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Abstract. This paper addresses the hyperplane fitting problem of dis-
crete points in any dimension (i.e. in Zd). For that purpose, we consider
a digital model of hyperplane, namely digital hyperplane, and present a
combinatorial approach to find the optimal solution of the fitting prob-
lem. This method consists in computing all possible digital hyperplanes
from a set S of n points, then an exhaustive search enables us to find
the optimal hyperplane that best fits S. The method has, however, a
high complexity of O(nd), and thus can not be applied for big datasets.
To overcome this limitation, we propose another method relying on the
Delaunay triangulation of S. By not generating and verifying all possible
digital hyperplanes but only those from the elements of the triangula-

tion, this leads to a lower complexity of O(nd
d
2
e+1). Experiments in 2D,

3D and 4D are shown to illustrate the efficiency of the proposed method.

Keywords: Optimal consensus · Exact computation · Discrete opti-
mization · Optimal fitting · dD Delaunay triangulation.

1 Introduction

Data fitting is the process of matching a set of data points with a model, possibly
subject to constraints. This is an essential task in many applications of computer
vision and image analysis; e.g. shape approximation [23, 32], image registration
[31, 33], image segmentation [19, 21]. In this context, the mostly considered mod-
els are the geometric ones such as a line, a circle in 2D or a plane, a surface in
3D. Among the models, the linear one has received greatest attention in theory
and practice as many nonlinear models can be rearranged to a linear form by
a suitable transformation of the model formulation [17, 30]. In this paper, we
are interested in the fitting problem of hyperplane –a linear model– for a set of
discrete points S in any dimension; i.e. S ⊂ Zd for d is the dimension of space.
Then, this problem can be formulated as an optimization problem in which we
find the parameters of the hyperplane that best fits S, namely optimal solution.
It is clear that this problem depends on how we define the hyperplane model
and the criteria for the best fitting, namely cost function of the optimization
process. In practice, hyperplane fitting has a great interest in applications of
classification for object detection and recognition [9].

Several works have been proposed in this context. We can mention, for in-
stance, the methods based on regression [4, 11, 29, 30]; e.g. least squares, weighted
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least-squares, least-absolute-value regression and least median of squares (LMS).
Generally, these approaches consider a hyperplane in the Euclidean space Rd

and find the model that minimizes the sum of the geometric distance from all
given points to the model. However, the provided solution is known to be un-
stable and sensitive to large deviant data points, namely outliers [24]. Other
well-known approaches for fitting hyperplane using voting scheme include the
Hough Transform (HT) [15, 18], the RANdom SAmple Consensus (RANSAC)
[16] and associated variations [12]. More precisely, HT considers a dual space,
namely Hough parameter space of the input set S. This space is discretized into
cells and used as an accumulator of votes from points of S. Typically, for each
point x ∈ S, a vote is added to cell in the accumulator that could generate from
x. Then, the optimal solution is computed from the cell having the maximal of
votes. RANSAC method chooses d points from S at random to form a candidate
hyperplane passing through these points. Then, it calculates the distance of ev-
ery points of S to the candidate hyperplane, and the points within a threshold
distance are considered to be in the consensus set of the hyperplane. A score
associated to the hyperplane is computed based on its consensus set; e.g. the
size of the consensus set. This process is iterated a certain times and reports
the hyperplane of maximal score as the optimal solution; i.e. the best-fitting
hyperplane for S. Both HT and RANSAC are simple, efficient and robustness
to outliers. They, however, have a computational complexity growing with the
number of model parameters [12, 15, 16, 18]. In addition, the above approaches
were originally designed for points in Rd using the Euclidean hyperplane model.
Of course, the discrete space of Zd is a subspace of Rd, then the fitting prob-
lem can be solved using these approaches. However, because of their continuous
consideration, applying them for points of Zd requires the use of floating point
numbers which may induce the numerical error. Furthermore, due to the discrete
nature of points in Zd, computing an actually optimal solution of discrete points
is practically impossible in continuous space as there is an infinity of solutions.

Under the assumption of input points in discrete space of Zd, this paper
addresses the problem of hyperplane fitting in a fully discrete context. More
specifically, we consider the digital model of hyperplane of Zd, namely digital
hyperplane, and propose methods for digital hyperplane fitting using exact com-
putation. For that purpose, we first present a combinatorial approach for solving
this problem. The method consists in generating all the possible digital hyper-
planes associated to a set of n point S ⊂ Zd. Contrarily to Rd, this set –despite
a potentially high complexity– remains finite and thus allows an explicit ex-
ploration to find the optimal solution via a discrete optimization scheme. The
method guarantees the global optimality, it has however a computational com-
plexity of O(nd). In practice, it is unsolvable for n = 106 in 3D1. This high
complexity practically forbids its use for big dataset.

In order to solve this fitting problem in a practical context, we propose a
new method to find locally optimal solution. The method is based on a heuristic

1 Supposing it needs 1µs for generating and testing one hyperplane, then it takes
about 3 ∗ 107 years to find the optimal solution.
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Fig. 1: Digital hyperplanes in 2D and 3D. Left: a digital line and right: a digital plane.

involving the Delaunay triangulation [13, 27]. Basically, it consists in comput-
ing the Delaunay triangulation of the input points, then using the triangulated
elements to generate hyperplanes and find an optimal solution for the fitting
problem stated above. It should be mentioned that Delaunay triangulations are
used in numerous applications of computational geometry [8], geometric mod-
elling [6] and computer graphics [3, 14]. It is not only well-known for its optimal
properties [2, 22, 27] but also for its advantage to be incrementally computed in

O(nd
d
2 e+1) complexity [7, 10].

2 Preliminaries

2.1 Digital hyperplane

An affine hyperplane in Euclidean space Rd of dimension d ≥ 2 is defined by the
set of points x = (x1, x2, . . . , xd) ∈ Rd satisfying the following equation:

H = {x ∈ Rd :

d∑
i=1

aixi + ad+1 = 0}, (1)

with ai ∈ R are coefficients of the hyperplane, w.l.o.g. H can be unambiguously
represented by its parameters and denoted by H = (ai)

d+1
i=1 . In other words, a

hyperplane is the solution of a single linear equation (Eq. 1). Lines and planes
are respectively hyperplanes in 2 and 3 dimensions.

The digitization of hyperplane in the discrete space of Zd is called digital
hyperplane, and defined as follows. Note that this definition is similar to the one
in [28] with a slight difference at the double less than or equal to (≤) in Eq. 2.

Definition 1. A digital hyperplane in Zd, d ≥ 2, is defined by the set of discrete
points x = (x1, x2, . . . , xd) ∈ Zd satisfying the inequalities:

DHω = {x ∈ Zd : 0 ≤
d∑

i=1

aixi + ad+1 ≤ ω}, (2)

with ai ∈ Z are coefficients of the digital hyperplane, and ω ∈ Z a given constant.
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Fig. 2: Different digital lines of thickness ω passing through two points (in black).

Such a digital plane DHω can be represented by its parameters and denoted
by DHω = (ai)

d+1
i=1 . Geometrically, DHω is a set of discrete points lying in

between two parallel hyperplanes
∑d

i=1 aixi + ad+1 = 0 and
∑d

i=1 aixi + ad+1 =
ω; these two parallel hyperplanes are called the support hyperplanes, and the
points that are on the support hyperplanes are called support points of DHω.
The distance between the two hyperplanes is ε = w√∑d

i=1 a2
i

which refers to the

euclidean thickness of DHω, while w refers to arithmetical thickness of DHω

[28]. An example in 2D and 3D is given in Fig. 1.
From linear algebra, a hyperplane in dimension d is a (d − 1)-dimensional

subspace; i.e. it is defined by (d− 1) linearly independent vectors. These (d− 1)
vectors can be created from d distinct points of H. In other words, given any
d points in the hyperplane in general linear position, i.e. they are all (d − 1)
linearly independent, there is a unique hyperplane of Rd passing through them.
In case of Zd, from Eq. 2, we also need d linearly independent support points
to determine a digital hyperplane. However, contrarily to the Euclidean space,
for a given set of d support points and a value ω, the digital hyperplane DHω

passing though these points is not unique. This is illustrated in Fig. 2.

2.2 Delaunay triangulation

The Delaunay triangulation was introduced by Boris Delaunay in [13]. It is
initially defined for a given set of n points S = {xi ∈ R2 | i = 1..n} as a
triangulation DT (S) such that the circumcircle associated to any triangle in
DT (S) does not contain any other points of S in its interior. In other words, a
Delaunay triangulation fulfills the empty circle property (also called Delaunay
property): the circumscribing circle of any triangle of the triangulation encloses
no other data point. Such a triangulation can be seen as a partition of the convex
hull of S into triangles whose vertices are the points of S, and it maximizes the
minimum angle of all the angles of the triangles in DT (S). An illustration is
given in Fig. 3(a). It should be mentioned that in some degenerate cases, the
Delaunay triangulation is not guaranteed to exist or be unique; e.g. for a set of
linear points there is no Delaunay triangulation, for four or more points on the
same circle the Delaunay triangulation is not unique.
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(a) (b)

Fig. 3: Illustration of Delaunay triangulation in 2D (left) and 3D (right).

By considering circumscribed spheres, the Delaunay triangulation extends to
three and higher dimensions, namely dD Delaunay triangulation [27] for d is the
dimension of space (see Fig. 3(b) for an example in 3D). Then, we call an i-face
for i ∈ [0, d] is an element ofDT (S) containing i+1 vertices of S. Then, a vertex is
a 0-face, an edge is a 1-face, a triangle is 2-face, a tetrahedron is a 3-face, a ridge is
a (d-2)-face, a facet is a (d-1)-face and a full cell is a d-face. In [22, 27], discussions
on optimal properties of DT (S) in d dimension have been presented such as the
maximum min-containment radius, uniformity of size and shape. In particular,
as mentioned in [27] the dD Delaunay triangulation can be transformed into a
convex-hull problem in dimension d+ 1. Henceforth, convex-hull algorithms can
be used to obtain the Delaunay triangulation. In this context, there exist efficient
and incremental algorithms [5, 10, 27] to construct the Delaunay triangulation.
Furthermore, it is shown in [26] that the dD Delaunay triangulation of n points

in Rd contains O(nd
d
2 e) faces.

In this paper, we consider the dD Delaunay triangulation for the set of dis-
crete points S = {xi ∈ Zd | i = 1..n}, and use the implementation of Delaunay
triangulation proposed in CGAL [10] because of its robustness, efficiency, ease
of use and flexibility. It is shown in [7] that the worst case complexity, without

spatial sort of input points, of the method is O(nd
d
2 e+1). With spatial sort and

random points, one can expect a much better complexity of O(n log n).

3 Digital hyperplane fitting

From Def. 1, we can describe our fitting problem for a set of discrete points S
as finding a digital hyperplane DHω = (ai)

d+1
i=1 of given ω that encloses the most

number of points of S. Such a hyperplane is called optimal hyperplane, the points
of S belonging to DHω, i.e. xi ∈ S∩DHω, are called inliers, the other points of
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S are called outliers. In other words, the digital hyperplane fitting aims to solve
an optimization problem being expressed as maximizing the number of inliers.

Definition 2. Given S = {xi ∈ Zd | i = 1..n, for n ≥ d} and a constant ω ∈ Z.
The best fitting hyperplane of S is defined as

DH∗ω = arg max
DHω∈F(S)

{S ∩ DHω}

where F(S) is the search space and it contains the set of all hyperplanes of given
ω generated from S.

Due to the discrete nature of the problem, it should be mentioned that the
search space F(S) can be huge but finite as S is finite and the points xi ∈ S have
finite coordinates. Roughly speaking, a brute-force search within F(S) would
lead to a globally optimal solution for the digital hyperplane fitting of S in
Def. 2. Finding F(S) in 2D (resp. 3D) case is solved in [34]. More specifically,
using rotation and translation techniques, it is proved that a digital lines (resp.
planes) can be determined with at least 2 (resp. 3) support points. Therefore,
the whole search space F(S) can be constructed from all possible pairs (resp.
triplets) of points in S for digital line (resp. plane) fitting.

Property 1 ([34]). Given a set of points S ⊂ Z2 (resp. Z3), and a set of inliers,
namely consensus set, for a given digital line (resp. plane). It is possible to find
a new digital line (resp. plane) with the same consensus set, such that it has at
least 2 (resp. 3) inliers as support points.

This is clearly understandable as a digital line (resp. plane) can be computed
from two (resp. three) support points. This result can be extended to higher
dimension thanks to the very definition of digital hyperplane (see Def. 1).

Property 2. Given a set of points S ⊂ Zd, and a set of inliers for a given digital
hyperplane. There exists an other hyperplane with the same inlier set such that
it has at least d inliers as support points.

From Prop. 2, by taking all possible d-uplet of points in S as support points,
one can construct the whole search space F(S) of S for digital hyperplane fitting.

Proposition 1. Given S = {xi ∈ Zd | i = 1..n} and a value ω, the number of
digital hyperplanes DHω generated from S is O(nd).

Proof. From Def. 1 and Prop. 2, we need d linearly independent points as support
points to determine a digital hyperplane DHω. In order to select d points in S,
we need a complexity of O(nd) since there are n points in S and the linearly
independent test of these points is O(1).

Let consider the two support hyperplanes of DHω:

d∑
i=1

aixi + ad+1 = 0 (3)

d∑
i=1

aixi + ad+1 = ω (4)
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It should be recalled that, for a given set of d support points, the digital
hyperplane DHω passing though them is not unique. Different cases may appear
to the d selected support points of DHω. Typically, there are i points on the
support hyperplane in Eq. 3, and d− i points on the one in Eq. 4, for i = 0, .., d.
In particular, i = 0 or i = d mean all points belong respectively to Eq. 3 or
Eq. 4. Due to the symmetry of selecting points, e.g. having i points on Eq. 3 and
d− i points on Eq. 4 is equivalent to d− i points on Eq. 3 and i points on Eq. 4,
the total number of possible hyperplanes DHω passing though these d support

points is
(
d
0

)
+ 1

2

d−1∑
i=1

(
d
i

)
+
(
d
d

)
= 1 + 2d−1. This leads to the final complexity of

O(2d−1nd) for generating all digital hyperplanes of a given set S. For a fixed
dimension space d, this complexity becomes O(nd). �

From Propo. 1, one can generate the whole search space F(S) from S. Then,
by verifying the inliers of each hyperplane in F(S), we can find the optimal
hyperplane as the one that maximizes the number inliers. In this context, some
solutions have been proposed for the specific cases of 2D and 3D, for instance in
[34] a combinatorial approach using dual space is presented for digital line and
plane fitting which a time complexity of O(nd log n) for d = 2, 3, and an improved
algorithm for 2D cases with O(n2) time-complexity using a topological sweep
method in [20]. In [1], a study for efficient digital hyperplane fitting in Zd with
bounded error is investigated. Still in [1], a conjecture of optimal computational
complexity for this problem in any dimension is provided, and it is O(nd).

4 Hyperplane fitting using dD Delaunay triangulation

The combinatorial approach in the previous section, by generating all possible
digital hyperplanes from S, allows to find the optimal solution for digital hyper-
plane fitting. It has, however, a high complexity of O(nd) with n is the number
of discrete points in S and d is the dimension space of points in S. This forbids
the use of the method in many applications with big datasets.

Faced with this dilemma, a new approach of digital hyperplane fitting is
proposed in this section. The approach is based on a heuristic involving the dD
Delaunay triangulation. Roughly speaking, the method uses the triangulated
elements to filter the admissible combinations of discrete points and to generate
digital hyperplanes for the considered fitting problem.

One of the interesting aspect of the Delaunay triangulation is that it im-
plicitly presents an information of distribution / density of points in the space;
i.e. the points being close to each other form small and thin cells, while those
being far create excessively large and long cells (see Fig. 4 for an illustration
in 2D). This enables us to relate and to recognize points belonging to the same
hyperplane; i.e. points appearing to lie reasonably on a hyperplane are close
and arranged in a linear form. Roughly speaking, the fitting probblem can be
solved using the dD Delaunay triangulation, according to two criteria: (1) the
candidate hyperplanes should be on d-faces whose width is smaller than ω and
(2) the best fitted hyperplane is the one containing the most number of inliers.
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Fig. 4: A set of points (left) and its Delaunay triangulation (right). Points appearing to
lie reasonably on a line are close and arranged in a linear form and their corresponding
triangles by the Delaunay triangulation are smaller than the others.

Let S = {xi ∈ Zd | i = 1..n} be the input set of points and DT (S) be the dD
Delaunay triangulation of S. Let t be a d-face in DT (S) such that t is formed
by the vertices y0, ..., yd ∈ S, w.l.o.g. t can be denoted by t = (y0, ..., yd). We
define the width –or height– of t as the minimal euclidean distance of a vertex
of t to the hyperplane passing through all other vertices in t.

w(t) = min {||yj ,H(fj)||22 for j = 0, ..., d}

where fj = (y0, ..., yj−1, yj+1, ..., yd) is the hyperplane opposite to yj in t. We
call a d-face t ∈ DT (S) is admissible for the digital hyperplane fitting of S with
a given ω if w(t) ≤ ω. This is called the width condition and will be used in
the fitting method to filter the points and to generate the digital hyperplane for
examination.

The main idea of the proposed method is as follows. We first compute the dD
Delaunay triangulation DT (S) of S, and then generate the digital hyperplanes
from the admissible d-faces in DT (S); i.e. those that satisfy the width condition.
For each computed digial hyperplane, we verify the inliers and report the optimal
solution for the digital hyperplane fitting of S as the one maximizing the number
of inliers. The algorithm is summarized in Algo. 1, and Fig. 5 illustrates the
method in 2D (the idea is exactly the same in any dimension). It is stated in [26]

the total number of faces in DT (S) is O(nd
d
2 e). In other words, the d-faces in

DT (S) being finite, this process has a guaranteed termination. Furthermore, the
computations in Algo. 1 can be performed using only integer / rational numbers
since all inputs are given in integer numbers.

By not generating and verifying all digital hyperplanes from S but only from
the admissible d-faces in DT (S), this method leads to a much lower algorithmic
complexity. More precisely, the worst-case complexity to compute the dD Delau-
nay triangulation of S is O(nd

d
2 e+1), finding admissible d-faces and generating

the corresponding digital hyperplanes cost O(nd
d
2 e), and the inliers verification
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Input 

Delaunay 
triangulation
 

Filtering the triangles
w.r.t width condition  

Finding the best 
fitting digital line

Output

Fig. 5: Flowchart of the proposed method.

of each hyperplane is computed in O(n). Therefore, the final computing com-

plexity of Algo. 1 is O(nd
d
2 e+1) for n is the number of points in S and d is the

dimension space of the points.

5 Experimental results

We have implemented in C++ the proposed method of fitting hyperplanes de-
scribed in Sec. 4 using the Triangulations and Delaunay Triangulations package
in CGAL [10]. This package provides functions to compute Delaunay triangula-
tion of points in dimension 2, 3 and d. In particular, the dD Delaunay triangu-
lation is computed by constructing convex hull in d+1 dimensions. This makes
the method flexible and can handle any dimension. It is, however, much slower
than the libraries specifically designed for 2D and 3D Delaunay Triangulation.
As mentioned, the computation of dD Delaunay triangulation for n input points
is at most O(nd

d
2 e+1), and it is O(n) and O(n2) in 2D and 3D, respectively. In

other words, the proposed algorithm is computationally more efficient in 2D and
3D with the specific implementations in CGAL. The source code is also available
for testing at https://github.com/ngophuc/HyperplaneFitting.

In the following, we present the some experimental results in dimension 2,
3 and 4 to demonstrate the validity and efficiency of our method. It should be
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Algorithm 1: Digital hyperplane fitting with fixed thickness

1 Algorithm HyperplaneFitting

Input: A set S = {xi ∈ Zd | i = 1..n} of n points and a value ω
Output: The best fitted digital hyperplane
Variables : DT (S): the set of d-faces of the Delaunay Trianngulation of S

C: the set of d-faces satisfying width condition
2 DT (S) = {ti = (yj)

d
j=0 for i = 1..m | yj ∈ S}

/* Finding d-faces ti satisfying the width condition */

3 C = ∅
4 foreach ti ∈ DT (S) do
5 foreach yj ∈ ti do
6 fj = (y0, ..., yj−1, yj+1, ..., yd) // the (d− 1)-face opposite to

vertex yj in ti

7 H(fj) = (ai)
d+1
i=0 // the hyperplane passing through d points

of fj (see Eq. 1)

8 d = distance(yj ,H(fj)) // the distance of yj to H(fj)

9 if d2 ≤ w2∑d
i=1 a2

i

then

10 DHω(ti) = (ai)
d+1
i=0 // the digital hyperplane associated

to ti (see Eq. 2)

11 C = C ∪ DHω(ti)

/* Computing the best fitted digital hyperplane */

12 max = 0
13 DH∗ω = (0, ..., 0)

14 foreach DHi
ω ∈ C do

15 ni = CountInliers(S, ω,DHi
ω) // (see the below Procedure)

1616 if ni > max then
17 max = ni

18 DH∗ω = DHi
ω

19 return DH∗ω

1 Procedure CountInliers

Input: A set S = {xi ∈ Zd | i = 1..n} of n points, a value ω and a digital
hyperplane DHω = (ai)

d+1
i=0

Output: The number of inliers of S w.r.t DHω

2 count = 0
3 foreach x = (x0, x1, ..., xd) ∈ S do

4 v =
∑d

i=1 aixi + ad+1

5 if v ≥ 0 and v ≤ ω then
6 count = count+ 1

7 return count
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noticed that the proposed method is general and could work in any dimension,
as well as its implementation remains conceptually unchanged in any dimension.
Furthermore, the fitting problem in 3D and 4D is relatively expensive to solve as
the runtime complexity is O(n3). All experiments are performed on a standard
PC usinng Intel Core i5 processor.

5.1 2D case: Digital line fitting

At first, the experiments are carried out on 2D data points generated with the
digital lines of equation

0 ≤ 2x1 + 3x2 − 12 ≤ ω (5)

with ω = 1, 2 and 3. For each line, we randomly generate, according to Eq. 5,
100 inliers and 100k outliers with k = 1, ..., 10; i.e. 30 test datasets with ground-
truth (see Fig. 6 for some examples). All data points are generated in a window
of [−100, 100]2. We report the inliers of the fitted line for each experiment and
compare with the ground-truth by Eq. 5. Results are given in Tabs. 1 and 2.

(a) #Points=1100 (b) #Points=200 (c) #Points=800

(d) ω = 1,#Inliers=100 (e) ω = 2,#Inliers=103 (f) ω = 3,#Inliers=108

Fig. 6: Evaluation on 2D synthetic data. First row: input points with 100 inliers, differ-
ent numbers of outliers and different thickness ω. Second row: results of fitting digital
lines obtained by the proposed method.
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Figure Thickness #Points #Inliers Runtime

Fig. 6(a) ω = 1 1100 100 62.175 msec

Fig. 6(b) ω = 2 200 103 20.531 msec

Fig. 6(c) ω = 3 800 108 165.905 msec

Table 1: Results of fitted digital lines by the proposed method on Fig. 6.

Measures Results

Runtime (in average) 71.69 msec

Precision (%): P = #(D ∩ S)/#D 96.99± 4.1

Recall (%): R = #(D ∩ S)/#S 100

F-measure (%): F = 2× P ×R/(P +R) 98.42± 2.2

Table 2: Measured performance of the proposed method on 2D synthetic data. S is the
set of all ground-truth inliers, D the set of all inliers detected by the proposed method.

5.2 3D case: Digital plane fitting

Next experiments are on volume data points which are generated as follows. We
consider digital planes of equation

0 ≤ 2x1 + 3x2 + x3 − 9 ≤ ω (6)

with ω = 1, 3 and 5. Similarly to 2D, we randomly generate, for each plane, the
100 inliers and 100k outliers with k = 1, ..., 10. That makes 30 test datasets with
ground-truth (see Fig. 7 for some examples). All data points are generated in a
window of [−100, 100]3. We report the inliers of the fitted planes and compare
with the ground-truth by Eq. 6. Results are shown in Tabs. 3 and 4.

Furthermore, the proposed method allows to work with large datasets in an
efficient way. As illustrated in Fig. 8 and Tab. 3, the algorithm takes around 23
seconds to deal with 2989 input points.

Figure Thickness #Points #Inliers Runtime

Fig. 7(a) ω = 1 200 60 35.291 msec

Fig. 7(b) ω = 3 400 104 172.838 msec

Fig. 7(c) ω = 5 800 140 1063.31 msec

Fig. 8(a) ω = 1 2989 578 21718.1 msec

Fig. 8(a) ω = 3 2989 1040 23328.6 msec

Table 3: Results of fitted digital planes by the proposed method on Fig. 7 and Fig. 8.
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(a) #Points=200 (b) #Points=400 (c) #Points=500

(d) ω = 1,#Inliers=60 (e) ω = 3,#Inliers=104 (f) ω = 5,#Inliers=140

Fig. 7: Evaluation on 3D synthetic data. First row: input points with 100 inliers, differ-
ent numbers of outliers and different thickness ω. Second row: results of fitting digital
planes obtained by the proposed method.

Measures Results

Runtime (in average) 533.68 msec
Precision (%): P = #(D ∩ S)/#D 81.28± 15.92
Recall (%): R = #(D ∩ S)/#S 77.7± 22.75
F-measure (%): F = 2× P ×R/(P +R) 76.16± 16.26

Table 4: Measured performance of the proposed method on 3D synthetic data. S is the
set of all ground-truth inliers, D the set of all inliers detected by the proposed method.

5.3 4D case: Digital hyperplane fitting

Next experiments are on 4D data points generated with the following digital
hyperplanes:

0 ≤ 2x1 + 3x2 + x3 + 7x4 − 9 ≤ ω (7)

with ω = 1, 3 and 5. Then, we randomly generate, for each hyperplane, the 100
inliers and 100k outliers with k = 1, ..., 10. That makes 30 test datasets with
ground-truth. All data points are generated in a window of [−100, 100]4. We
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(a) #Points=2989 (b) ω = 1,#Inliers=578 (c) ω = 3,#Inliers=1040

Fig. 8: Evaluation on 3D data: (a) input points, (b) and (c) are fitting digital planes of
(a) obtained by the proposed method for ω = 1 and 3, respectively.

Measures Results

Runtime (in average) 11582.41 msec

Precision (%): P = #(D ∩ S)/#D 73.84± 20.54

Recall (%): R = #(D ∩ S)/#S 69.58± 31.3

F-measure (%): F = 2× P ×R/(P +R) 67.62± 24.04

Table 5: Measured performance of the proposed method on 4D synthetic data. S is the
set of all the ground-truth inliers, D the set of all the detected inliers.

report the inliers of the fitted hyperplane for each experiment and compare with
the ground-truth by Eq. 7. Results are shown in Tab. 5.

Overall, the experiments demonstrate the efficiency and effectiveness of the
proposed method. It is robust to the number of outliers and has a good perfor-
mance in term of runtime. In particular, the proposed method can be applied
to large datasets and in high dimensions, which are difficult with traditional
methods. However, the experiment was conducted mostly with synthetic data.
This allows us to evaluate the behaviour of the proposed method. In practice,
the sets of input points –particularly, in 2D and 3D– can be obtained by feature
extraction or segmentation algorithm.

6 Conclusion

This paper presented methods of digital hyperplane fitting in Zd of given thick-
ness ω. Two strategies have been proposed. The first one consists of generating
all possible digital hyperplanes from a set S of n points. Then, performing an
exhaustive search overall generated hyperplanes allows to find the global op-
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timum of the fitting problem. However, this approach costs O(nd) which is a
polynomial complexity of degree equal to the dimension of the problem. This
limits its use in practical contexts. To overcome this issue, we proposed another
method with a heuristic based on Delaunay triangulation to find a local optimum
of digital hyperplane fitting problem. More precisely, instead of examining all
digital hyperplanes generated from S, we verify only the hyperplanes generated
from the d-cells of the Delaunay triangulation of S whose width is smaller than
ω. This method leads to a much lower algorithmic complexity of O(nd

d
2 e+1) and

it is efficient in dealing with large datasets. Furthermore, the presented method
can be applied to points in Rd with no special change.

Experiments have been conducted to validate the feasibility of the proposed
method. Nonetheless, it is mostly with synthetic data. In future works, we would
like to test the proposed method on real data and to provide comparisons with
other methods in the literature such as [1, 16, 18, 34]. Another perspective is the
application of the proposed method for shape fitting problem. As it is shown in
[25], by a transformation of the model formulation, the digital plane fitting can
be used to solve digital annulus fitting.
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21. Köster, K., Spann, M.: An approach to robust clustering - application to range
image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 25(2), 430–444 (2000)

22. Musin, O.R.: Properties of the delaunay triangulation. In: Proceedings of the thir-
teenth annual symposium on Computational geometry (1997)

23. Ngo, P., Nasser, H., Debled-Rennesson, I.: A discrete approach for decomposing
noisy digital contours into arcs and segments. In: Proceedings of RRPR, in work-
shop of ACCV. vol. LNCS 10117, pp. 493–505 (2016)

24. NIST/SEMATECH: e-Handbook of Statistical Methods.
http://www.itl.nist.gov/div898/handbook/ (2012)

25. Phan, M.S., Kenmochi, Y., Sugimoto, A., Talbot, H., Andres, E., Zrour, R.: Effi-
cient robust digital annulus fitting with bounded error. In: Proceedings of DGCI.
vol. LNCS 7749, pp. 253–264 (2013)

26. Raimund, S.: The upper bound theorem for polytopes: an easy proof of its asymp-
totic version. Computational Geometry 5, 115–116 (1995)

27. Rajan, V.T.: Optimality of the delaunay triangulation in rd. Discrete and Compu-
tational Geometry 12(1), 189–202 (1994)
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