
Beyond Notations: Hygienic Macro
Expansion for Theorem Proving Languages

Sebastian Ullrich1(B) and Leonardo de Moura2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
sebastian.ullrich@kit.edu

2 Microsoft Research, Redmond, USA
leonardo@microsoft.com

Abstract. In interactive theorem provers (ITPs), extensible syntax is
not only crucial to lower the cognitive burden of manipulating complex
mathematical objects, but plays a critical role in developing reusable
abstractions in libraries. Most ITPs support such extensions in the form
of restrictive “syntax sugar” substitutions and other ad hoc mechanisms,
which are too rudimentary to support many desirable abstractions. As
a result, libraries are littered with unnecessary redundancy. Tactic lan-
guages in these systems are plagued by a seemingly unrelated issue: acci-
dental name capture, which often produces unexpected and counterin-
tuitive behavior. We take ideas from the Scheme family of programming
languages and solve these two problems simultaneously by proposing a
novel hygienic macro system custom-built for ITPs. We further describe
how our approach can be extended to cover type-directed macro expan-
sion resulting in a single, uniform system offering multiple abstraction
levels that range from supporting simplest syntax sugars to elaboration
of formerly baked-in syntax. We have implemented our new macro sys-
tem and integrated it into the upcoming version (v4) of the Lean theorem
prover. Despite its expressivity, the macro system is simple enough that
it can easily be integrated into other systems.

1 Introduction

Mixfix notation systems have become an established part of many modern ITPs
for attaching terse and familiar syntax to functions and predicates of arbitrary
arity.

As a further extension, all shown systems also allow binding names inside
mixfix notations.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-51054-1_10) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12167, pp. 167–182, 2020.
https://doi.org/10.1007/978-3-030-51054-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51054-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-51054-1_10
https://doi.org/10.1007/978-3-030-51054-1_10
https://doi.org/10.1007/978-3-030-51054-1_10

168 S. Ullrich and L. de Moura

While these extensions differ in the exact syntax used, what is true about
all of them is that at the time of the notation declaration, the system already,
statically knows what parts of the term are bound by the newly introduced
variable. This is in stark contrast to macro systems in Lisp and related languages
where the expansion of a macro (a syntactic substitution) can be specified not
only by a template expression with placeholders like above, but also by arbitrary
syntax transformers, i.e. code evaluated at compile time that takes and returns
a syntax tree.1 As we move to more and more expressive notations and ideally
remove the boundary between built-in and user-defined syntax, we argue that
we should no more be limited by the static nature of existing notation systems
and should instead introduce syntax transformers to the world of ITPs.

However, as usual, with greater power comes greater responsibility. By using
arbitrary syntax transformers, we lose the ability to statically determine what
parts of the macro template can be bound by the macro input (and vice versa).
Thus it is no longer straightforward to avoid hygiene issues (i.e. accidental cap-
turing of identifiers; [11]) by automatically renaming identifiers. We propose to
learn from and adapt the macro hygiene systems implemented in the Scheme
family of languages for interactive theorem provers in order to obtain more gen-
eral but still well-behaved notation systems.

After giving a practical overview of the new, macro-based notation system
we implemented in the upcoming version of Lean (Lean 4) in Sect. 2, we describe
the issue of hygiene and our general hygiene algorithm, which should be just as
applicable to other ITPs, in Sect. 3. Section 4 gives a detailed description of the
implementation of this algorithm in Lean 4. In Sect. 5, we extend the use case
of macros from mere syntax substitutions to type-aware elaboration. Finally,
we have already encountered hygiene issues in the current version of Lean in a
different part of the system: the tactic framework. We discuss how these issues
are inevitable when implementing reusable tactic scripts and how our macro
system can be applied to this hygiene problem as well in Sect. 6.

Contributions. We present a system for hygienic macros optimized for theo-
rem proving languages as implemented2 in the next version of the Lean theorem
prover, Lean 4.

– We describe a novel, efficient hygiene algorithm to employ macros in ITP
languages at large: a combination of a white-box, effect-based approach for
detecting newly introduced identifiers and an efficient encoding of scope meta-
data.

1 These two macro declaration styles are commonly referred to as pattern-based vs.
procedural.

2 https://github.com/leanprover/lean4/blob/IJCAR20/src/Init/Lean/Elab.

https://github.com/leanprover/lean4/blob/IJCAR20/src/Init/Lean/Elab

Beyond Notations 169

– We show how such a macro system can be seamlessly integrated into existing
elaboration designs to support type-directed expansion even if they are not
based on homogeneous source-to-source transformations.

– We show how hygiene issues also manifest in tactic languages and how they
can be solved with the same macro system. To the best of our knowledge,
the tactic language in Lean 4 is the first tactic language in an established
theorem prover that is automatically hygienic in this regard.

2 The New Macro System

Lean’s current notation system as shown in Sect. 1 is still supported in Lean
4, but based on a much more general macro system; in fact, the
keyword itself has been reimplemented as a macro, more specifically as a
macro-generating macro making use of our tower of abstraction levels. The
corresponding Lean 4 command3 for the example from the previous section

expands to the macro declaration

where the syntactic category (term) of placeholders and of the entire macro is now
specified explicitly. The right-hand side uses an explicit syntax quasiquotation
to construct the syntax tree, with syntax placeholders (antiquotations) prefixed
with $. As suggested by the explicit use of quotations, the right-hand side may
now be an arbitrary Lean term computing a syntax object; in other words, there
is no distinction between pattern-based and procedural macros in our system. We
can now use this abstraction level to implement simple command-level macros,
for example.

Syntactic categories can be specified explicitly for antiquotations as in $id: ident
where otherwise ambiguous. itself is another command-level macro that,
for our example, expands to two commands

that is, a pair of parser extension (which we will not further discuss in this
paper) and syntax transformer. Our reason for ultimately separating these two
concerns is that we can now obtain a well-structured syntax tree pre-expansion,
i.e. a concrete syntax tree, and use it to implement source code tooling such
as auto-completion, go-to-definition, and refactorings. Implementing even just
the most basic of these tools for the Lean 3 frontend that combined parsing
and notation expansion meant that they had to be implemented right inside

3 All examples including full context can be found in the supplemental material at
https://github.com/Kha/macro-supplement.

https://github.com/Kha/macro-supplement

170 S. Ullrich and L. de Moura

the parser, which was not an extensible or even maintainable approach in our
experience.

Both and are in fact further macros for regular Lean
definitions encoding procedural metaprograms, though users should rarely need
to make use of this lowest abstraction level explicitly. Both commands can only
be used at the top level; we are not currently planning support for local macros.

There is no more need for the complicated scoped syntax since the desired
translation can now be specified naturally, without any need for further
annotations.

The lack of static restrictions on the right-hand side ensures that this works
just as well with custom binding notations, even ones whose translation cannot
statically be determined before substitution.

Here we explicitly make use of the and abstraction level for its
convenient syntactic pattern matching syntax. and are “open” in
the sense that multiple transformers for the same declaration can be
defined; they are tried in reverse declaration order by default up to the first
match (though this can be customized using explicit priority annotations).

As a final example, we present a partial reimplementation of the arithmetic
“bigop” notations found4 in Coq’s Mathematical Components library [12] such as

for summing over a filtered sequence of elements. The specific bigop notations
are defined in terms of a single fold operator; however, because Coq’s nota-
tion system is unable to abstract over this new indexing syntax, every specific
bigop notation has to redundantly repeat every specific index notation before
delegating to . In total, the 12 index notations for are duplicated
for 3 different bigops in the file.

In contrast, using our system, we can introduce a new syntactic category for
index notations, interpret it once in , and define new bigops on top of it
without any redundancy.

4 https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/
bigop.v.

https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/bigop.v
https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/bigop.v

Beyond Notations 171

The full example is included in the supplement.

3 Hygiene Algorithm

In this section, we will give a mostly self-contained description of our algorithm
for automatic hygiene applied to a simple recursive macro expander; we postpone
comparisons to existing hygiene algorithms to Sect. 7.

Hygiene issues occur when transformations such as macro expansions lead to
an unexpected capture (rebinding) of identifiers. For example, given the notation

we would not expect the term x to be closed because intuitively there is
no x in scope at the argument position of ; that the implementation of the
macro makes use of the name internally should be of no concern to the macro
user.

Thus hygiene issues can also be described as a confusion of scopes when
syntax parts are removed from their original context and inserted into new con-
texts, which makes name resolution strictly after macro expansion (such as in
a compiler preceded by a preprocessor) futile. Instead we need to track scopes
as metadata before and during macro expansion so as not to lose information
about the original context of identifiers. Specifically,

1. when an identifier captured in a syntax quotation matches one or more top-
level symbols5, the identifier is annotated with a list of these symbols as
top-level scopes to preserve its extra-macro context (which, because of the
lack of local macros, can only contain top-level bindings), and

2. when a macro is expanded, all identifiers freshly introduced by the expansion
are annotated with a new macro scope to preserve the intra-macro context.
Macro scopes are appended to a list, i.e. ordered by expansion time. This
full “history of expansions” is necessary to treat macro-producing macros
correctly, as we shall see in Sect. 3.2.

Thus, the expansion of the above term is (an equivalent of) where
1 is a fresh macro scope appended to the macro-introduced x , preventing it
from capturing the x from the original input. In general, we will style hygienic
identifiers in the following as n.msc1.msc2.. . ..mscn{tsc1,. . .,tscn} where n
is the original name, msc are macro scopes, and tsc top-level scopes, eliding

5 Lean allows overloaded top-level bindings whereas local bindings are shadowing.

172 S. Ullrich and L. de Moura

the braces if there are no top-level scopes as in the example above. We use
the dot notation to suggest both the ordered nature of macro scopes and their
eventual implementation in Sect. 4. We will now describe how to implement these
operations in a standard macro expander.

3.1 Expansion Algorithm

The macro expander described in this section bundles the execution of macros
and insertion of their results with interspersed name resolution to track scopes
and ensure hygiene of identifiers. As we shall see below, top-level scopes on
binding names are always discarded by it. Thus we will define a symbol more
formally as an identifier together with a list of macro scopes, such as x.1 above.

Given a global context (a set of symbols), the expander does a conventional
top-down expansion, keeping track of an initially-empty local context (another
set of symbols). When a binding is encountered, the local context is extended
with that symbol; top-level scopes on bindings are discarded since they are only
meaningful on references. When a reference, i.e. an identifier not in binding
position, is encountered, it is resolved according to the following rules:

1. If the local context has an entry for the same symbol, the reference binds to
the corresponding local binding; any top-level scopes are ignored.

2. Otherwise, if the identifier is annotated with one or more top-level scopes or
matches one or more symbols in the global context, it binds to all of these
(to be disambiguated by the elaborator).

3. Otherwise, the identifier is unbound and an error is generated.

In the common incremental compilation mode of ITPs, every command is
fully processed before subsequent commands. Thus, an expander for such a sys-
tem will not extend the global context by itself, but pass the fully expanded
command to the next compilation step before being called again with the next
command’s unexpanded syntax tree and a possibly extended global context.

Notably, our expander does not add macro scopes to identifiers by itself,
either, much in contrast to other expansion algorithms. We instead delegate
this task to the macro itself, though in a completely transparent way for all
pattern-based and for many procedural macros. We claim that a macro should
in fact be interpreted as an effectful computation since two expansions of the
same identifier-introducing macro should not return the same syntax tree to
avoid unhygienic interactions between them. Thus, as a side effect, it should
apply a fresh macro scope to each captured identifier. In particular, a syntax
quotation should not merely be seen as a datum, but implemented as an effectful
value that obtains and applies this fresh scope to all the identifiers contained in
it to immediately ensure hygiene for pattern-based macros. Procedural macros
producing identifiers not originating from syntax quotations might need to obtain
and make use of the fresh macro scope explicitly. We give a specific monad-based
[14] implementation of effectful syntax quotations as a regular macro in Sect. 4.

Beyond Notations 173

3.2 Examples

Given the following input,

we incrementally parse, expand, and elaborate each declaration before advancing
to the next one. For a first, trivial example, let us focus on the expansion of the
second line. At this point, the global context contains the symbol x (plus any
default imports that we will ignore here). Descending into the right-hand side
of the definition, we first add y to the local context. The reference x does not
match any local definitions, so it binds to the matching top-level definition.

In the next line, the built-in macro expands to the definitions

When a top-level macro application unfolds to multiple declarations, we expand
and elaborate these incrementally as well to ensure that declarations are in
the global context of subsequent declarations. When recursively expanding the

declaration (we will assume for this example that itself
is primitive) in the global context , we first visit the syntax quotation on
the left-hand side. The identifier e inside of it is in an antiquotation and thus not
captured by the quotation. It is in binding position for the right-hand side, so we
add e to the local context. Visiting the right-hand side, we find the quotation-
captured identifier x and annotate it with the matching top-level definition of the
same name; we do not yet know that it is in a binding position. When visiting
the reference e, we see that it matches a local binding and do not add top-level
scopes.

with the global context , we descend into the right-hand side. We expand
the macro given a fresh macro scope 2, which is applied to any captured
identifiers.

We add the symbol x.2 (discarding the top-level scope x) to the local context
and finally visit the reference x. The reference does not match the local binding
x.2 but does match the top-level binding x, so it binds to the latter.

174 S. Ullrich and L. de Moura

Now let us briefly look at a more complex macro-macro example demonstrating
use of the macro scopes stack:

If we call m f, we apply a macro scope 1 to all captured identifiers, then incre-
mentally process the two new declarations.

If we call the new macro mm, we apply one more macro scope 2.

When processing these new definitions, we see that the scopes ensure the
expected name resolution. In particular, we now have global declarations f .1,
f .2, and f .1.2 that show that storing only a single macro scope would have led
to a collision.

4 Implementation

Syntax objects in Lean 4 are represented as an inductive type of nodes (or nonter-
minals), atoms (or terminals), and, as a special case of nonterminals, identifiers.

An additional constructor represents missing parts from syntax error recovery.
Atoms and identifiers are annotated with source location metadata unless gen-
erated by a macro. Identifiers carry macro scopes inline in their Name while
top-level scopes are held in a separate list. The additional Nat is an implemen-
tation detail of Lean’s hierarchical name resolution.

The type Name of hierarchical names precedes the implementation of the
macro system and is used throughout Lean’s implementation for referring to
(namespaced) symbols.

The syntax `a.b is a literal of type Name for use in meta-programs. The
numeric part of Name is not accessible from the surface syntax and reserved for
internal names; similar designs are found in other ITPs. By reusing Name for
storing macro scopes, but not top-level scopes, we ensure that the new definition
of symbol from Sect. 3.1 coincides with the existing Lean type and no changes
to the implementation of the local or global context are necessary for adopting
the macro system.

Beyond Notations 175

A Lean 4 implementation of the expansion algorithm described in the pre-
vious section is given in Fig. 1; the full implementation including examples
is included in the supplement. As a generalization, syntax transformers have
the type Syntax where the TransformerM monad gives
access to the global context and a fresh macro scope per macro expansion. The
expander itself uses an extended ExpanderM monad that also stores the local
context and the set of registered macros. We use the Lean equivalent of Haskell’s
do notation [13] to program in these monads.

As usual, the expander has built-in knowledge of some “core forms” (lines
3–17) with special expansion behavior, while all other forms are assumed to be
macros and expanded recursively (lines 20–22). Identifiers form one base case
of the recursion. As described in the algorithm, they are first looked up in the
local context (recall that the val of an identifier includes macro scopes), then as
a fall back in the global context plus its own top-level scopes. mkTermId : Name

creates an identifier without source information or top-level scopes,
which are not needed after expansion. mkOverloadedConstant implements the
Lean special case of overloaded symbols to be disambiguated by elaboration;
systems without overloading support should throw an ambiguity error instead
in this case.

As an example of a core binding form, the expansion of a single-parameter
fun is shown in lines 13–17 of Fig. 1. It recursively expands the given parameter
type, then expands the body in a new local context extended with the value of
id. Here in particular implements the discarding
of top-level scopes from binders.

Finally, in the macro case, we fetch the syntax transformer for the given node
kind, call it in a new context with a fresh current macro scope, and recurse.

Syntax quotations are given as one example of a macro: they do not have
built-in semantics but transform into code that constructs the appropriate syntax
tree (expandStxQuot in Fig. 2). More specifically, a syntax quotation will, at
runtime, query the current macro scope msc from the surrounding TransformerM
monad and apply it to all captured identifiers, which is done in quoteSyntax.
quoteSyntax recurses through the quoted syntax tree, reflecting its constructors.
Basic datatypes such as String and Name are turned into Syntax via the typeclass
method quote. For antiquotations, we return their contents unreflected. In the
case of identifiers, we resolve possible global references at compile time and reflect
them, while msc is applied at runtime. Thus a quotation `(a + $b) inside a global
context where the symbol a matches declarations a.a and b.a is transformed to
the equivalent of

This implementation of syntax quotations itself makes use of syntax quotations
for simplicity and thus is dependent on its own implementation in the previous
stage of the compiler. Indeed, the helper variable msc must be renamed should the

176 S. Ullrich and L. de Moura

Fig. 1. Abbreviated implementation of a recursive expander for our macro system

name already be in scope and used inside an antiquotation. Note that quoteSyntax
is allowed to reference the same msc as expandStxQuot because they are part of
the same macro call and the current macro scope is unchanged between them.

5 Integrating Macros into Elaboration

The macro system as described so far can handle most syntax sugars of Lean
3 except for ones requiring type information. For example, the anonymous con-
structor is sugar for (c e ...) if the expected type of the expression is
known and it is an inductive type with a single constructor c. While trivial to
parse, there is no way to implement this syntax as a macro if expansion is done
strictly prior to elaboration. To the best of our knowledge, none of the ITPs
listed in the introduction support hygienic elaboration extensions of this kind,
but we will show how to extend their common elaboration scheme in that way
in this section.

Elaboration6 can be thought of as a function in
an appropriate monad ElabM7 from a (concrete or abstract) surface-level syntax
tree type Syntax to a fully-specified core term type Expr [15]. We have presented
the (concrete) definition of Syntax in Lean 4 in Sect. 4; the particular definition
6 At the term level; other levels work analogously but with different output types.
7 Or some other encoding of effects.

Beyond Notations 177

Fig. 2. Simplified syntax transformer for syntax quotations

of Expr is not important here. While such an elaboration system could readily be
composed with a type-insensitive macro expander such as the one presented in
Sect. 3, we would rather like to intertwine the two to support type-sensitive but
still hygienic-by-default macros (henceforth called elaborators) without having to
reimplement macros of the kind discussed so far. Indeed, these can automatically
be adapted to the new type given an adapter between the two monads, similarly
to the adaption of macros to expanders in [6]:

Because most parts of our hygiene system are implemented by the expander for
syntax quotations, the only changes to an elaboration system necessary for sup-
porting hygiene are storing the current macro scope in the elaboration monad (to
be passed to the expansion monad in the adapter) and allocating a fresh macro
scope in elabTerm and other recursion points, which morally now represent the
starting point of a macro’s expansion. Thus elaborators immediately benefit from
hygiene as well whenever they use syntax quotations to construct unelaborated
helper syntax objects to pass to elabTerm. In order to support syntax quota-
tions in these two and other monads, we generalize their implementation to a
new monad typeclass implemented by both monads.

The second operation is not used by syntax quotations directly, but can be used
by procedural macros to manually enter new macro call scopes.

178 S. Ullrich and L. de Moura

As an example, the following is a simplified implementation of the anonymous
constructor syntax mentioned above.

The [termElab] attribute registers this elaborator for the given syntax node
kind. $args∗ is an antiquotation splice that extracts/injects a syntactic sequence
of elements into/from an Array Syntax. The array by default includes separators
such as “,” as Syntax.atoms in order to be lossless, which we here filter out using
getSepElems. The function synthesizes a hygienic
reference to the given constant name by storing it as a top-level scope and
applying a reserved macro scope to the constructed identifier.

This implementation fails if the expected type is not yet sufficiently known
at this point. The actual implementation8 of this elaborator extends the code by
postponing elaboration in this case. When an elaborator requests postponement,
the system returns a fresh metavariable as a placeholder and associates the input
syntax tree with it. Before finishing elaboration, postponed elaborators associ-
ated with unsolved metavariables are retried until they all ultimately succeed,
or else elaboration is stuck because of cyclic dependencies and an error is signed.

6 Tactic Hygiene

Lean 3 includes a tactic framework that, much like macros, allows users to
write custom automation either procedurally inside a Tactic monad (renamed
to TacticM in Lean 4) or “by example” using tactic language quotations, or in a
mix of both [9]. For example, Lean 3 uses a short tactic block to prove injection
lemmas for data constructors.

Unfortunately, this code unexpectedly broke in Lean 3 when used from a library
for homotopy type theory that defined its own propext and Iff . intro declara-
tions;9 in other words, Lean 3 tactic quotations are unhygienic and required

8 https://github.com/leanprover/lean4/blob/IJCAR20/src/Init/Lean/Elab/
BuiltinNotation.lean#L43.

9 https://github.com/leanprover/lean/pull/1913.

https://github.com/leanprover/lean4/blob/IJCAR20/src/Init/Lean/Elab/BuiltinNotation.lean#L43
https://github.com/leanprover/lean4/blob/IJCAR20/src/Init/Lean/Elab/BuiltinNotation.lean#L43
https://github.com/leanprover/lean/pull/1913

Beyond Notations 179

manual intervention in this case. Just like with macros, the issue with tactics is
that binding structure in such embedded terms is not known at declaration time.
Only at tactic run time do we know all local variables in the current context that
preceding tactics may have added or removed, and therefore the scope of each
captured identifier.

Arguably, the Lean 3 implementation also exhibited a lack of hygiene in the
handling of tactic-introduced identifiers: it did not prevent users from referencing
such an identifier outside of the scope it was declared in.

Coq’s similar Ltac tactic language [5] exhibits the same issue and users are
advised not to introduce fixed names in tactic scripts but to generate fresh names
using the fresh tactic first,10 which can be considered a manual hygiene solution.

Lean 4 instead extends its automatically hygienic macro implementation to
tactic scripts by allowing regular macros in the place of tactic invocations.

By the same hygiene mechanism described above, introduced identifiers such
as h are renamed so as not to be accessible outside of their original scope,
while references to global declarations are preserved as top-level scope annota-
tions. Thus Lean 4’s tactic framework resolves both hygiene issues discussed here
without requiring manual intervention by the user. Expansion of tactic macros
in fact does not precede but is integrated into the tactic evaluator evalTactic :

such that recursive macro calls are expanded lazily.

Here the quotation kind tactic followed by a pipe symbol specifies the parser
to use for the quotation, since tactic syntax may otherwise overlap with term
syntax. automatically infers it from the given syntax category, but cannot
be used here because the parser for repeat would not yet be available in the right-
hand side. When $t eventually fails, the recursion is broken without visiting and
expanding the subsequent repeat macro call. The try tactical is used to ignore
this eventual failure.

While we believe that macros will cover most use cases of tactic quotations
in Lean 3, their use within larger TacticM metaprograms can be recovered by
passing such a quotation to evalTactic:

TacticM implements the MonadQuotation typeclass for this purpose.

10 https://github.com/coq/coq/issues/9474.

https://github.com/coq/coq/issues/9474

180 S. Ullrich and L. de Moura

7 Related Work

The main inspiration behind our hygiene implementation was Racket’s new Sets
of Scopes [10] hygiene algorithm. Much like in our approach, Racket annotates
identifiers both with scopes from their original context as well as with additional
macro scopes when introduced by a macro expansion. However, there are some
significant differences: Racket stores both types of scopes in a homogeneous,
unordered set and does name resolution via a maximum-subset check. For both
simplicity of implementation and performance, we have reduced scopes to the
bare minimal representation using only strict equality checks, which we can easily
encode in our existing Name implementation. In particular, we only apply scopes
to matching identifiers and only inside syntax quotations. This optimization is
of special importance because top-level declarations in Lean and other ITPs are
not part of a single, mutually recursive scope as in Racket, but each open their
own scope over all subsequent declarations, which would lead to a total num-
ber of scope annotations quadratic in the number of declarations using the Sets
of Scopes algorithm. Finally, Racket detects macro-introduced identifiers using
a “black-box” approach without the macro’s cooperation following the marking
approach of [11]: a fresh macro scope is applied to all identifiers in the macro
input, then inverted on the macro output. While elegant, a naive implementation
of this approach can result in quadratic runtime compared to unhygienic expan-
sion and requires further optimizations in the form of lazy scope propagation
[7], which is difficult to implement in a pure language such as Lean. Our “white-
box” approach based on the single primitive of an effectful syntax quotation,
while slightly easier to escape from in procedural syntax transformers, is sim-
ple to implement, incurs minimal overhead, and is equivalent for pattern-based
macros.

The idea of automatically handling hygiene in the macro, and not in the
expander, was introduced in [4], though only for pattern-based macros. MetaML
[18] refined this idea by tying hygiene more specifically to syntax quotations
that could be used in larger metaprogram contexts, which Template Haskell [17]
interpreted as effectful (monadic) computations requiring access to a fresh-names
generator, much like in our design. However, both of the latter systems should
perhaps be characterized more as metaprogramming frameworks than Scheme-
like macro systems: there are no “macro calls” but only explicit splices and so
only built-in syntax with known binding semantics can be captured inside syntax
quotations. Thus the question of which captured identifiers to rename becomes
trivial again, just like in the basic notation systems discussed in Sect. 1.

While the vast majority of research on hygienic macro systems has focused
on S-expression-based languages, there have been previous efforts on marrying
that research with non-parenthetical syntax, with different solutions for combin-
ing syntax tree construction and macro expansion. The Dylan language requires
macro syntax to use predefined terminators and eagerly scans for the end of a
macro call using this knowledge [2], while in Honu [16] the syntactic structure of a
macro call is discovered during expansion by a process called “enforestation”. The
Fortress [1] language strictly separates the two concerns into grammar extensions

Beyond Notations 181

and transformer declarations, much like we do. Dylan and Fortress are restricted
to pattern-based macro declarations and thus can make use of simple hygiene
algorithms while Honu uses the full generality of the Racket macro expander.
On the other hand, Honu’s authors “explicitly trade expressiveness for syntactic
simplicity” [16]. In order to express the full Lean language and desirable exten-
sions in a macro system, we require both unrestricted syntax of macros and
procedural transformers.

Many theorem provers such as Coq, Agda, Idris, and Isabelle not already
based on a macro-powered language provide restricted syntax extension mech-
anisms, circumventing hygiene issues by statically determining binding as seen
in Sect. 1. Extensions that go beyond that do not come with automatic hygiene
guarantees. Agda’s macros11, for example, operate on the De Bruijn index-based
core term level and are not hygienic.12 The ACL2 prover in contrast uses a sub-
set of Common Lisp as its input language and adapts the hygiene algorithm of
[7] based on renaming [8]. The experimental Cur [3] theorem prover is a kind
of dual to our approach: it takes an established language with hygienic macros,
Racket, and extends it with a dependent type system and theorem proving tools.
ACL2 does not support tactic scripts, while in Cur they can be defined via reg-
ular macros. However, this approach does not currently provide tactic hygiene
as defined in Sect. 6.13

8 Conclusion

We have proposed a new macro system for interactive theorem provers that
enables syntactic abstraction and reuse far beyond the usual support of mix-
fix notations. Our system is based on a novel hygiene algorithm designed with a
focus on minimal runtime overhead as well as ease of integration into pre-existing
codebases, including integration into standard elaboration designs to support
type-directed macro expansion. Despite that, the algorithm is general enough to
provide a complete hygiene solution for pattern-based macros and provides flex-
ible hygiene for procedural macros. We have also demonstrated how our macro
system can address unexpected name capture issues that haunt existing tactic
frameworks. We have implemented our method in the upcoming version (v4) of
the Lean theorem prover; it should be sufficiently attractive and straightforward
to implement to be adopted by other interactive theorem proving systems as
well.

Acknowledgments. We are very grateful to the anonymous reviewers, David Thrane
Christiansen, Gabriel Ebner, Matthew Flatt, Sebastian Graf, Alexis King, Daniel Sel-
sam, and Max Wagner for extensive comments, corrections, and advice.

11 https://agda.readthedocs.io/en/v2.6.0.1/language/reflection.html#macros.
12 https://github.com/agda/agda/issues/3819.
13 https://github.com/wilbowma/cur/issues/104.

https://agda.readthedocs.io/en/v2.6.0.1/language/reflection.html#macros
https://github.com/agda/agda/issues/3819
https://github.com/wilbowma/cur/issues/104

182 S. Ullrich and L. de Moura

References

1. Allen, E., et al.: The Fortress language specification. Sun Microsyst. 139(140), 116
(2005)

2. Bachrach, J., Playford, K., Street, C.: D-expressions: Lisp power. Dylan style, Style
DeKalb IL (1999)

3. Chang, S., Ballantyne, M., Turner, M., Bowman, W.J.: Dependent type systems
as macros. Proc. ACM Program. Lang. 4(POPL), 1–29 (2019)

4. Clinger, W., Rees, J.: Macros that work. In: Proceedings of the 18th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
155–162 (1991)

5. Delahaye, D.: A tactic language for the system Coq. In: Logic for Programming and
Automated Reasoning, 7th International Conference, LPAR 2000, Proceedings, pp.
85–95 (2000)

6. Dybvig, R.K., Friedman, D.P., Haynes, C.T.: Expansion-passing style: beyond con-
ventional macros. In: Proceedings of the 1986 ACM Conference on LISP and Func-
tional Programming, pp. 143–150 (1986)

7. Dybvig, R.K., Hieb, R., Bruggeman, C.: Syntactic abstraction in scheme. Lisp
Symbolic Comput. 5(4), 295–326 (1993)

8. Eastlund, C., Felleisen, M.: Hygienic macros for ACL2. In: Page, R., Horváth,
Z., Zsók, V. (eds.) TFP 2010. LNCS, vol. 6546, pp. 84–101. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22941-1_6

9. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogram-
ming framework for formal verification. Proc. ACM Program. Lang. 1(ICFP)
(2017).https://doi.org/10.1145/3110278

10. Flatt, M.: Binding as sets of scopes. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, pp. 705–717, ACM, New York (2016). https://doi.org/10.1145/2837614.
2837620, http://doi.acm.org/10.1145/2837614.2837620

11. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic macro expansion.
In: Proceedings of the 1986 ACM Conference on LISP and Functional Program-
ming, pp. 151–161 (1986)

12. Mahboubi, A., Tassi, E.: Mathematical components. https://math-comp.github.
io/mcb/

13. Marlow, S., et al.: Haskell 2010 language report (2010). https://www.haskell.org/
onlinereport/haskell2010

14. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
15. de Moura, L., Avigad, J., Kong, S., Roux, C.: Elaboration in dependent type theory

(2015)
16. Rafkind, J., Flatt, M.: Honu: syntactic extension for algebraic notation through

enforestation. In: ACM SIGPLAN Notices, vol. 48, pp. 122–131. ACM (2012)
17. Sheard, T., Jones, S.P.: Template meta-programming for Haskell. In: Proceedings

of the 2002 ACM SIGPLAN Workshop on Haskell, pp. 1–16. ACM (2002)
18. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit anno-

tations. Theor. Comput. Sci. 248(1–2), 211–242 (2000)

https://doi.org/10.1007/978-3-642-22941-1_6
https://doi.org/10.1145/3110278
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1145/2837614.2837620
http://doi.acm.org/10.1145/2837614.2837620
https://math-comp.github.io/mcb/
https://math-comp.github.io/mcb/
https://www.haskell.org/onlinereport/haskell2010
https://www.haskell.org/onlinereport/haskell2010

	Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages
	1 Introduction
	2 The New Macro System
	3 Hygiene Algorithm
	3.1 Expansion Algorithm
	3.2 Examples

	4 Implementation
	5 Integrating Macros into Elaboration
	6 Tactic Hygiene
	7 Related Work
	8 Conclusion
	References

