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A 4D counter-example showing that DWCness
does not imply CWCness in n-D

Nicolas Boutry!, Rocio Gonzalez-Diaz?, Laurent Najman®, and Thierry
Géraud!

EPITA Research and Development Laboratory (LRDE), EPITA, France
Universidad de Sevilla, Sevilla, Spain
Université Paris-Est, LIGM, Equipe A3SI, ESIEE, France

Abstract. In this paper, we prove that the two flavors of well-compo-
sedness called Continuous Well-Composedness (shortly CWCness) and
Digital Well-Composedness (shortly DWCness) are not equivalent in di-
mension 4 thanks to an example of a configuration of 8 tesseracts (4D
cubes) sharing a common corner (vertex), which is DWC but not CWC.
This result is surprising since we know that CWCness and DWCness
are equivalent in 2D and 3D. To prove this new result, local (and then
relative) homology are used. This paper has been submitted to IWCIA.

Keywords: well-composed, topological manifolds, critical configura-
tions, digital topology, local homology

1 Introduction

Digital Well-Composedness is a strong property in digital topology, because it
implies the equivalence of 2n and (3™ — 1) connectivities [3] in a set and in its
complement. A well-known application of this flavour of well-composedness is the
tree of shapes [7,9]. On the other side, CWC images are known as ” counterparts”
of n-dimensional manifolds in the sense that the boundary of their continuous
analog does not have singularities (no ”pinches”). The consequence is that some
geometric differential operators can be directly computed on the discrete sets,
which simplifies or makes specific algorithms faster [12,13]. These two flavours of
well-composednesses, known to be equivalent in 2D and in 3D, are not equivalent
in 4D, and this is what we are going to prove in this paper. Section 2 recalls the
material relative to discrete topology and local homology necessary to the proof
detailed in Section 3. Section 4 concludes the paper.

2 Discrete topology

As usual in discrete topology, we will only work with digital sets, that is, finite
subsets of Z™ or subsets X’ of Z"™ whose complementary set Z" \ X is finite.
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Fig. 1: Examples of primary and secondary 2D, 3D and 4D critical configurations.
Black bullets correspond to points of a digital set X and white bullets correspond
to points of X°.

2.1 Digital well-composedness

Let n > 2 be a (finite) integer called the dimension. Now, let B = {e!,...,e"}
be the (orthonormal) canonical basis of Z™. We use the notation x;, where i
belongs to [1,n] := {i € Z; 1 <i < n}, to determine the i'" coordinate of the
vector z € Z". We recall that the L'-norm of a point x € Z" is denoted by || - [|1
and is equal to } ;. ,p [2i| where |- | is the absolute value. Also, the L*°-norm
is denoted by | - [l and is equal to max;ep, ] [2:]-

For a given point x € Z", the 2n-neighborhood in Z™, denoted by Na,(z),
is equal to {y € Z" ; ||z — y||l1 < 1}. Also, the (3™ — 1)-neighborhood in Z",
denoted by N3n_1(z), is equal to {y € Z™ ; ||z — y|looc < 1}. Let £ be a value in
{2n,3™ — 1}. The starred §-neighborhood of x € Z™ is noted N¢ (x) and is equal
to Ne(z) \ {z}. An element of the starred {-neighborhood of z € Z" is called a
&-neighbor of x in Z™. Two points x,y € Z™ such that x € Ng(y) or equivalently
y € N¢ () are said to be &-adjacent. A finite sequence (p°, ... ,p*) of points in
Z™ is a &-path if and only if p° is £-adjacent only to p', p* is &-adjacent only to
pF=1 and if for i € [1,k—1], p’ is &-adjacent only to p*~! and to p'*!. A digital
set X C Z" is said £-connected if for any pair of points z,y € X, there exists a
&-path joining them into X. A &-connected subset C' of X which is mazimal in
the inclusion sense, that is, there is no £-connected subset of X' which is greater
than C| is said to be a £-component of X.

For any z € Z™ and any F = (f',..., f¥) C B, we denote by S(z,F) the set:

{z+ YOS )\ie{o,l},we[[l,k]}}.

i€[1,k]

We call this set the block associated with the pair (z, F); its center is ZJerE]_- g,
and its dimension, denoted by dim(S), is equal to k. More generally, a set S C Z"
is said to be a block if there exists a pair (z,F) € Z" x P(B) such that S =
S(z,F). We say that two points p, ¢ € Z" belonging to a block S are antagonists
in S if the distance between them equals the maximal distance using the L'
norm between two points in S; in this case we write p = antagg(q). Note that the
antagonist of a point p in a block S containing p exists and is unique. Two points
that are antagonists in a block of dimension k > 0 are said to be k-antagonists;
k is then called the order of antagonism between these two points. We say that a
digital subset X of Z" contains a critical configuration in a block S of dimension
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k € [2,n] if there exists two points {p,p’'} € Z™ that are antagonists in S such
that X NS = {p,p’'} (primary case) or such that S\ X = {p,p'} (secondary
case). Figure 1 depicts examples of critical configurations. Then, a digital set
X C Z™ is said to be digitally well-composed (DWC) [3] if it does not contain
any critical configuration.

2.2 Basics in topology and continuous well-composedness

Let X be a set of points, and let U be a set of subsets of X such that:

e X.0cU, (TO1)
e any union of any family of elements in I/ belongs to U, (TO2)
e any finite intersection of any family of elements in U belongs to U. (T'O3)

Then U is said to be a topology, and the couple (X,U) is called a topological
space [11,1]. The elements of X are called the points of (X,U), and the elements
of U are called the open sets of (X,U). We will abusively say that X is a topo-
logical space, assuming it is supplied with its topology U. An open set which
contains a point of X is said to be a neighborhood of this point. Let (X,U) be
a topological space, and let T be a subset of X. A set T' C X is said closed if
it is the complement of an open set in X. A function f : X — Y between two
topological spaces (X,U) and (Y, V) is continuous if for every open set V C Y,
the inverse image f~*(V) = {x € X | f(x) € V'}} is an open subset of X. The
function f is a homeomorphism if it is bicontinuous and bijective. As defined
in [16], a topological space M is said to be locally Euclidian of dimension n > 0
at 2% € M if 2° has a neighborhood that is homeomorphic to an open subset of
R™. Also, a second countable space is a topological space X whose topology has
a countable basis, that is, there exists some countable collection U = {U;};-,
of open sets of X such that any open subset of X can be written as a union of
elements of some subfamily of . A Hausdorff space is a topological space where
distinct points have disjoint neighborhoods. As recalled in [16], an n-dimensional
topological manifold M with n > 0 is a second countable Hausdorff space that
is locally Euclidian of dimension n at each 2° € M. The continuous analog
CA(p) of a point p € Z" is the closed unit cube centered at this point with faces
parallel to the coordinate planes CA(p) = {¢g € R" ; [|p — q|looc < 1/2}. The
continuous analog CA(X) of a digital set X C Z™ is the union of the continuous
analogs of the points belonging to the set X, that is, CA(X) = UpeX CA(p).
Then, we will denote bdCA(X) the topological boundary of CA(X), that is,
bdCA(X) = CA(X) \ Int(CAX)), where Int(CA(X)) is the union of all open
subsets of CA(X). Let X C Z"™ be a digital set. We say that X is a continu-
ously well-composed set (CWC) [14,15] if the boundary of its continuous analog
bdCA(X) is a (n — 1)-manifold, that is, if for any point p € X, the (open) neigh-
borhood of p in bdCA(X) is homeomorphic to R"~1. This property is self-dual:
for any digital set X C Z", bdCA(X) = bdCA(X°) and then X is continuously
well-composed iff X¢ is continuously well-composed.
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2.3 Homomorphisms

Recalls about Abelian groups can be found in [10]. Let G and G’ be two Abelian
groups. A map f : G — G’ is called a homomorphism if f(mig1 + mags) =
m1f(g1) + maf(g2) for any my,ms € Z and for any ¢1,92 € G. Let G and
G be two free Abelian groups, and let f : G — G’ be a homomorphism. The
set im f := {b € G : FJa € G, f(a) = b} is called the image of f in B].
The set ker f := {a € G ; f(a) = 0} is called the kernel of f. Note that
im f is a subgroup of G’ and that ker f is a subgroup of G. A homomorphism
f is called an isomorphism if it is bijective. Two free Abelian groups are said
isomorphic if there exists an isomorphism between them; for A and B two free
Abelian groups, we write A ~ B when A and B are isomorphic. Let A be
a free Abelian group and B a sugbroup of A. For each a € A, defined the
equivalence class [a] := {a+b; b € B}. The quotient group A/B is defined as
A/B :={[a] ; a € A}.

Theorem 1 (First Isomorphism Theorem [10]). Let A and B be two free Abelian
groups and f : A — B a homomorphism. Then A/ker f ~im f.

2.4 Cubical sets

An elementary interval is a closed subinterval of R of the form [I,1+4 1] or {i} for
some [ € Z. Elementary intervals that consist of a single point are degenerate,
while those of length 1 are non-degenerate. An elementary cube h is a finite
product of elementary intervals, that is, h = hy X -+ X hg = X;ep,qphi C
R? where each h; is an elementary interval. The set of elementary cubes in
R? is denoted by K?. The set of all elementary cubes is K := U K¢, Let
h = Xiep,aqhi C R? be an elementary cube. The elementary interval h; is
referred to as the ith component of h. The dimension of h is defined to be the
number of non-degenerate components in h and is denoted by dim(h). Also,
we define Ky, := {h € K ; dim(h) = k} and K¢ := K N K9 A set X C R?
is cubical if X can be written as a finite union of elementary cubes. If X is a
cubical set, we adopt the following notation K(X) := {h € £ ; h C X} and
Ki(X) :={h € K(X); dim(h) = k}.

2.5 Homology

Let X C R? be a cubical set. The k-chains of X, denoted by Cx(X), is the
free Abelian group generated by Ki(X). The boundary homomorphism 0 :
Cr(X) = Cr—1(X) is defined on the elementary cubes of K;(X) and extended
to Ci(X) by linearity (see [10]). The chain complex C(X) is the graded set
{CK(X),08 }kez- A k-chain 2z € Ci(X) is called a cycle in X if 8z = 0.
The set of all k-cycles in X, which is denoted by Zj(X), is ker 9 and forms
a subgroup of Cy(X). A k-chain z € Ci(X) is called a boundary in X if there
exists ¢ € Ciy1(X) such that d;¥c = 2. Thus the set of boundary elements in
Ck (X), which is denoted by Bj(X), consists of the image of 87, ;. Since 05, |
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is a homomorphism, B (X) is a subgroup of C(X). Since 95 8%, , = 0, every
boundary is a cycle and thus By (X) is a subgroup of Zj(X). We say that two
cycles z1, 29 € Zp(X) are homologous and write z; ~ 29 if 21 — 2o is a boundary
in X, that is, 21 — 22 € Bi(X). The equivalence classes are then the elements of
the quotient group Zy(X)/Bk(Z). The k-th homology group of X is the quotient
group Hy(X) := Zi(X)/Br(X). The homology of X is the collection of all
homology groups of X. The shorthand notation for this is H(X) := {Hi(X) }kez.
Given z € Zy(X), [#] is the homology class of z in X. A sequence of vertices
Vo, -y Vi € Ko(X) is an edge path in X if there exists edges En, ..., E, € K1(X)
such that V;_1,V; are the two faces of E; for i = 1,...,n. For V.V’ € Ky(X),
we write V' ~x V' if there exists an edge path Vj,...,V,, € Ko(X) in X such
that V = Vy and V' = V,,. We say that X is edge-connected if V ~x V' for any
V,V' € Ko(X). For x € X we define the edge-connected component of x in X as
the union of all edge-connected cubical subsets of X that contain z. We denote
it eccx (z). Using cubical sets, edge-connectedness is equivalent to (topological)
connectedness! as stated by Theorem 2.55 p. 68 of [10]. This way, edge-connected
components of X are connected components of X and conversely.

Theorem 2 ([10]). Let X be a cubical set. Then Ho(X) is a free Abelian group.
Furthermore, if {P; ; i € [1,n]} is a collection of vertices in X consisting of

~

one vertex from each component of X, then {[B] e Ho(X); i €1, n]]} forms a
basis for Ho(X).

2.6 Relative homology

Now, we recall some background in matter of relative homology. A pair of cubical
sets X and A with the property that A C X is called cubical pair and is denoted
by (X, A). Relative homology is used to compute how two spaces A, X such that
A C X differ from each other. Intuitively, we want to compute the homology of
X modulo A: we want to ignore the set A and everything connected to it. In
other words, we want to work with chains belonging to C'(X)/C(A), which leads
to the following definition:

Definition 3 (Def. 9.3 of [10]). Let (X,A) be a cubical pair. The relative
chains of X modula A are the elements of the quotient groups Ci(X,A) :=
Cr(X)/Cr(A). The equivalence class of a chain ¢ € C(X) relative to C(A)
is denoted by [c]a. Note that for each k, Cip(X,A) is a free Abelian group.
The relative chain complex of X modulo A is given by {Ci(X, A),B,SX’A)}kGZ
where 8£X’A) s Cp(X,A) = Cr_1(X,A) is defined by 8,(€X’A) [ca == [0 c|a.
Obuviously, this map satisfies that a,iX’A)a,Sj’lA) = 0. The relative chain com-
plex gives rise to the relative k-cycles: Zp(X, A) := ker 3,(€X’A), the relative k-

boundaries Bi(X,A) := im B,g’lA), and finally the relative homology groups:

Hk(X, A) = Zk(X, A)/Bk(X, A)

L A set X is said connected if it is not the union of two disjoint open non-empty sets.
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Proposition 4 (Proposition 9.4 p. 281 of [10]). Let X be an (edge-)connected
cubical set and let A be a nonempty cubical set of X. Then, H(X, A) = 0.

2.7 Exact sequences

A sequence of groups and homomorphisms --- — Gj Vs, Go Y2, Gy — ...
is said ezact at Go if im 13 = ker)s. It is an exact sequence if it is exact at
every group. If the sequence has a first or a last element, then it is automatically

exact at that group. A short exact sequence is an exact sequence of the form

0 — Gs Y3, G Y2, G1 — 0. A long exact sequence is an exact sequence with

more than three nonzero terms.

Example 5 (Ex. 9.21 of [10]). The short exact sequence of the pair (X, A) is:
0 — Cr(A) =5 Cr(X) ™ Cr(X,A) — 0

where i, is the inclusion map and 7 is the quotient map.

Definition 6 (Def. 9.24 of [10]). Let A = {Ay,0{ }rez, B = {Bk, 08 }rez, and
C ={Cy, 3;9}%62 be chain complexes. Let O denote the trivial chain complex. Let
¢ : A — Bandp: B — C be chain maps. The following is a a short exact
sequence of chain complexes:

0—A-BY0—0

if, for every k, the sequence below is short exact:
P P
0—>Ak—>Bk—>Ck—>0
Theorem 7 (Zig-zag Lemma (Th. 9.25 of [10])). Let 0 = A - B - C — 0

be a short exact sequence of chain complexes. Then, for each k, there exists a
homomorphism Oy : Hy11(C) — Hy(A) such that

* * [
o Hypr (A) 25 Hiyopy (B) 25 Hys (C) 25 Hi(A) — ...
s a long exact sequence.

Corollary 8 (Exact homology sequence of a pair [10])). Let (X, A) be a cubical
pair. Then there is a long exact sequence

oo Hypr (A) - Hpyr (X) 22 Hyopr (X, A) 25 Hy(A) — . ..

where ¢ : C(A) — C(X) is the inclusion map and 7 : C(X) — C(X, A) is the
quotient map.
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2.8 Manifolds and local homology

A subset X of R™ is said to be locally an n-dimensional homological manifold
at 2° € X if the homology groups {H;(X, X \ {JJO}))}Z.GZ satisfy:
Z when i =n
: 0yyy — ;
(X, XA {27) { 0 otherwise.
Then, X is said to be a n-dimensional homology manifold if it is locally an
n-dimensional homology manifold at each point 20 € X.

Theorem 9 ([18]). A topological manifold is a homology manifold.

2.9 Homotopical equivalence

Let X,Y be two topological spaces, and f, g be two continuous functions from
X to Y. We say that f and g are homotopic if there exists a continuous function
H : X x[0,1] = Y such that for any z € X, H(z,0) = f(z) and H(z,1) = g(z).
Furthermore, we say that X and Y are homotopically equivalent if there exist
f:X =Y and g: Y — X such that g o f is homotopic to Id, and f o g is
homotopic to Idy.

3 DW<Cness does not imply CWCness

It is well-known that DWCness and CWCness are equivalent in 2D and 3D
(see, for example, [4]). In this section, we prove that there exists at least one
set X C Z* which is DWC but not CWC. To this aim, we will start with the
definition of X and we will observe that this set is DWC. Then, to prove that
X is not CWC, we will prove that X = bdCA(X) (up to a translation) is not
a homology manifold and conclude that it is not a manifold by Theorem 9. To
compute the homology groups {H;(X, X \ {2°})}icz, where 2 is a particular
point in X (detailed hereafter), we need to compute {H;(X \ {2°})}icz and
{H;(X)}icz. However, A := X \ {2°} is not a cubical set, then we need to
find a cubical set X (%) which is homotopy equivalent to A to compute its
homology groups using the CHomP software package [8]. After having defined
X (29) and having proven that it is a cubical set, we will show that A and X (z°)
are homotopically equivalent. Then, we will compute the homology groups of
X(2%) and of X; this way we will deduce {H;(X,X \ {z°})}; using the long
exact sequence of the pair (X, X \ {2°}). At this moment, we will see that X is
not a homology 3-manifold, which will make us able to conclude that X is not
CWC since the boundary of its continuous analog is not a topological 3-manifold.
This way, we will conclude that DWCness does not imply CWCness in 4D.
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Fig.2: A set X depicted by blue points which is DWC and not CWC.

3.1 Choosing a particular DWC set X C Z*

We recall that it is well-known in the community of discrete topology that CWC-
ness and DWChness are equivalent in 2D and 3D as developed in [2,4]. For this
reason, we chose a digital set X' in Z* to study the relation between these two
flavours of well-composedness in higher dimensions. As depicted in Figure 2, we
can define the digital subset of Z":

X := {{0,0,0,0},{0,0,0,1},{0,0,1,1},{0,1,1,1},
{]‘7 ]‘3 ]‘) 1}’ {1) ]‘7 170}? {1’ 1707 0}7 {]‘7 O? O) 0}}'

and its continuous analog (up to a translation) Xy := @4(X), where ¢4 is a
bijection between (Z/2)? and K¢ defined such that:

[ [z,z+1] whenz € Z,

Vo €2/2, plo) = { {x + %} otherwise,

and Vz € (Z/2)%, pa(x) := x%_,¢(x;) where, as usual, z; denotes the i*" coordi-
nate of . Let us check that X is DWC (see Figure 2). It is easy to observe that
it does not contain any 2D critical configuration. Now, to observe that there is
no primary or secondary 3D critical configuration, we can simply look at the
8 3-faces (including the interior and the exterior cubes): since each one con-
tains exactly 4 points of X', they contain neither a primary critical configuration
(made of 2 points) nor a secondary critical configuration (made of 6 points in the
3D case). Finally, we observe that the only 4D block that we have to consider
is {0,1}* which contains 8 points of X, and then 8 points of X¢, and then X
contains neither a primary nor a secondary 4D critical configuration.

Property 10. The digital set X is DWC.

3.2 Finding a cubical set f(:co) homotopy equivalent to A

Let us start with the following proposition.



A 4D counter-example ... 9

Proposition 11. Let X be a cubical set in R", x0 be a point of X NZ", and
A= X\ {2°}. Then, the set: X(2°) :={z € A; ||z — 2% > 1}, is cubical.

Proof. Our aim is to prove that X (29) is equal to U{h € K(X) ; 2° & h}. This
way, we will be able to conclude that X (z°) is equal to U{h € K(A)} and then
it is a cubical set (since it is made of cubes and closed under inclusion).

First, let us prove that we have: X(20) C U{h € K(X) ; 2° ¢ h}. Let z € A
be a point such that ||z — 2°||» > 1. Then, there exists i* € [1,n] such that
|z — 2% oo = |7+ — 20| > 1. Then two cases are possible:

o x; >, then z;» > 2l + 1, (1)
o x; <Y, then z;» <zl — 1. (2)

Since x € A C X where X is a cubical set, there exists a smaller face h* € K(X)
(in the inclusion sense) such that @ € h* := X1 ny([@:], [2:]]. Then, 2° € h* iff
for each i € [1,n], 22 € [|x:], [z;]]. However, since in case (1), 2% <z« — 1 <
|z« |, and in case (2), 2% > 2 +1 > [z« ], then 2° ¢ h*. Obviously, h* € K(X):
otherwise, all the cubes containing h* do not belong to K£(X), and then z ¢ X
and then o ¢ A. This way, there exists a cube h € K(X) such that 2° & h and
x € h.

Second, let us prove that: X (2°) D U{h € K(X) ; 2° € h}. Let p be an element
of U{h € K(X) ; 2° ¢ h}. In other words, p € h € K(X) and 2° & h. Sincep € h
and 2° ¢ h, p # 2°, and h € K(X), then p € X, and then p € A. Now, let us
write h = X;e[1,n] [pin pmax] where AR pmax ¢ 7n . Since 20 ¢ h, there exists
i* € [1,n] such that 2% & [hn pmaxX] Furthermore, we have:

e cither 2% < AN — 1, (A)
e or z¥. > h®™ 4 1. (B)

Since p € h, for each i € [1,n], we have p; € [h™" AMaX] and then p;» €
[hmin, pmax] Then, in case (A), 2% < A" —1 < p;- —1, which leads to p;+ —z%. >

1, and in case (B), 2% > h#* 4+ 1 > p;« + 1, which leads to 2% — p;« > 1. In
both cases, we obtain that ||p — 2%|oc > 1. O

Fig.3: X \ {2°} is homotopy equivalent to X (2°): From left to right, a cubical
set X (see the location of the central point z° in red), X minus its central point
2% and the new cubical set X (z°) homotopy equivalent to X \ {z°}.

Now, let us prove that X \ {z°} and X(2°) are homotopy equivalent (as
depicted on Figure 3).
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Proposition 12. Let X be a cubical set in R™, x0~be a point of X NZ™, and
A= X\ {2°}. Then, A is homotopy equivalent to X ().

Proof. Let f: A — R"™ be the function defined such as:

T when Hl‘ —$O||oo > 17
fla)=1 0. st otherwise,

and let g : X (2°) — A be the map from X (2°) to A such that:
Ve e X(2%), g(z) = x,
which is possible since X (%) C A. Now, let us proceed step by step.

Step 1: A and )?(xo) are topological spaces. The sets A and X’(mo) are topo-
logical spaces since they are subsets of R™ supplied with the usual Euclidian
distance.

Step 2: f is a map from A to X(2°). Let 2 be an element of A. When ||z —
2% > 1, f(x) = . This way, f(z) € A and ||f(z) — 2°||oc > 1, then f(z) €
X (2°). When ||z~ 20|00 < 1, f(2) = 2°+ Z54—. This way, || f(z) —2°[|ec = 1.
Since z € A C X with X a cubical set, there exists a cube h € K(X) such that
x € h. Furthermore, this cube h contains x° since all the cubes containing a
point of Xy nplay — 1,29 + 1[ contain also 2° (the cubes are defined relatively
to integral coordinates). Since h = X;e[1,n]hi, then for each i € [1,n], z; € h;,

and

xi—m?

0
) =z + —————.
(f( ))1 2 Hx_x()”oo
Let us prove that this last equality shows that f(x) € h. Since n is finite, there
exists some i* € [1,n] such that: ||z — 2°||» = |2+ — 2], then:

0
Ti — X;
= a0+ P1
(F@))i = 23 |z — a0, | (P1)
Let us assume without constraint that z;» > 2%, then (f(z));x = 2% + 1.

However, z;- > z¥. implies that h; = [2).,20 + 1] since h contains z°. When
i # i*, since ; € h;, and since h > 2° € Z", h; = [29, 2% + 1] or h; = [2¥ — 1,27].
Let us assume without constraint that x; > 2%, then h; = [20, 2% 4 1]. Because

([ 3

of (P1), it follows easily that (f(z)); € h; since Ty e [0, 1].

[ —95?* |
Then, we have proven that when ||z — 2°||, < 1, there exists h € K(X) such
that for any i € [1,n], (f(z)):; € hs, that is to say,
f(z) € h. (P2)

Also, z # 2°, which is equivalent to f(z) # z°. Then, f(z) € X (2°).



A 4D counter-example ... 11

Step 3: go f is homotopic to Id 4.

— We can observe that go f: A — A is the continuous function defined as:

a0 .
20 + ”;_71: otherwise.

200

x when ||z — 2% > 1,
gof=

— Let H: A x [0,1] — R™ defined such that for any z € A and any A € [0, 1],
H(z,A) ==Xz + (1= A)go f(z),

then:

e H is continuous as a composition of continuous functions,
e His from A x [0,1] to A:
* when ||z — 20| > 1, H(z,\) =z € A4,
* when ||z — 2% < 1, H(z,\) = Az + (1 — \) f(z). However, we have
seen that in this case, cf. (P2), there exists a cube h € (X) such
that f(z) € h. Since h is a cube, it is convex, and then H(z, A) € h.
Then, H(x,\) € X. Also, we can prove that H(x,\) # x°: the cases
A =0 and A =1 are obvious; in the case A €]0, 1[, we can see that

0

r—x
_H@A)—AW+O—A)GP+)
[ = 2%0

and then, by assuming without constraints that 2 = 0 and that for
any i € [1,n], x; > 0, we obtain that for any i € [1,n]:

(H(x,A))i = Azi + (1= A) (A(lzlle —1) +1)

T _ T
|2/l o l2lloo’

then, because (||z|lcc —1) < 1 and = =0, (H(x,\)); is decreasing
relatively to A\, and then

x; < (H(xz,\)); <

Since x # 0, there exists ¢* such that z;« # 0, and then such that
(H(x,A))s+ > 0 since z;+ > 0. Then, H(x, \) # 0, that is, H(xz, \) #
20, Then, H(z,\) € A.

— We can see that H(z,0) = go f(x),Vz € A,

— We can also observe that H(z,1) = z,Vz € A.

Then g o f is homotopic to Id 4.

Step 4: f o g is homotopic to Id)?(zo). Since f o g is equal to Id)}(mo)7 they are
homotopic.
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Step 5: Conclusion. A and X () are homotopically equivalent. O

Corollary 13. Assuming the notations of Proposition 11, we can compute the
homology groups of A based on the ones of the cubical set X (z°). Indeed, for

each i € Z, we have the following equality: H;(A) = H; (X(x0)>

Proof. This follows from Propositions 11 and 12. U

3.3 Choosing a particular point z° € X
Let us begin with a simple property.

Property 14. The point 2° := (1,1,1,1) belongs to the boundary X of X, =
pa(X).

Proof. Let us recall that ¢4(X) is a translation of the set CA(X) by a vector
v = (%, %, %, %) Also, the point p := (%, %, %, %) € R* belongs to CA(X) and
does not belong to Int(CA (X)) since there does not exist any topological open
ball B(p,¢), e > 0, in R* centered in p and contained in Int(CA (X)) since B(p, ¢)
intersects Int(CA(X¢)). This way, p belongs to bdCA(&X). Finally, we obtain that
the translation 2 = p + v of p by v belongs to the translation X of bdCA(X)

by v. O

3.4 Computation of H(X, A)

Let us compute the relative homology groups H;(X, A) for each i € Z. Obvi-
ously, since Ci(X,A) = 0 for k € Z \ [0,4], then Hy(X, A) = 0. Also, thanks
to Proposition 4, we know that Hy(X, A) = 0. To compute the other relative
homology groups, we will use the exact homology sequence of (X, A) discussed
in Corollary 8: the sequence

Ly Tk O
s Hp1(A) = Hi1 (X) = Hp1 (X, A) =5 Hi(A) — ...

is exact, and then by computing the homology groups Hj(X) and Hj(A) and us-
ing the first isomorphism theorem, we will be able to compute the local homology
groups Hy (X, A) and to deduce if Xy is a homology manifold or not.

Using CHomP [8], we compute the local homology groups H(X (z°)) and
H;(X) for i € [0,4], Using Corollary 13 we obtain H;(A), and replacing this
information in the long exact sequence discussed in Corollary 8, we obtain
Figure 4. Let us compute Hy(X, A). By exactness, immy = 0 = kerds and
H4(X, A)/ ker 4 ~ im 94 = 0, then Hy (X, A) = 0. Now, let us compute Hj3(X, A).
By exactness, im (3 = 0 = kerms, and Z/ker 73 ~ im 73 ~ Z, then im w3 =
ker93 = Hj3(X,A) ~ Z. Concerning Ha(X, A), by exactness, imts = 0 =
ker my, and Z/kerme ~ im g ~ Z ~ ker Js. Also, ker(t;) = Z = im 0> and
Hy (X, A)/ ker O3 ~ im Jy imply that: Ha(X, A) ~ Z2. Finally, let us compute
H; (X, A). By exactness, imm; = 0 = ker9;. Also, kermy = Z ~ im (g, and
Z] ker 1p ~ im tg imply that ker g = 0 = im 9y. Then, H; (X, A) = 0.
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Ly T4

Hy(A) = 0

IS

=
I
o

Hy (X, A)

L3 3

Hj(A) = 0

|

H3(X) = Z

|

H3(X, A)

05

L s
2 Hy(X)=2Z —2

\

Hy(A) = 0

|
|

Ha (X, A)

\

L1 1

=
=
I
N
=
£
I
[es)

H; (X, A)

o
Ho(X) =Z —— Hy(X,4) =0

5
=
I
N

Fig. 4: Long exact sequence of the cubical pair (X, A).

3.5 Our final observation

Since we have Hy (X, A) ~ Z? # 0, X is not a homology 3-manifold, and then
it is not a topological 3-manifold, which implies that DWCness does not imply
CWCness in nD, which contradicts the conjecture arguing that DWCness and
CWCness are equivalent in nD on cubical grids [2]. Furthermore, this counter-
example shows that a digital set which is well-composed in the sense of Alexan-
drov (AWC) [17,6] is not always CWC, since it has been proven in [5] that
AWCness and DWCness are equivalent in nD.

4 Conclusion

We have shown in this paper that even if CWCness and DWCness are equivalent
in 2D and in 3D, it is not true in 4D. As future works, we plan to study if
CWCness implies DWCness in nD.
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