Skip to main content

On the Treewidth of Planar Minor Free Graphs

  • Conference paper
  • First Online:
  • 332 Accesses

Abstract

We study in this article, the treewidth of planar graphs excluding as minor a fixed planar graph. We prove that the treewidth of every planar graph excluding a graph having a poly-line \(p \times q\)-grid drawing is \(O(p\sqrt{q})\). As consequences, the treewidth of planar graphs excluding as minor the cylinder \(\mathscr {C}_{2,r}\) or its dual \(\mathscr {C}^*_{2,r}\) is \(O(\sqrt{r})\), where \(\mathscr {C}_{2,r}\) denotes the cylinder of height 2 and circumference r. This bound is asymptotically optimal. The treewidth is \(O(\sqrt{r\log {r}})\) if the excluded graph is any outerplanar graph with r vertices.

The work of Cyril Gavoille is partially funded by the French ANR projects ANR-16-CE40-0023 (DESCARTES) and ANR-17-CE40-0015 (DISTANCIA).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is well-known the \(p\times q\) grid has treewidth \(\min \{{p,q}\}\).

  2. 2.

    Note that if a triangle is chosen as outerface of \(\mathscr {C}_{3,r+2}\), then the resulting drawing has \(r+2\) nested triangles. However, a drawing with the minimal number of nested disjoint cycles can be obtained by choosing a quadrangle of \(\mathscr {C}_{3,r+2}\) as outerface.

References

  1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a \(k\)-tree. SIAM J. Algebr. Discrete Methods 8, 277–284 (1987). https://doi.org/10.1137/060802410.1137/0608024

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial \(k\)-trees. Discrete Appl. Math. 23, 11–24 (1989). https://doi.org/10.1016/0166-218X(89)90031-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability - a survey. BIT Numer. Math. 25, 2–23 (1985). https://doi.org/10.1007/BF01934985

    Article  MathSciNet  MATH  Google Scholar 

  4. Babu, J., Basavaraju, M., Chandran, L.S., Rajendraprasad, D.: \(2\)-connecting outerplanar graphs without blowing up the pathwidth. Theor. Comput. Sci. 554, 119–134 (2014). https://doi.org/10.1016/j.tcs.2014.04.032

    Article  MathSciNet  MATH  Google Scholar 

  5. Birmelé, É., Bondy, J.A., Reed, B.A.: Brambles, prisms and grids. In: Bondy, A., Fonlupt, J., Fouquet, J.L., Fournier, J.C., Ramírez Alfonsín, J.L. (eds.) Graph Theory in Paris, pp. 37–44. Springer, Basel (2007). https://doi.org/10.1007/978-3-7643-7400-6_4

    Chapter  Google Scholar 

  6. Birmelé, É., Bondy, J.A., Reed, B.A.: Tree-width of graphs without a \(3\times 3\) grid minor. Discrete Appl. Math. 157, 2577–2596 (2009). https://doi.org/10.1016/j.dam.2008.08.003

    Article  MathSciNet  MATH  Google Scholar 

  7. Biedl, T.C.: A 4-approximation for the height of drawing 2-connected outer-planar graphs. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 272–285. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38016-7_22

    Chapter  MATH  Google Scholar 

  8. Biedl, T.: Height-preserving transformations of planar graph drawings. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 380–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_32

    Chapter  MATH  Google Scholar 

  9. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996). https://doi.org/10.1137/S0097539793251219

    Article  MathSciNet  MATH  Google Scholar 

  10. Bienstock, D., Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a forest. J. Comb. Theory Ser. B 52, 274–283 (1991). https://doi.org/10.1016/0095-8956(91)90068-U

    Article  MathSciNet  MATH  Google Scholar 

  11. Bodlaender, H.L., van Leeuwen, J., Tan, R.B., Thilikos, D.M.: On interval routing schemes and treewidth. Inf. Comput. 139, 92–109 (1997). https://doi.org/10.1006/inco.1997.2669

    Article  MathSciNet  MATH  Google Scholar 

  12. Chepoi, V.D., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approximating trees of delta-hyperbolic geodesic spaces and graphs. In: 21st Annual ACM Symposium on Computational Geometry (SoCG), pp. 59–68. ACM-SIAM, June 2008. https://doi.org/10.1145/1377676.1377687

  13. Chepoi, V.D., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y., Xiang, Y.: Additive spanners and distance and routing labeling schemes for hyperbolic graphs. Algorithmica 62, 713–732 (2012). https://doi.org/10.1007/s00453-010-9478-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H

    Article  MathSciNet  MATH  Google Scholar 

  15. Chekuri, C., Tan, Z.: Towards tight(er) bounds for the excluded grid theorem. In: 30th Symposium on Discrete Algorithms (SODA), pp. 1445–1464. ACM Press, January 2019. https://doi.org/10.1137/1.9781611975482.88

  16. di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  17. Dourisboure, Y., Dragan, F.F., Gavoille, C., Yan, C.: Spanners for bounded tree-length graphs. Theor. Comput. Sci. 383, 34–44 (2007). https://doi.org/10.1016/j.tcs.2007.03.058

    Article  MathSciNet  MATH  Google Scholar 

  18. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fary embeddings of planar graphs. In: 20th Annual ACM Symposium on Theory of Computing (STOC), pp. 426–433. ACM Press (1988). https://doi.org/10.1145/62212.62254

  19. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990). https://doi.org/10.1007/BF02122694

    Article  MathSciNet  MATH  Google Scholar 

  20. Dourisboure, Y., Gavoille, C.: Tree-decomposition of graphs with small diameter bags. In: Fila, J. (ed.) 2nd European Conference on Combinatorics, Graph Theory and Applications (EuroComb), pp. 100–104, September 2003

    Google Scholar 

  21. Dourisboure, Y., Gavoille, C.: Sparse additive spanners for bounded tree-length graphs. In: Královic̆, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 123–137. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27796-5_12

    Chapter  Google Scholar 

  22. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Discrete Math. 307, 2008–2029 (2007). https://doi.org/10.1016/j.disc.2005.12.060

    Article  MathSciNet  MATH  Google Scholar 

  23. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.-I.: Algorithmic Graph Minor Theory: improved grid minor bounds and Wagner’s contraction. Algorithmica 54, 142–180 (2009). https://doi.org/10.1007/s00453-007-9138-y

    Article  MathSciNet  MATH  Google Scholar 

  24. Dourisboure, Y.: Compact routing schemes for generalised chordal graphs. J. Graph Algorithms Appl. 9, 277–297 (2005). https://doi.org/10.7155/jgaa.00109

    Article  MathSciNet  Google Scholar 

  25. Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for minimum-weight vertex separators. SIAM J. Comput. 38, 629–657 (2008). https://doi.org/10.1137/05064299X

    Article  MathSciNet  MATH  Google Scholar 

  26. Fellows, M.R., Langston, M.A.: On search, decision and the efficiency of polynomial-time algorithms. In: 21st Annual ACM Symposium on Theory of Computing (STOC), pp. 501–512, ACM Press, May 1989. https://doi.org/10.1145/73007.73055

  27. Gavoille, C., Katz, M., Katz, N.A., Paul, C., Peleg, D.: Approximate distance labeling schemes. In: auf der Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp. 476–487. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44676-1_40

    Chapter  Google Scholar 

  28. Grohe, M.: Logic, graphs, and algorithms. In: Electronic Colloquium on Computational Complexity (ECCC), vol. TR07-091, September 2007. http://eccc.hpi-web.de/eccc-reports/2007/TR07-091/

  29. Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n3) time. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 373–384. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_31

    Chapter  Google Scholar 

  30. Gu, Q.-P., Tamaki, H.: Improved bounds on the planar branchwidth with respect to the largest grid minor size. Algorithmica 64, 416–453 (2012). https://doi.org/10.1007/s00453-012-9627-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discrete Appl. Math. 43, 97–101 (1993). https://doi.org/10.1016/0166-218X(93)90171-J

    Article  MathSciNet  MATH  Google Scholar 

  32. Kawarabayashi, K.-I., Wollan, P.: A shorter proof of the Graph Minor Algorithm - the unique linkage theorem. In: 42nd Annual ACM Symposium on Theory of Computing (STOC), pp. 687–694. ACM Press, June 2010. https://doi.org/10.1145/1806689.1806784

  33. Lokshtanov, D.: On the complexity of computing treelength. Discrete Appl. Math. 158, 820–827 (2010). https://doi.org/10.1016/j.dam.2009.10.007

    Article  MathSciNet  MATH  Google Scholar 

  34. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B 35(1), 39–61 (1983). https://doi.org/10.1016/0095-8956(83)90079-5

    Article  MathSciNet  MATH  Google Scholar 

  35. Robertson, N., Seymour, P.D.: Graph minors. v. Excluding a planar graph. J. Comb. Theory Ser. B 41, 92–114 (1986). https://doi.org/10.1016/0095-8956(86)90030-4

    Article  MathSciNet  MATH  Google Scholar 

  36. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. J. Comb. Theory Ser. B 89, 43–76 (2003). https://doi.org/10.1016/S0095-8956(03)00042-X

    Article  MathSciNet  MATH  Google Scholar 

  37. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory Ser. B 92, 325–357 (2004). https://doi.org/10.1016/j.jctb.2004.08.001

    Article  MathSciNet  MATH  Google Scholar 

  38. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theory Ser. B 62, 323–348 (1994). https://doi.org/10.1006/jctb.1994.1073

    Article  MathSciNet  MATH  Google Scholar 

  39. Schnyder, W.: Embedding planar graphs on the grid. In: 1st Symposium on Discrete Algorithms (SODA), pp. 138–148. ACM-SIAM, January 1990

    Google Scholar 

  40. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14, 217–241 (1994). https://doi.org/10.1007/BF01215352

    Article  MathSciNet  MATH  Google Scholar 

  41. Thilikos, D. M.: Quickly excluding a \({K}_{2, r}\) from planar graphs. In: 6th Twente Workshop on Graphs and Combinatorial Optimization. Electronic Notes in Discrete Mathematics, vol. 3, pp. 189–194. Elsevier, May 1999. https://doi.org/10.1016/S1571-0653(05)80054-X

  42. Umezawa, K., Yamazaki, K.: Tree-length equals branch-length. Discrete Math. 309, 4656–4660 (2009). https://doi.org/10.1016/j.disc.2009.01.009

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssou Dieng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dieng, Y., Gavoille, C. (2020). On the Treewidth of Planar Minor Free Graphs. In: Thorn, J., Gueye, A., Hejnowicz, A. (eds) Innovations and Interdisciplinary Solutions for Underserved Areas. InterSol 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-030-51051-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51051-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51050-3

  • Online ISBN: 978-3-030-51051-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics