 = L
√

2( f2 − f1)+{L
√

2/2( f1 + f 2)− ( f1ρ20/2+ f2ρ10/2)}θ0

By defining the state vector x = [ρ1,ρ2,θ , ρ̇1, ρ̇2, θ̇ ]T and the control vector as
the torque of the motors u = [C1,C2]

T and by using the linearized expressions, the
continuous-time state-space is expressed as:

ẋ = Acx+Bcu+dc (13)

with:

Ac =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−kR2

Im
0 R2 f1

Im
−Cv
Im

0 0

0 −kR2

Im

−R2 f2
Im

0 −Cv
Im

0
3 f1

5mL2
−3 f2
5mL2

3 f5
5mL2 0 0 0




Bc =




0 0
0 0
0 0
R
Im

0
0 R

Im
0 0




dc =




0
0
0

R2 f3
Im

R2 f4
Im
3 f6

5mL2




(14)

The linear discrete-time model is defined as:

xk+1 = Akxk +Bkuk +dk (15)

3.2 MPC formulation

The objective of the MPC controller is to minimize the error Ek over an horizon
Hp between the desired trajectory Tk = [xd

k+1,x
d
k+2, . . . ,x

d
k+Hp

]T and the predicted
output Yk = [xk+1,xk+2, . . . ,xk+Hp ]

T . The cost function is defined as:

Vk = ET
k QEk +∆∆∆UT

k R∆∆∆Uk (16)

with Ek = Tk −Yk. Q and R are diagonal weight matrices.
In order to solve the predictive control problem, it is necessary to predict the

future states xk+i, i = 1, ...,Hp. To do so, we consider that over a horizon Hp the
linear time varying system (15) can be approximated by a linear invariant system.
This yields to consider the matrices Ak, Bk and dk as constants, which mean that
Ak+i = Ak = A, Bk+i = Bk = B and dk+i = dk = d for i = 1, ...,Hp. With this as-
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sumption the future states can be computed by applying Hp times the equation (15):

Yk =




xk+1
xk+2

...
xk+Hp


=




A
A2

...
AHp




︸ ︷︷ ︸
Ψ

xk +




B
AB+B

...

∑
Hp−1
i=0 AiB




︸ ︷︷ ︸
γ

uk−1 +




d
Ad+d

...

∑
Hp−1
i=0 Aid




︸ ︷︷ ︸
D

+ . . .

· · ·+




B 0 . . . 0
AB+B B 0 . . . 0

...
...

∑
Hp−1
i=0 AiB ∑

Hp−2
i=0 AiB . . . ∑

Hp−Hu
i=0 AiB




︸ ︷︷ ︸
Θ




∆∆∆uk
∆∆∆uk+1

...
∆∆∆uk+Hu−1




︸ ︷︷ ︸
∆∆∆U

(17)

To take into account the unilateral tensions in the cables, a constrained optimiza-
tion problem has to be considered. As the control variables of the MPC con-
troller are the torques of the actuators, the tension limits, τττmin = [τmin,τmin]

T and
τττmax = [τmax,τmax]

T , have to be converted into torques limits umin = [Cmin,Cmin]
T

and umax = [Cmax,Cmax]
T . The solution of (16) can be obtained by solving the con-

strained quadratic programming (QP) problem:

min
∆∆∆U

∆∆∆UT H∆∆∆U+GT ∆∆∆U (18)

subject to : umin ≤ u ≤ umax (19)

with H = Θ T QΘ +R and G = 2Θ T Q(Tk −Ψxk − γuk−1 −D). This problem has
to be solved at each step k. Once the optimal solution ∆∆∆U is found, the first control
output is applied and kept until the next time step.

3.2.1 Trajectory tracking

The overall control approach is composed of an external MPC controller and an
internal tension control loop (cf. Fig2). The control output uk of the MPC is con-
verted into a desired tension τττd . This vector of tension is then compared to τττm that
contains the real tensions in the cables. These tensions are measured using force
sensors. A tension controller Cτ is considered to control these tensions in the in-
ner loop. The output of this tension controller is sent to the actuators as desired
velocities α̇ααd = [α̇d

1 , α̇d
2 ]

T .
During the trajectory tracking, the variables θ and θ̇ in the state vector x are to

be controlled. To do so, the weight matrix Q has to be defined with high values
for the components Qθ and Qθ̇ and values near to zero for the other components
Qρ1 ,Qρ2 ,Qρ̇1 . and Qρ̇2 :
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Fig. 2 Strategy of control proposed based on a MPC controller

Q = diag(Qρ1 ,Qρ2 ,Qθ ,Qρ̇1 ,Qρ̇2 ,Qθ̇ ) (20)

3.2.2 Stiffness modulation

The stiffness modulation is possible by changing the control parameter Q. During
the modulation of the angular stiffness Kθ , the mechanism has to conserve a static
position θ d . As Kθ depends on the cables tensions (5), an initial and a final desired
tensions, respectively τττ i = [τ i

1, τ i
2]

T and τττ f = [τ f
1 , τ f

2 ]
T , have to be defined. These

tensions are computed by solving (1). The solution has the form [18]:

τττ = W+Γ +Nλ (21)

where W+ denotes the Moore-Penrose pseudoinverse of W, N = [−Lcos(θ/2), −
Lsin(θ/2)]T a basis of W null space and λ is a scalar to be defined.

Since the mechanisms is in an equilibrium position, the generated torque pro-
duced by the cables is equal to zero Γ = 0. The bounds of λ , defined as [λmin,λmax],
can therefore be obtained by solving the inequality:

τττmin ≤ Nλ ≤ τττmax (22)

Once the bounds of λ are obtained, the tensions τττ i and τττ f could be chosen for given
values of λ that satisfy (22). Then, using (2), the tensions τττ i and τττ f are converted
into initial and final desired cables displacement, respectively ρρρ i = [ρ i

1,ρ
i
2]

T and
ρρρ f = [ρ f

1 ,ρ
f

2 ]
T . A desired trajectory, from ρρρ i to ρρρ f , can therefore be defined in

order to modulate Kθ .
Since the trajectory of interest is now in terms of the cables displacement, the

weight matrix Q has to be selected with high values for Qρ1 ,Qρ2 and with small
values for the rest of the components. A special attention has to be made with the
component Qθ , because its weight allows to ensure that the orientation of the mech-
anism will not change during the stiffness modulation.
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4 Results

The control approach is evaluated on the developed prototype shown in Fig 1. The
mechanism is actuated using 2 DC motors. Polyethylene fibre cables are deployed
for motion transmission. 2 force sensors are used to measure the cables tensions.
Each sensor is placed between one motor and a spring. Moreover, an optical encoder,
with a resolution of 0.225◦, is used to measure the angle θ .

Trajectory tracking with low and relatively-high dynamic is first assessed. Three
trajectories, going from 90◦ to 45◦, are created using fifth-order polynomial equa-
tion. The duration of these trajectories are respectively 30s, 5s and 1s. The cables
tensions limits are set to τmin = 4N and τmax = 10N and the control parameters of Q
are defined in function of the trajectory. For the first trajectory, Qθ = 8e4,Qθ̇ = 50.
For relatively-high dynamic trajectories, Qθ = 2.1e5,Qθ̇ = 8. The control parame-
ters Qρ1 = Qρ2 = Qρ̇1 = Qρ̇2 = 10−3 and R = diag(9e8,9e8) are set equal for all the
trajectories. Hp and Hu are set equal to 40 with a sampling time of 7ms. The con-
strained MPC optimization problem (19) is solved using the Interior point method
implemented in the EIgen quadprog solver. The results can be observed in Fig 3.

Fig. 3 Trajectory tracking with low and relatively high dynamics.

The root mean square errors (RMSE) of the position tracking for the three trajec-
tories are respectively 0.47◦, 1.28◦ and 4.36◦. The static errors is less than or equal
to 0.225◦ which is the encoder resolution. The obtained results are compared to the

Table 1 Tracking trajectory results for PID controller [10] and the MPC approach.

Trajectory PID MPC
30s 0.97◦ 0.47◦

5s 3.6◦ 1.28◦

literature ones [10], where similar experiments have been conducted using a PID
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controller. Reductions of 51% and 64% in the RMSE for the two trajectories, 30s
and 5s, are observed (cf. Table 1). Besides, the RMSE increases when the duration
of trajectories decreases. This is mainly due the bandwidth of the tension inner loop,
limited actually to 1s of time response. A solution could be to reformulate the MPC
problem by changing the control vector u from motor’s torques to motor’s angu-
lar velocities. Thus, this reformulation eliminates the tension inner loop, and would
improve the time response of the system.

A final experiment is performed in order to validate the stiffness modulation of
the system. This experiment is divided into two phases. In the first phase, trajec-
tory tracking is performed during 30s, going from 90◦ to 70◦. Once the trajectory
tracking phase is finished, the stiffness modulation is assessed during 10s, while
the position of the mechanism is kept at θ f = 70◦. τττ i is defined as desired tensions
at the end of the trajectory tracking. τττ f is defined by setting λ = λmax. A linear
displacement of the cables, going from ρρρ i to ρρρ f , is therefore defined and sent to
the MPC controller. The weights variables of Q are defined as Qρ1 = Qρ2 = 7.2e5,
Qθ =Qρ̇1 =Qρ̇2 = 1, Qθ̇ = 10−3 and R= diag(7e7,7e7). The results are depicted in
Fig 4. During the trajectory tracking, the angular stiffness is quite constant. During

Fig. 4 Results of the trajectory tracking and stiffness modulation experiment

the stiffness modulation, Kθ varies linearly from 0.98Nm/rad to 0.89Nm/rad. This
variation is related to the cables tensions variation, as expected in (5) and observed
in Fig 4 (b and c). The evolution of the angular stiffness Kθ is inversely proportional
to the variation of τττ .

5 Conclusion

This work presents a linear MPC control strategy for tensegrity mechanisms. The
approach allows the position tracking and the stiffness modulation by only chang-
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ing the values of the control parameters Q and R. A planar cable-driven tensegrity
mechanism was used to validate the performance of the proposed controller. The re-
sults have shown a static error of less than 0.225◦ and good performance in terms of
tracking relatively-high and low dynamics trajectories. A reduction of up to 64% on
the RMSE during the trajectory tracking, with respect to literature results, was ob-
tained. Furthermore, the MPC proposed shows a decoupled control of the position
and the stiffness.

Future work will be the extension of this approach for spatial tensegrity mecha-
nisms. An interesting perspective would be the proposal of a MPC with the motor’s
angular velocity as the output control vector, in order to avoid the use of an inner
tension control loop.
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