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Abstract. We present a practical proof search procedure for Coq based
on a direct search for type inhabitants in an appropriate normal form.
The procedure is more general than any of the automation tactics
natively available in Coq. It aims to handle as large a part of the Calcu-
lus of Inductive Constructions as practically feasible.

For efficiency, our procedure is not complete for the entire Calculus
of Inductive Constructions, but we prove completeness for a first-order
fragment. Even in pure intuitionistic first-order logic, our procedure per-
forms competitively.

We implemented the procedure in a Coq plugin and evaluated it on
a collection of Coq libraries, on CompCert, and on the ILTP library of
first-order intuitionistic problems. The results are promising and indicate
the viablility of our approach to general automated proof search for the
Calculus of Inductive Constructions.

Keywords: Proof search - Inhabitation - Coq - Proof automation -
Intuitionistic logic - Dependent type theory

1 Introduction

The Curry-Howard isomorphism [39] is a correspondence between systems of for-
mal logic and computational lambda-calculi, interpreting propositions as types
and proofs as programs (typed lambda-terms). Coq [10] is an interactive proof
assistant based on this correspondence. Its underlying logic is the Calculus of
Inductive Constructions [10,33,46] — an intuitionistic dependent type theory
with inductive types.

Because of the complexity and constructivity of the logic, research on auto-
mated reasoning for Coq has been sparse so far, limited mostly to specialised
tactics for restricted fragments or decidable theories. The automation currently
available in Coq is weaker than in proof assistants based on simpler classical
foundations, like Isabelle/HOL [29].

We present a practical general fully automated proof search procedure for
Coq based on a direct search for type inhabitants. We synthesise Coq terms in an
appropriate normal form, using backward-chaining goal-directed search. To make
this approach practical, we introduce various heuristics including hypothesis
© Springer Nature Switzerland AG 2020

N. Peltier and V. Sofronie-Stokkermans (Eds.): IJCAR 2020, LNAI 12167, pp. 28-57, 2020.
https://doi.org/10.1007/978-3-030-51054-1_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51054-1_3&domain=pdf
http://orcid.org/0000-0001-8083-4280
https://doi.org/10.1007/978-3-030-51054-1_3

Practical Proof Search for Coq by Type Inhabitation 29

simplification, limited forward reasoning, ordered rewriting and loop checking.
For efficiency, we sacrifice completeness for the entire logic of Coq, though we
give a completeness proof for a first-order fragment.

We evaluated our procedure on a collection of Coq libraries (40.9% success
rate), on CompCert [27] (17.1%) and on the ILTP library [36] (29.5%) of first-
order intuitionistic problems. The percentages in brackets denote how many
problems were solved fully automatically by the standalone tactic combined
with heuristic induction. These results indicate the viability of our approach.

The procedure can be used as a standalone Coq tactic or as a reconstruction
backend for CoqHammer [14] — a hammer tool [7] which invokes external auto-
mated theorem provers (ATPs) on translations of Coq problems and then recon-
structs the found proofs in Coq using the information obtained from successful
ATP runs. With our procedure used for reconstruction, CoqgHammer achieves a
39.1% success rate on a collection of Coq libraries and 25.6% on CompCert. The
reconstruction success rates (i.e. the percentage of problems solved by the ATPs
that can be re-proved in Coq) are 87-97%.

1.1 Related Work

A preliminary version of a proof search procedure partly based on similar ideas
was described in [14]. That procedure is less complete (not complete for the
first-order fragment), slower, much more heuristic, and it performs visibly worse
as a standalone tactic (see Sect. 5). It partially includes only some of the actions,
restrictions and heuristic improvements described here. In particular, the con-
struction and the unfolding actions are absent, and only special cases of the
elimination and the rewriting actions are performed. See Sect. 3.

From a theoretical perspective, a complete proof search procedure for the
Cube of Type Systems, which includes the pure Calculus of Constructions with-
out inductive types, is presented in [15]. It is also based on an exhaustive search
for type inhabitants. Sequent calculi suitable for proof search in Pure Type Sys-
tems are described in [22,26].

In practice, Chlipala’s crush tactic [9] can solve many commonly occurring
Coq goals. However, it is not a general proof search procedure, but an entirely
heuristic tactic. In the evaluations we performed, the crush tactic performed
much worse than our procedure. For Agda [30] there exists an automated prover
Agsy [28] which is, however, not much stronger than Coq’s auto.

Proof search in intuitionistic first-order logic has received more attention
than inhabitation in complex constructive dependent type theories. We do not
attempt here to provide an overview, but only point the reader to [36] for a com-
parison of intuitionistic first-order ATP systems. The most promising approaches
to proof search in intuitionistic first-order logic seem to be connection-based
methods [6,24,32,45]. Indeed, the connection-based ileanCoP [31] prover out-
performs other intuitionistic ATPs by a wide margin [36].

An automated intuitionistic first-order prover is available in Coq via the
firstorder tactic [11], which is based on a contraction-free sequent calculus
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extending the LJT system of Dyckhoff for intuitionistic propositional logic [17—
19]. There also exists a Coq plugin for the connection-based JProver [37]. How-
ever, the plugin is not maintained and not compatible with new versions of Coq.

Coq’s type theory may be viewed as an extension of intuitionistic higher-order
logic. There exist several automated provers for classical higher-order logic, like
Leo [40] or Satallax [8]. Satallax can produce Coq proof terms which use the
excluded middle axiom.

The approach to proof search in intuitionistic logic via inhabitation in the
corresponding lambda-calculus has a long tradition. It is often an easy way to
establish complexity bounds [23,38,42]. This approach can be traced back to
Ben-Yelles [5,23] and Wajsberg [43,44].

One of the motivations for this work is the need for a general automated
reasoning procedure in a CogHammer [14] reconstruction backend. CoqHammer
links Coq with general classical first-order ATPs, but tries to find intuitionistic
proofs with no additional assumptions and to handle as much of Coq’s logic as
possible. A consequence is that the reconstruction mechanism of CoqHammer
cannot rely on a direct translation of proofs found by classical ATPs, in contrast
to e.g. SMTCoq [2,21] which integrates external SAT and SMT solvers into Coq.

2 Calculus of Inductive Constructions

In this section, we briefly and informally describe the Calculus of Inductive
Constructions (CIC) [10,33,46]. For precise definitions and more background, the
reader is referred to the literature. Essentially, CIC is a typed lambda calculus
with dependent products Vz : 7.0 and inductive types.

An inductive type is given by its constructors, presented as, e.g.,

Inductive List (A : Type) : Type :=
nil : List A | cons : A -> List A -> List A

This declares 1ist A to be a type of sort Type for any parameter A of sort Type.
Above A is a parameter and Type — Type is the arity of list. The types of
constructors implicitly quantify over the parameters, i.e., the type of cons above
is VA : Type.A — list A — list A. In the presentation we sometimes leave the
parameter A implicit.

Propositions (logical formulas) are represented by dependent types. Induc-
tive predicates are represented by dependent inductive types, e.g., the inductive
type
Inductive Forall (A : Type) (P : A -> Prop) : List A -> Prop :=
| fnil : Forall P nil
| fcons : forall (x : A) (1 : List A),

P x -> Forall P 1 -> Forall P (cons x 1)
defines a predicate Forall on lists, parameterised by a type A and a predi-
cate P : A — Prop. Then Forall A P states that Pz holds for every element x
of I.
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All intuitionistic connectives may be represented using inductive types:

Inductive T : Prop := 1 : T.
Inductive 1 : Prop := .
Inductive A (A : Prop) (B : Prop) : Prop := conj : A -> B -> A A B.
Inductive V (A : Prop) (B : Prop) : Prop :=
inl : A -> AV B | inr : B -> A V B.
Inductive 3 (A : Type) (P : A -> Prop) : Prop :=
exi : forall x : A, Px -> 3 A P.

where A and V are used in infix notation. All the usual introduction and elimi-
nation rules are derivable. Equality can also be defined inductively.

Below by ¢, u, w, 7, o, etc., we denote terms, by ¢, ¢/, etc., we denote con-
structors, and by x, y, z, etc., we denote variables. We use ¢ for a sequence
of terms t; ...t, of an unspecified length n, and analogously for a sequence of
variables . For instance, ty stands for ty; ...y,, where n is not important or
implicit. Analogously, we use AZ : 7.t for A\z1 : 7. Ax2 : 0. ... Az, : T t, With n
implicit or unspecified. We write t[@/Z] for t[uy/x1]. .. [un/zn].

The logic of Coq includes over a dozen term formers. The ones recognised by
our procedure are: a sort s (e.g. Type, Set or Prop), a variable z, a constant, a
constructor ¢, an inductive type I, an application t1t2, an abstraction \x : t1.to,
a dependent product Va : t1.to (written t1 — to if ¢ FV(¢2)), and a case

expression case(t; \d : @ x : Iqa.7;21 : 01 =t | ... | Tk : o = ti).
In a case expression: t is the term matched on; I is an inductive type with
constructors ¢y, ..., ck; the type of ¢; is Vp' : p.Vz; : 7;.Ipw; where p are the

parameters of I; the type of ¢t has the form Iqu where ¢ are the values of the
parameters; the type 7[t@/d,t/x] is the return type, i.e., the type of the whole
case expression; t; has type 7[w;/d, ¢;qr;/x] in &; : d; where d; = 7;[¢/p] and
w; = U;[q/P); t:[U/Z] is the value of the case expression if the value of ¢ is ¢;qu.
Note that some equality information is “forgotten” when typing the branches
of a case expression. We require t; to have type 7[w;/d, ¢;¢z;/x] in context z; : 7;.
We know that “inside” the ¢th branch ¢ = ¢;¢x; and ¥ = wj;, but this information
cannot be used when checking the type of t;. A consequence is that permutative
conversions [41, Chapter 6] are not sound for CIC and this is one reason for the
incompleteness of our procedure outside the restricted first-order fragment.
Coq’s notation for case expressions is

match t as x in I _ @ return 7
with ¢g - 21 => ¢t | ... | ¢ - 2, => 1} end

where c1,...,c, are all constructors of I, and _ are the wildcard patterns
matching the inductive type parameters ¢. For readability, we often use
Coq match notation. When z (resp. @) does not occur in 7 then we omit
as x(resp.in I _ @) from the match. If 7 does not on either = or @, we
also omit the return 7 .

A typing judgement has the form E;I" - t : 7 where E is an environment
consisting of declarations of inductive types and constant definitions, I is a
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context - a list of variable type declarations x : ¢, and ¢, 7 are terms. We refer
to the Coq manual [10] for a precise definition of the typing rules.
Coq’s definitional equality (conversion rule) includes - and ¢-reduction:

()\.’E : T.tl)tg —3 tl[tQ/IC]
case(c;pU; A@ : @ \x : Ipa.7;21 : 11 =ty | ... | Tk : Th = tr) —, t[0/25)

An inductive type I is non-recursive if the types of constructors of I do not
contain I except as the target. We assume the well-foundedness of the relation >
defined by: I1 > I iff Is # I; occurs in the arity of I or the type of a constructor
of I1. We write I = t if I = I’ for every inductive type I’ occurring in the term ¢.

3 The Proof Search Procedure

In this section, we describe our proof search procedure. Our approach is based
on a direct search for type inhabitants in appropriate normal form [42]. For
the sake of efficiency, the normal forms we consider are only a subset of possible
CIC normal forms. This leads to incompleteness outside the restricted first-order
fragment (see Sects. 3.6 and 4).

More precisely, the inhabitation problem is: given an environment E, a con-
text I' and a I'-type 7 (i.e. I' b 7 : s for a sort s), find a term ¢ such that
E; 't t: 7. The environment E will be kept fixed throughout the search, so we
omit it from the notation.

A goal is a pair (I',7) with 7 a I'-type, denoted I" 7 : 7, where I" is the
context and T is the conjecture. A solution of the goal I' F?7 : 7 is any term ¢
such that I'+1¢: 7.

3.1 Basic Procedure

The basic inhabitation procedure is to nondeterministically perform one of the
following actions, possibly generating new subgoals to be solved recursively. If
the procedure fails on one of the subgoals then the action fails. If each possible
action fails then the procedure fails. The choices in the actions (e.g. of specific
subgoal solutions) are nondeterministic, i.e., we consider all possible choices,
each leading to a potentially different solution.

The actions implicitly determine an and-or proof search tree. We leave the
exact order in which this tree is traversed unspecified, but a complete search
order is to be used, e.g., breadth-first or iterative deepening depth-first.

The procedure supports five term formers in synthesised solutions: variables,
constructors, applications, lambda-abstractions, case expressions. These are built
with the four actions below.

1. Introduction. If I' F? : Vx : a.(0 then:
— recursively search for a solution ¢ of the subgoal I,z : a7 : 3;
— return Az : a.t as the solution.
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2. Application. If I'F?: 7 and x : V§: G.p is in I" then:
— for ¢ =1,...,n, recursively search for a solution t; of the subgoal I' -7 :
oiltr/ya] - [tio1/yi-al; B
— if p[t/y] =p, T then return xt as the solution.
3. Construction. If I' 7 : I with ¢ the parameters and c: Vp': p.\Vy : ¢.Ipu
is a constructor of I then:
— for ¢ =1,...,n, recursively search for a solution t; of the subgoal I' 7 :
ailg@/pllty/y] - - - [ti-1/yi-al; ~
— if @[q/pl[t/y] =p. W then return cgt as the solution.
4. Elimination. If I'F? : 7, and z : Vy: 6. Iqu isin ', and I : Vp': p.Va : d.s is

in E with p’the parameters, and c¢; : Vp': p.VZ : v;.Ipuj for j = 1,...,m are
all constructors of I, then:
— for ¢ =1,...,n, recursively search for a solution t; of the subgoal I' -7 :

oilty/ya] .. [tio1/yial;

— let ¥ = 4[t/y] and 7 = qlt/y;

— choose 7/ such that 7/[7/a@, xt/z] =g, T;

— for j = 1,...,m, recursively search for a solution b; of I',zj : 5; 7o
[} /@, ¢;75; /2] where §; =3[/ and & = @} [7/p);

— return case(x{; Aa @Az IFdT;21 i = b1 | oo | Zm ot Ym = b)) as
the solution.

The intuition is that we search for normal inhabitants of a type. For instance,
if ' (Ax : a.t)u: 7 then also I' - t[u/x] : 7, so it suffices to consider solutions
without -redexes. Assuming 7 is not a sort, it suffices to consider only variables
and constructors at the head of the solution term, because I : V¥ : &.s with s
a sort for any inductive type I. This of course causes incompleteness because it
may be necessary to search for inhabitants of a sort s in a subgoal.

It is straightforward to check (by inspecting the typing rules of CIC) that
the described procedure is sound, i.e., any term obtained using the procedure is
indeed a solution.

3.2 Search Restrictions

We now introduce some restrictions on the search procedure, i.e., on when each
action may be applied. Note that this may compromise completeness, but not
soundness. For a first-order fragment completeness is in fact preserved (Sect.4).

— Eager introduction. Perform introduction eagerly, i.e., if I' F7 : Vz : .0
then immediately perform introduction without backtracking.
This is justified by observing that we may restrict the search to solutions in
n-long normal form. However, in general 7-long normal forms may not exist.
— Elimination restriction. Perform elimination only immediately after intro-
duction or another elimination.
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The intuitive justification is that in a term of the form

u (match t as x in I _ @ return 7
with ¢; _ @1 => t1 | ... | ¢ - T => t end)

we may usually move u inside the match while preserving the type:

match t as x in I _ @ return 7
with e; _ @ =>uty | ... | ¢ - @ => u t; end

However, this is not always possible in CIC (see Sect. 2).

Eager simple elimination. Immediately after adding x : Iqu with param-
eters ¢ into the context I' (by the introduction or the elimination action), if
I is a non-recursive inductive type and I > ¢, then perform elimination of x
eagerly and remove the declaration of = from the context.

If I'F (Ax:Igt): 7 then usually I+ (Ax : I¢.t') : 7 where t’ is

match x with ¢127 => tleyzi/x] | ... | cx@p => t[exar/x] end

However, in general replacing a subterm u' of a term v with «” may change
the type of u, even if v/, u” have the same type. See Sect. 4.

Loop checking. If the same conjecture is encountered for the second time
on the same proof search tree branch without performing the introduction
action in the meantime, then fail.

This is justified by observing that if I"' F t[u/x] : 7 and I" F u : 7, then we can
just use u instead of ¢ as the solution. In general, this restriction also causes
incompleteness, for the same reason as the previous one.

It is instructive to observe how the elimination restrictions specialise to induc-

tive definitions of logical connectives. For example, the eager simple elimination
restriction for conjunction is that a goal I, x : a A F7 : 7 should be immediately
replaced by I x1 : o, zo : BF7 0 7.

3.3 Heuristic Improvements

The above presentation of the proof search procedure does not yet directly lead

to
of

In

a practical implementation. We thus introduce “heuristic” improvements. All
them preserve soundness, but some may further compromise completeness.
fact, we believe several of the “heuristics” (e.g. most context simplifications

and forward reasoning) actually do preserve completeness (under certain restric-

1

tions), but we did not attempt to rigorously prove it!.

In the application action, instead of checking p[t/9] =s, T a posteriori, use
unification modulo simple heuristic equational reasoning to choose an appro-
priate (z : 7) € I', possibly introducing existential metavariables to be instan-
tiated later (like with Coq’s eapply tactic). Analogously, we use unification
in the construction action.

It is actually clear that limited forward reasoning (4th point) preserves completeness

in general, because it corresponds to performing (3-expansions on the proof term.
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In the elimination action, the choice of 7/ is done heuristically without back-
tracking. In practice, we use either Coq’s destruct or inversion tactic,
depending on the form of the inductive type I.

Immediately after the introduction action, simplify the context:

e replace h : VI : 6.1y Ao with hy : VZ: 0.1 and ho : VZ : 0.79;

replace h : VZ : . 1V1y — pwith hy : V2 : 6.1 — pand he : VT : 5.9 — p;
replace h : VT : d.1y Ao — p with b/ :VZ: 311 — 15 — p;

replace h : 3z : 0.7 with A’ : 7 (assuming x fresh);

remove some intuitionistic tautologies;

perform invertible forward reasoning, i.e., if h: 0 and b’/ : ¢ — 7 are in I"
then we replace h’ with A" : 7.

use Coq’s subst tactic to rewrite with equations on variables;

e perform rewriting with some predefined lemmas from a hint database.

Immediately after simplifying the context as above, perform some limited
forward reasoning. For instance, if h : Pa and h' : Vx.Px — ¢ are in I, then
add b : Pa — ¢[a/x] to I'. To avoid looping, we do not use newly derived
facts for further forward reasoning.

Elimination on terms matched in case expressions is done eagerly. In other
words, if match t with ... end occurs in the conjecture or the context,
with ¢ closed, then we immediately perform the elimination action on t.
After performing each action, simplify the conjecture by reducing it to (weak)
normal form (using Coq’s cbn tactic) and rewriting with some predefined
lemmas from a hint database.

We use a custom leaf solver at the leaves of the search tree. The leaf solver
eagerly splits the disjunctions in the context (including quantified ones), uses
Coq’s eauto with depth 2, and tries the Coq tactics congruence (congruence
closure) and lia (linear arithmetic).

We extend the search procedure with two more actions (performed non-
eagerly with backtracking):

1. Unfolding. Unfold a Coq constant definition, provided some heuristic
conditions on the resulting unfolding are satisfied.

2. Rewriting. The order > on constants is defined to be the transitive closure
of {(c1,¢2) | ¢2 occurs in the definition of ¢;}. By Ipoy we denote the lift-
ing of > to the lexicographic path order (LPO) on terms [3, Section 5.4.2].
For the LPO lifting, we consider only terms which have obvious first-order
counterparts, e.g., fxyz with f a constant corresponds to a first-order term
f(x,y,z). The action is then as follows. Assume h : VZ: .61 =ty isin I

e If Ipo. (t1,%2) then rewrite with A from left to right, in the conjecture
and the hypotheses, generating new subgoals and introducing existential
metavariables for & as necessary.

e If Ipo. (t2,t1) then rewrite with h from right to left.

e If ¢1,t, are incomparable with Ipo. , then rewrite heuristically from left
to right, or right to left if that fails.
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For heuristic rewriting in the last point, we use the leaf solver to discharge the
subgoals and we track the hypotheses to avoid unordered heuristic rewriting
with the same hypothesis twice.

— Immediately after forward reasoning, eagerly perform rewriting with those
hypotheses which satisfy: (1) the target can be ordered with the lexicographic
path order described above, and (2) the generated subgoals can be solved with
the leaf solver.

3.4 Search Strategy

The proof search strategy is based on (bounded or iterative deepening) depth-
first search. We put a bound on the cost of proof search according to one of the
following two cost models.

— Depth cost model. The depth of the search tree is bounded, with the leaf
solver tactic tried at the leaves.

— Tree cost model. The size of the entire search tree is bounded, but not
the depth directly. The advantages of this approach are that (1) it allows to
find deep proofs with small branching, and (2) it is easier to choose a single
cost bound which performs well in many circumstances. However, this model
performs slightly worse on pure first-order problems (see Sect. 5).

3.5 Soundness

Our proof search procedure, including all heuristic improvements, is sound. For
the basic procedure (Sects.3.1 and 3.2) this can be shown by straightforward
induction, noting that the actions essentially directly implement CIC typing
rules. For the heuristic improvements (Sect. 3.3), one could show soundness by
considering the shapes of the proof terms. This is straightforward but tedious.
The implementation in the Coq tactic monad guarantees soundness as only well-
typed proof terms can be produced by standard Coq tactics.

3.6 Incompleteness

The inhabitation procedure presented above is not complete for the full logic of
Coq. The reasons for incompleteness are as follows.

1. Higher-order unification in the application action is not sufficient for com-
pleteness in the presence of impredicativity. A counterexample (from [15]) is

Q:x—*xu:VP:xQP — Pv:Q(A— B),w: AF?: B.

The solution is u(A — B)vw. The target P of u unifies with B, but this does
not provide the right instantiation (which is A — B) and leaves an unsolvable
subgoal 7 : @B. It is worth noting, however, that this particular example can
be solved thanks to limited forward reasoning (see Sect. 3.3).
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2. For efficiency, most variants of our tactics do not perform backtracking on
instantiations of existential metavariables.

3. The normal forms we implicitly search for do not suffice for completeness.
One reason is that permutative conversions [41, Chapter 6] are not sound for
dependent case expressions case in CIC if the return type 7 depends on @
or x. We elaborate on this in the next section.

4. The full logic of Coq contains more term formers than the five supported by
our procedure: fix, cofix, let, ...In particular, our inhabitation procedure
never performs induction over recursive inductive types, which requires fix.
It does reasoning by cases, however, via the elimination action.

We believe the compromises on completeness are in practice not very severe
and our procedure may reasonably be considered a general automated proof
search method for CIC without fixpoints. In fact, many of the transformations
on proof terms corresponding to the “restrictions” and “heuristics” above would
preserve completeness in the presence of definitional proof irrelevance.

4 Normal Forms and Partial Completeness

The basic inhabitation procedure (Sects.3.1 and 3.2) with restricted looping
check is complete for a first-order fragment of CIC. We conjecture that a variant
of our procedure is also complete for CIC with definitional proof irrelevance,
with only non-dependent elimination, and without fixpoints. First, we describe
the subset of normal forms our procedure searches for.

Permutative conversions are the two reductions below. They “move around”
case expressions to expose blocked redexes.

case(u; \d: A v IqavVz o @ M =t | ... | T T = te)w —p,
case(u; A : @ x : Iqa.T[w/z];21 : 71 = tiw | ... | & : T = tw)

case(case(u; Q; 21 : 71 =t | ... | &% : Th = th); R; P) —,
case(u; R'; 21 : 71 = case(ty; R"; P) | ... | €k : T = case(ty; R"; P))

In the second reduction rule, P stands for a list of case patterns yi : 01 = w; |
coi | Ym 2 O = Wy, We assume z; do not occur in P. Similarly, @, R, R, R"
stand for the specifications of the return types, where Q = A\a : a.Az : I1q1d.17,
R=\b: ERYE ngEE.T, R =)Xd:d ) x:Ligia.r, R =)\d:d. x: L1gia.T.

We write —, for the union of —,, and —,,. Note that p;-reduction may
create (-redexes, and ps-reduction may create t-redexes.

The right-hand sides of the p-rules may be ill-typed if o, 7 above depend on
any of a, g, x, i.e., if the return type varies across the case expression branches.
Moreover, even if the type of a p-redex subterm is preserved by a p-contraction,
the type of the entire term might not be. For example, assume the following are
provable in context I': P: A — s, F': Vo : APz, t: A, t': Aand p: Pt. Then
I'F Ft: Pt but in general I' I/ F't’ : Pt unless t =g, t'.

An analogous problem occurs when attempting to define 7-long normal forms
—normal forms n-expanded as much as possible without creating g-redexes. The
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n-expansion of a term ¢ of type Vz : a.f is Az : a.tz where z ¢ FV(t). We
do not consider n-expansions for inductive types. If the conversion rule does
not include 1 (Coq’s does since v8.4), then n-expanding a subterm may change
the type of the entire term. Even assuming the conversion rule does include 7,
defining n-long forms in the presence of dependent types is not trivial if we
consider n-expansions inside variable type annotations [16]. However, for our
purposes a simpler definition by mutual induction on term structure is sufficient.
A term t is a long normal form in I' (I'-Inf) if:

—t=Xx:at,and I'Ft:Vr:a.p,and t' is a ['-(x : a)-Inf (defined below);

— t =aiu, and I' -t : 7 with 7 not a product, and each u; is a I'-Inf and not a
case expression;

— t =cqV, and I' -t : I with ¢ the parameters, and ¢ is a constructor of I,
and each v; is a I'-Inf and not a case expression;

— t=case(xt;\a: A \x: Iqd.o;@1 i1 =t | ... | Tk Th=tg),and ['Ht:7
with 7 not a product, and each w; is a I'-Inf and not a case expression, and
each t; is a I'-(Z; : 7;)-Inf.

A term t is a I'-A-Inf if:

— A= () and t is a I'-Inf;

- A=ux:q4, and « is not Iqu for I non-recursive with I > ¢, and t is a
Iz : a-A'-Inf;

—~ A=ux:1Iqu,A’, and I is non-recursive with I > ¢, and ¢ are the parameter
values, and t = case(x;\d@ : A \x : Iqa.m;27 : 7 = 61 | ... | @k : Th = tr),
and I At ¢ : 7[d/d], and each ¢; is a I-A', #; : 7;-Inf (then x ¢ FV(t;)).

For the supported term formers (variables, constructors, applications, lambda-
abstractions, case expressions), this definition essentially describes 7-long Sip-
normal forms transformed to satisfy the additional restrictions corresponding to
the elimination and the eager simple elimination restrictions from Sect. 3.2.

Given an inhabitation problem I" 7 : 7, our procedure searches for a minimal
solution in I'-Inf. Solutions in I'-Inf might not exist for some solvable problems.
As outlined above, there are essentially two reasons: (1) with dependent elimi-
nation the return type may vary across case branches, which in particular makes
permutative conversions unsound; (2) replacing a proof with a different proof
of the same proposition is not sound if proofs occur in types. Point (1) may be
dealt with by disallowing dependent elimination, and (2) by assuming defini-
tional proof irrelevance. Hence, we conjecture completeness (of an appropriate
variant of the procedure) for CIC with definitional proof irrelevance, with only
non-dependent elimination, and without fixpoints.

Here we only prove that in a first-order fragment for every inhabited type
there exists an inhabitant in I'-Inf. The precise definition of the considered first-
order fragment may be found in the appendix. It is essentially intuitionistic first-
order logic with two predicative sorts Prop and Set, non-dependent inductive
types in Prop, non-dependent pattern-matching, and terms of a type in Set
restricted to applicative form. We use k¢, for the typing judgement of the first-
order fragment.
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For the theorem below, we consider a basic variant of our procedure (Sects. 3.1
and 3.2) which does not perform the looping check for conjectures of sort Set.

Theorem 1 (Completeness for a first-order fragment). If the inhabitation
problem I F¢,7 : 7 has a solution, then the inhabitation procedure will find one.

Proof (sketch). Assume I by, ¢ : 7. It suffices to show that ¢ may be converted
into a I'-Inf with the same type.

First, one shows that Sip-reduction enjoys subject reduction and weak nor-
malisation. The weak normalisation proof is analogous to [41, Theorem 6.1.8].

Next, one shows that (ip-normal forms may be expanded to n-long Grp-
normal forms. Some care needs to be taken to avoid creating a p-redex when
expanding a case expression.

Finally, one performs transformations corresponding to the elimination and
the eager simple elimination restrictions. See the appendix for details.

5 Evaluation

We performed several empirical evaluations of our proof search procedure. First,
on a collection of a few Coq libraries and separately on CompCert [27], we
measured the effectiveness of the procedure as a standalone proof search tactic,
as well as its effectiveness as a reconstruction backend for CogHammer. We also
measured the effectiveness of our procedure on pure intuitionistic first-order logic
by evaluating it on the ILTP library [36] of first-order intuitionistic problems.

Our proof search procedure intends to provide general push-button automa-
tion for CIC without fixpoints, based on sound theoretical foundations. As such,
it is in a category of its own, as far we know. Our evaluations in several different
scenarios indicate the practical viability of our approach despite its generality.
It should be noted that the tactics we compare against are not intended for full
automation, but target specific small fragments of CIC or require hand-crafted
hints for effective automation.

Detailed evaluation results, complete logs, Coq problem files and conversion
programs are available in the online supplementary material [12]. The collection
of Coq libraries and developments on which we evaluated our procedure includes:
cog-ext-lib library, Hahn library, int-map (a library of maps indexed by binary
integers), Coq files accompanying the first three volumes of the Software Foun-
dations book series [1,34,35], a general topology library, several other projects
from coq-contribs. The full list is available at [12].

The results of the standalone (left) and CoqHammer backend (right) evalu-
ation on 4494 problems from a collection of Coq developments, and seperately
the results on CompCert are presented below.
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Coq libraries collection

standalone+i (4494 problems, 30s) Coq libraries collection
tactic |proved proved % CoqHammer (4494 problems, 30s+30s)
sauto+i| 1840 40.9% tactic |proved|proved %|re-proved %
yelles+i| 1552 34.5% sauto-12| 1756 | 39.1% | 93.9-96.7%
coq+i | 1229 27.3% coq-4 | 1243 | 27.7% | 79.1-87.5%
crush+i| 1134 25.2%
CompCert

standalone+i (5495 problems, 30s) CompCert

tactic |proved proved % CoqHammer (5353 problems, 30s+30s)
sauto+i| 941 17.1% tactic |proved|proved %|re-proved %
yelles+i| 875 15.9% sauto-12| 1373 | 25.6% | 87.0-95.4%
coq+i | 372 6.8% cog-4 | 616 | 11.5% | 42.0-78.9%
crush-+i| 355 6.5%

For the evaluation on CompCert, the number of problems for the CogHam-
mer backend evaluation is smaller because the CoqgHammer translation cannot
handle some Coq goals (e.g. with existential metavariables) and these were not
included.

For the standalone evaluation, we first try to apply our procedure, and if it
fails then we try heuristic unfolding and then try to do induction on each avail-
able hypothesis followed by the tactic. This gives a better idea of the usefulness
of our procedure because the core tactic itself cannot succeed on any problems
that require non-trivial induction. For comparison, an analogous combination of
standard Coq tactics (or crush) with unfolding and induction is used.

For the standalone evaluation, by “sauto+i” we denote our proof search
procedure, by “yelles+i” the preliminary procedure form [14], by “crush+i” a
slightly improved version of the crush tactic from [9], by “coq+i” a mix of stan-
dard Coq automation tactics (including eauto, lia, congruence, firstorder).
All these are combined with induction, etc., as described above.

We also performed a standalone evaluation without combining the tactics
with induction or unfolding. The results are presented below. For the standalone
evaluation without induction, by “cog-no-fo” we denote the same mix of standard
Coq automation tactics as “coq” but not including the firstorder tactic.

Coq libraries collection CompCert
standalone (4494 problems, 5s) standalone (5495 problems, 5s)
tactic |proved| proved % tactic |proved| proved %
coq 978 21.8% sauto | 420 7.6%
sauto | 888 19.6% yelles | 407 7.4%
crush | 663 14.8% coq 286 5.2%
cog-no-fo| 607 13.5% cog-no-fo| 237 4.3%
yelles | 602 13.4% crush | 210 3.8%
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The results of the standalone evaluations indicate that our procedure is useful
as a standalone Coq tactic in a push-button automated proof search scenario,
performing comparably or better than other tactics available for Coq.

For the evaluation of our procedure as a CoqHammer backend, we use 12
variants of our tactics (including 3 variants based on the incomplete prelimi-
nary procedure from [14]) run in parallel (i.e. a separate core assigned to each
variant) for 30s (“sauto-12” row). We included the variants of the preliminary
procedure form [14] to increase the diversity of the solved problems. The proce-
dure from [14], while much more ad-hoc and heuristic, is essentially a less general
version of the present one. The point of this evaluation is to show that our app-
roach may be engineered into an effective CoqgHammer reconstruction backend,
and not to compare the present procedure with its limited ad-hoc variant. For
comparison, we used 4 variants of combinations of standard Coq automation tac-
tics (“coq-4” row). We show the total number and the percentage of problems
solved with any of the external provers and premise selection methods employed
by CogHammer. The external provers were run for 30s each. The reconstruction
success rates (“re-proved” column) are calculated separately for each prover and
a range is presented.

A common property of the chosen libraries is that they use the advanced
features of Coq sparingly and are written in a style where proofs are broken up
into many small lemmas. Some do not use much automation, and the Software
Foundations files contain many exercises with relatively simple proofs. Moreover,
some of the developments modify the core hints database which is then used by
the tactics. The resulting problem set is suitable for comparing proof search
procedures on a restricted subset of Coq logic, but does not necessarily reflect
Coq usage in modern developments. This explains the high success rate compared
to CompCert. Also, CompCert uses classical logic, while our procedure tries to
find only intuitionistic proofs. Hence, a lower success rate is to be expected since
it is harder or impossible to re-prove some of the lemmas constructively.

The results of the evaluation on the ILTP library v1.1.2 [36] follow.

ILTP (2574 problems, 600s)
tactic proved | proved % [0.00 |0.25 [0.50 |0.75 |1.00
hprover | 662 25.7% 96.3% | 52.1% | 72.7%  43.9% | 12.9%
tprover | 636 24.7% 96.3% | 52.1% | 52.7% | 44.6% | 11.8%
yelles 602 23.4% 79.4% | 40.1% | 52.7%  47% |12.2%
sauto-3 | 760 29.5%
hprovel0 | 565 22.0% 90.8% | 40.8% | 50.9% | 38.7% | 10.3%
firstorder | 467 18.1% 95.4% | 56.3% | 58.2% | 20% | 6.7%
ileanCoP | 934 36.3% 97.7% | 95.8% | 96.4% | 95.8% | 16.8%
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We compared our procedure with firstorder [11] and with ileanCoP 1.2 [31]
— a leading connection-based first-order intuitionistic theorem prover. We con-
verted the library files to appropriate formats (Coq or ileanCoP). For ileanCoP
and firstorder, the converted problem files include equality axioms (reflexiv-
ity, symmetry, transitivity, congruence). These axioms were not added for our
procedure because it can already perform limited equality reasoning. We used
exhaustive variants of our tactics which perform backtracking on instantiations
of existential metavariables and do not perform eager simple elimination, eager
or unordered rewriting. The proof search procedure is run in an iterative deep-
ening fashion, increasing the depth or cost bound on failure. The “hprover” row
shows the result for the depth cost model, “tprover” for the tree cost model,
“yelles” for the preliminary procedure from [14], and “sauto-3” the combination
of the results for the above three. The columns labeled with a number R show
the percentage of problems with difficulty rating R for which proofs were found.
The graph below the table shows how many problems were solved within a given
time limit.

The firstorder tactic is generally faster than our procedure, but it finds
much fewer proofs for the problems with high difficulty rating. For firstorder
we did not implement iterative deepening, because the depth limit is a global
parameter not changeable at the tactic language level. We set the limit to 10.
To provide a fair comparison, we also evaluated our proof search procedure with
the depth cost model and the depth bound fixed at 10 (“hprovel0”).

In combination, the three iterative deepening variants of our procedure man-
aged to find proofs for 80 theorems that were not proven by ileanCoP. Overall,
the performance of ileanCoP is much better, but it does not produce proof terms
and is restricted to pure intuitionistic first-order logic.

6 Examples

In this section, we give some examples of the use of our proof search procedure
as a standalone Coq tactic. The core inhabitation procedure is implemented in
the sauto tactic which uses the tree cost model and bounds the proof search
by default. There are several other tactics which invoke different variants of the
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proof search procedure. The ssimpl tactic performs the simplifications, forward
reasoning and eager actions described in Sects. 3.2 and 3.3. The implementation
is available as part of a recent version of the CogHammer tool [13,14], and it is
used as the basis of its reconstruction tactics.

Our first example is a statement about natural numbers. It can be proven by
sauto without any lemmas because the natural numbers, disjunction, existential
quantification and equality are all inductive types.

Lemma lem_simple_nat : forall m, n = 0 \/ exists m, n = S m.

Note that because the proof requires inversion on nat, it cannot possibly be
created by any of the standard Coq automation tactics.

Because < is defined in terms of < which is an inductive type, sauto can
prove the following lemma about lists.

Lemma lem {A} (1 : 1list A) : 1 <> nil -> length (tl 1) < length 1.

The next example concerns big-step operational semantics of simple imper-
ative programs. The commands of an imperative program are defined with an
inductive type cmd. The big-step operational semantics is represented with a
dependent inductive type ==> : cmd * state -> state -> Prop , and com-
mand equivalence “~ : cmd -> cmd -> Prop is defined in terms of ==> . We
skip the details of these definitions.

Then sauto can fully automatically prove the following two lemmas. The first
one states the associativity of command sequencing. The second establishes the
equivalence of the while command with its one-step unfolding. On a computer
with a 2.5 GHz processor, in both cases sauto finds a proof in less than 0.5s.

Lemma lem_seq_assoc : forall cl c2 c3 s s',
(Seq c1 (Seq c2 c3), s) ==> s' <-> (Seq (Seq cl c2) c3, s) ==> s'.

Lemma lem_unfold_loop : forall b c,
While b ¢ ™7 If b (Seq ¢ (While b c)) Skip.

Note again that both proofs require multiple inversions, and thus it is not
possible to obtain them with standard Coq automation tactics.

According to Kunze [25], the following set-theoretical statement cannot be
proven in reasonable time by either firstorder or JProver. The sauto tactic
finds a proof in less than 0.3s. Below Seteq, Subset and In are variables of type
U — U — Prop; Sum of type U — U — U; and U : Type.

(forall AB X, In X (Sum A B) <> In X A \/ In X B) /\
(forall A B, Seteq A B <-> Subset A B /\ Subset B A) /\
(forall A B, Subset A B <-> forall X, In X A -> In X B) —>
(forall A, Seteq (Sum A A) A).
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7 Conclusions and Future Work

We presented a practical general proof search procedure for Coq based on type
inhabitation. This increases the power of out-of-the-box automation available
for Coq and provides an effective reconstruction backend for CoqgHammer. The
empirical evaluations indicate that our approach to fully automated proof search
in the Calculus of Inductive Constructions is practically viable.

For efficency reasons, the inhabitation procedure is not complete in general,
but it is complete for a first-order fragment of the Calculus of Inductive Construc-
tions. We conjecture that a variant of our procedure could be shown complete
for the Calculus of Inductive Constructions with definitional proof irrelevance,
with only non-dependent elimination, and without fixpoints.

We implemented the proof search procedure in OCaml and Ltac as a Coq
plugin. The plugin generates values in the Coq’s tactic monad which contain
callbacks to the plugin. Better efficiency would probably be achieved by directly
generating Coq proof terms or sequences of basic tactics. This would, however,
require much engineering work. Another disadvantage of the monadic implemen-
tation is that it limits the proof search strategy to depth-first order and precludes
global caching. In the artificial intelligence literature, there are many approaches
to graph and tree search [20] which might turn out to be better suited for an
inhabitation procedure than the depth-first tree search.

Acknowledgements. The author thanks Ping Hou for feedback on the operation of
the tactics and for pointing out some bugs.

A Completeness Proof for the First-Order Fragment

In this appendix we prove completeness of our proof search procedure for a first-
order fragment of the Calculus of Inductive Constructions. First, we precisely
define the first-order fragment.

A.1 The First-Order Fragment

The system is essentially an extension of APRED from [4, Definition 5.4.5] with
inductive types and higher-order functions.

A preterm is a sort s € § = {**,«P 0% 0P}, a variable z, a constructor c,
an inductive type I, an application t1f5, an abstraction Az : 7.t, a dependent
product ¥z : a.3, or a case expression casel?(u; 27 : 61 = t1 | ... | T} : G = tg).
In a case expression, u is the term matched on, the type of u is I§ where ¢ are
the values of the parameters, 7 is the type of the case expression and of each
of the branches ¢;, and ¢;[0/Z] is the value of the case expression if the value
of w is ¢;qu. In comparison to the full CIC, we allow only non-dependent case
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expressions, i.e., the return type 7 does not vary across branches. We omit the
sub- and/or the superscript when clear or irrelevant.

The intuitive interpretation of the sorts is as follows. The sort P (also written
as Prop) is for propositions. First-order formulas are elements of . The sort *°
(also written as Set) is for sets — these form a simple type structure over a
collection of first-order universes. For example, when U : *® then also (U —
U) : %°. The sort [J° is the sort of x°. The presence of [J° allows to declare set
variables (i.e. of sort x°) in the context. The sort [P is the sort of predicate
types. We have (11 — ... > 7, —» #P) : 0P when 7 : %* for i = 1,...,n.

An inductive declaration

Ip:p):*P:=cr:01|...]cp:0op

declares an inductive type I with parameters p and arity Vp : p.xP, with n con-
structors ¢i, . .., ¢, having types o1, ..., 0, respectively (in the context extended
with p': p). We require:

el o1 ki o ki 72
— oy =Vx; i1 ...V, 1t D,

— I does not occur in any 7.

We could allow strictly positive occurrences of I in o;, non-parameter arguments
to I or inductive types in *° as well as *P. These modifications, however, would
introduce some tedious technical complications. With the above definition, all
inductive types are non-recursive.

The arity of a constructor ¢; is Vp': .oy, denoted ¢;(p': p) : 0;. We assume
the well-foundedness of the relation = defined by: Iy = I iff I occurs in the
arity of I or the arity of a constructor of I;.

An environment is a list of inductive declarations. We write I € FE if a
declaration of an inductive type I occurs in the environment E. Analogously,
we write (I(p': p) : *P) € E and (¢(p: p) : 7) € E, if a declaration of I with
arity Vp : p.#P occurs in E, or a constructor c¢(p : p) : 7 with arity Vp : g.7
occurs in a declaration in F, respectively. A context I' is a list of pairs x : 7
with = a variable and 7 a term. A typing judgement has the form E; "'+t : 7
with ¢, 7 preterms. A term ¢ is well-typed and has type 7 in the context I" and
environment E if E;I" -t : 7 may be derived using the rules from Fig.1. We
denote the empty list by ().
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Fig. 1. Typing rules

The set R = {(*P,*P), (x°,P), (x*,0P), (x*,%°)} in Fig.1 is the set of rules
which determine the allowed dependent products.
The rule (P, *P) allows the formation of implication of two formulas:

G A b () .
The rule (*°, ) allows quantification over sets:
A p sl = (Vo Ag) @ P,
The rule (x°,0P) allows the formation of predicates:
A" (A—P): [P,
hence
A« P:A— %% z:AF Px:«P,

so P is a predicate on A.
The rule (*°, %) allows the formation of function spaces between sets:

A:+° B:x°F (A— B):%°.

Note that we permit quantification over higher-order functions but the formation
of lambda-abstractions is allowed only for proofs (i.e. elements of propositions)
and for predicates. Elements of sets are effectively restricted to applicative form.

Note that case expressions can occur only in proofs. Hence, including ¢ in the
conversion rule is in fact superfluous.

In Fig.1 we assume that the environment E is well-formed, which is defined
inductively: an empty environment is well-formed, and an environment F, I(p':
p):*Pi=cy:71|...| ¢y Ty (denoted E,T) is well-formed if F is and:

— the constructors ¢y, ..., c, are pairwise distinct and distinct from any con-
structors occurring in the declarations in E;
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- E;p1:p1,...,pj—1: pj—1 F p; : O with O € {{1°,07}, for each j;
— Eyp:piic#P = 7io#P for j =1,...,n, where 7} is 7; with all occurrences of
Ip replaced by 1.

When E, I are clear or irrelevant, we write I' ¢ : 7 or ¢ : 7 instead of E; "+
t : 7. In what follows, we assume a fixed a well-formed environment E and omit
it from the notation. We write I' -t :7:sif 't:7and '+ 7: s.

Standard meta-theoretical properties hold for our system, including the sub-
stitution, thinning and generation lemmas, subject reduction for Fi-reduction
and uniqueness of types. We will use these properties implicitly. The proofs are
analogous to [4, Section 5.2] and we omit them.

The available forms of inductive types and case expressions suffice to define
all intuitionistic logical connectives with their introduction and elimination rules
(see Sect. 2). They do not allow for an inductive definition of equality, however.

Definition 1. 1. A '-proposition is a term 7 with " 7 : «P.
2. A I'-proof is a term t such that I' = ¢ : 7 : %P for some 7.
3. A I'-set is a term 7 with ' 7 : %5,
4. A I'-element is a term t such that I' ¢ : 7 : %° for some 7.
We often omit I" and talk about propositions, proofs, sets and set elements.

A.2 Completeness Proof
The -, t-, and p-reductions for our first-order system are:

()\I : T.tl)tg —>ﬁ tl [tg/.’L‘]

caseld(c,qvyay 71 = t1 | ... | Tk : Th = tg) —, [0/
case\gg:aj(ﬂu, T =t || Tk TE = ) w — )y,
casef[lw/x] (w21 : 71 = tw | ... | 2% : 7% = tpw)
casei‘j(casegg(u;x'i T =t | Z T = ) P) =),
caselP(u; 7 : 71 = caseli(ty; P) | ... | o : 77, = caseli(ty; P))

In the po-reduction rule, P stands for a list of case patterns y7 : 01 = wy | ... |
Ym : Om = Wpy,. We assume z; do not occur in P.

Because case expressions can occur only in proofs, subject reduction holds
for p-reduction.

Lemma 1. If 't : 7 :%° then t does not contain case expressions or lambda-
abstractions.

Proof. Induction on t, using the generation lemma.
Lemma 2. If '+ 7:VZ: d.s with s € S then:

1. no I'-proofs occur in T,
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2. no case expressions occur in T.

Proof. By induction on 7.

Corollary 1. If 't : 7 and t contains a case expression, then ' 7 : %P,
Corollary 2. If I'+t:p:«P and [z : ot w: 7 then I' Fuft/x] : 7.

Lemma 3. (Subject reduction for p). If 't : 7 andt —,t' then '+t : 7.

Proof. By Corollary 1, t must be a I'-proof if it contains a p-redex.

The lemma is shown by induction on the typing derivation, analogously to [4,
Theorem 5.2.15] except that where the conversion rule is used we instead appeal
to Corollary 2.

Implicitly, the following theorems, lemmas and definitions depend on the
typing context I', which changes in the expected way when going under binders.
We also implicitly consider types up to Bi-equality.

Theorem 2. The Bip-reduction is weakly normalising on typable terms.

Proof. The proof is an adaptation of the proof of an analogous result for first-
order intuitionistic natural deduction. See [41, Theorem 6.1.8].

Note that when the context is fixed, the type of each subterm is uniquely
determined up to (-equality (the type does not contain proofs, so t-equality is
redundant).

Set elements are in Btp-normal form, because they don’t contain case expres-
sions or lambda-abstractions. Hence, the only redexes which are not proofs must
occur in types and have the form (Az : .7)t where « : *°. Since each contraction
of a B-redex of this form strictly decreases the number of lambda-abstractions (¢
is a set element not containing lambda-abstractions), S-reduction in types ter-
minates. Moreover, redexes in types cannot be created by reducing Gep-redexes
which are proofs, because abstraction over predicates (i.e. elements of (I?) is not
allowed. We may thus consider only the case when all types are in (Gtp-normal
form and all redexes are proofs.

The degree 6(a) of a set a is 0. The degree 6(7) of a proposition 7 in 8-normal
form is defined inductively.

— If 7 =Vz : 71.7 then §(7) = (1) + 6(m2) + 1.

—Ifr=Igwith I(p: p) : « := ¢y : Va1 : AP | ... | ¢k : V2 : T%.ID then
5(t) = 8(d1) +...4+6(d%) +1 where 6; = 73[q/p] and 6(5;) = §(o),...,00") =
S(ol) +...+6(a™).

— Otherwise (1) = 0.

Formally, this definition is by induction on the lexicographic product of the
multiset extension of the well-founded order > on inductive types (we compare
the multisets of inductive types occurring in 7) and the size of 7.

Note that §(7[t/x]) = d(7) if ¢ : *° or ¢ : *P. This is because set elements are
not counted towards the degree and proofs do not occur in types.

The degree §(t) of a redex ¢ is defined as follows.
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— (- or py-redex: t = t1to with ¢1 : Vo : a.7. Then §(¢) = 0(Vx : a.7).
~ 1~ or py-redex: t = casel9(u;...). Then 6(t) = 6(1q).

Note that if ¢ : P is a redex and w : *° or w : P then §(t[u/z]) = §(¢).
The case-size cs(t) of a term ¢ is defined inductively.

— If ¢ is not a case expression then cs(t) = 1.
—Ift =case(uszl : 1 = t1 | ... | £k : Tk = ti) then cs(t) = cs(ty) + ... +
cs(te) + 1.

The redez-size rs(t) of a redex ¢ is defined as follows.

If t = t1t2 (a - or pi-redex) then rs(t) = cs(tq).
— If t = case(u;...) (a t- or pa-redex) then rs(t) = cs(u).

The argument and the targets of an application or a case expression ¢ are
defined as follows.

— If t = t1t5 then t; is the target and ¢, the argument.

— Ift = case(at;2y : 71 = t1 | ... | & : T = tr) with a a constructor or a
variable, then at is the argument and t¢1,...,%; are the targets.

—Ift =case(u;@y : 71 = t1 | ... | 2k : Tk = tr) with u a case expression, then
u is the target and tq,...,t; are the arguments.

A subterm occurrence r is to the right of a subterm occurrence r’ (and r’ to
the left of r) if v’ occurs to the right of r in the in-order traversal of the term
tree where we first traverse the targets of a subterm, then visit the subterm, and
then traverse its arguments. With this definition, a subterm is to the right of its
targets and to the left of its arguments.

Note that the rightmost redex r of maximum degree does not occur in a
target of a redex 7’ of maximum degree and no redex r” of maximum degree
occurs in its argument (otherwise ', 7" would be to the right of ).

For a (- or p-redex, the redex-size is the case-size of the target. For a t-redex,
the redex-size is 1. Let r be the rightmost redex of maximum degree in t. Note
that changing r to a case expression 7’ cannot increase the redex-size of a redex
of maximum degree 7" in ¢ containing r. Indeed, otherwise r” would be a (-
or p-redex and r would occur in its target, so " would be to the right of 7.
This implies that contracting the rightmost redex r of maximum degree to r’
cannot increase the redex-size of another redex of maximum degree by exposing
a case expression in 7’. Note we have not (yet) ruled out the possibility of the
contraction increasing the redex-size of a redex of maximum degree occurring
inside 7.

Let n be the maximum degree of a redex in ¢ and m the sum of redex-
sizes of redexes of maximum degree in ¢. By induction on pairs (n,m) ordered
lexicographically, we show that ¢ is weakly Bip-normalising.

Choose the rightmost redex r of maximum degree and contract it. This either
decreases n or leaves n unchanged and decreases m.



50

L. Czajka

If r = (Az : ar)rg —g ri[ra/z] then no redexes of maximum degree occur
in ro (because ry is the argument of a rightmost redex r of maximum degree).
So no redexes of maximum degree get duplicated.
All redexes created by this contraction (either by exposing a possible -
abstraction or case expression in 71, or by substituting rs for x) are of smaller
degree. Indeed, if e.g. 2 = caserg(u;...) is substituted for z in case’d(z;...),
then o = I§ and the degree of the created pe-redex is §(Iq) = d(a) < §(r).
Other cases are similar: one notices that the degree of each redex created by
substituting 7o for x is d(a) < d(r), and the degree of a redex created by
exposing r[re/x] is §(7) < 6(r) where ry : 7.
We also need to show that the -contraction does not increase the redex-size
of another redex of maximum degree. The contraction may increase the redex-
size of a redex r’ in 71 by substituting 7o for . But then 6(r') = d(«) < §(r).
As discussed before, the contraction cannot increase the redex-size of another
redex of maximum degree by exposing 71 [ra2/z].
Therefore, either n decreases if r was the only redex of maximum degree,
or m decreases and n does not change.
If r = casel(c;qv;ay : 71 = t1 | ... | Tk : Th = tx) —, t;[U/7;] then no
redexes of maximum degree occur in 7.
Let v; : 0;. Because §(0;) < (1), all redexes created by substituting o for @;
have smaller degree. If a redex is created by exposing ¢;[¢//#;] then r occurs in ¢
as ru or case(r;...). The created redex is then t;[¢//7;]u or case(t;[U/7;];. . .)
and has degree (7). But ru or case(r;...) was a redex of degree 6(7) which
occurred to the right of . This is only possible when §(7) < §(1g).
By a similar argument, the ¢(-contraction may increase the redex-size only of
redexes of smaller degree.
It

r= caseéq;:alr(u;fi T =t ]| T TE = ) w — )

casei?w/z](u;fi A= tw| .. | T TR = Gow) =17

then no redexes of maximum degree occur in w.

New redexes of maximum degree may be created: tyw, ..., t,w. However, the
sum of the redex-sizes of these redexes is smaller than the redex-size of the
contracted redex r, so m decreases.

A redex may be created by exposing r’, but then the degree of this redex is

5(r) < 8(r).
If
r= casqu(casef (uszy:7 =ty | ... | 2k : Th = tr); P) —’pz
caser(u T1:T = caseﬁq(thP) | ... | 2% : T = case (tk,P)) =7

then no redexes of maximum degree occur in P.

New redexes of maximum degree may be created: casel?(t;; P). The sum of
the redex-sizes of these redexes is at most cs(t1) +...+cs(ty) < cs(ty)+...+
cs(ty) + 1 =rs(r).

A redex may be created by exposing ' if r occurs in ru or case(r;...). But
then ru or case(r;...) was a redex to the right of r with the same degree o(7)
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as the created redex r'u or case(r’;...), so the degree of the new redex must
be smaller than 6(1q).

As discussed before, the redex-size of another redex of maximum degree can-
not be increased by exposing r’.

Lemma 4. Ift is a proof in Bip-normal form then one of the following holds.

—t=Xx:at andt' is a proof in Bip-normal form.

- t=2xuy ... u, and each u; is a proof or a set element in Bip-normal form.

-t = cquy ...u, with ¢ the parameter values, and each u; is a proof or a set
element in Bip-normal form.

—t = case(xU1 ... Up;Y1 : 01 = W1 | ... | Ym @ Om = wWp), and each u;
is a proof or a set element in Bip-normal form, and each w; is a proof in
Bip-normal form.

Note that well-typed constructor applications cgt; ...t, must by definition
(Fig. 1) always include all parameter values ¢. In other words, partial application
of a constructor to only some of the parameter values is not allowed.

A set element cannot contain lambda-abstractions or case-expressions, so it
is always in Bip-normal form.

Definition 2. The n-long form of a set element ¢ is t.

The n-long form of a proof variable z is defined by induction on the type 7 :
of z in normal form: if 7 = Vg : &.8 with § not a product, then Ay : &.ay] ...y,
where y; is the n-long form of y;. Note that the n-long form of x is well-defined
and its type is still 7 because each y; is either a set element (then y} = y;) or a
proof variable (then y; does not occur in &, 3).

The n-long form of a proof t in Bip-normal form is defined by induction on ¢.

—If t = Az : a.u and ' is the n-long form of u, then Az : a.u’ is the n-long
form of ¢.

—Ift = aty...t;, and Vi : a.7 is the type of ¢ with 7 not a product, and
t. is the n-long form of ¢;, and y, is the n-long form of (a proof variable or
a set element) y;, then Ay : &.ot]...t.y; ...y, is the n-long form of ¢. For
k = 0 this definition coincides with the definition of the 7-long form of a proof
variable.

—Ift = cqty...t;, and Vi : a.7 is the type of ¢ with 7 not a product, and ¢
are the parameters, and ¢; is the n-long form of ¢;, and g/ is the 7-long form
of (a proof variable or a set element) y;, then Ay : d.cqt] ...y} ...y, is the
n-long form of t.

—Ift = case(w;y1 : 01 = w1 | ... | Ym : Om = wyy,) then let v’ be the n-long
form of u and w; of w;. Let 7 = VZ : &.5 be the type of ¢ in normal form,
with 8 not a product. Then also w} : 7. Thus w} = A7 : d.w] because w) is
n-long. We may assume none of Z occur in u’. We take Az : d.case(u/;y; :
o1 = w | ... | Ym : Om = wl,) as the n-long form of .

A proof or set element ¢ in Sip-normal form is n-long if the n-long form of ¢ is ¢.
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Note that we do not n-expand inductive type parameters or variable type
annotations. A subterm of ¢ is genuine if it does not occur inside an inductive
type parameter or a variable type annotation in t.

Lemma 5. A proof t in Bip-normal form is n-long iff for every genuine sub-
term u of t such that u : VT : d.7 with T not a product we have uw = AT : ad.u’.

Proof. Induction on t.

Lemma 6. The n-long form of a Bip-normal proof is Bip-normal and has the
same type.

Proof. Induction on the definition of n-long form.
Definition 3. The A-case-expansion of a proof t is defined inductively.

— The ()-case-expansion of t is t.

-If A=2x:a A with @ not an inductive type I§ with I = ¢, then the
A’-case-expansion of t is the A-case-expansion of t.

- IfA=x:1IgA with I = ¢, and c1,...,c, are all constructors of I, and
ciq VT : 7.1q, and t' is the A’, 7 : T;-case-expansion of ¢, and t; is the
t-normal form of ¢'[c;¢%;/x], then case(x; @1 : 7 = t1 | ... | Tk : Th = tg) is
the A-case-expansion of ¢.

The induction is on the multiset extension =, of the bottom-extension > | of
the well-founded order > on inductive types. We compare the multisets M(A)
of inductive types of variables from A, using 1 for non-inductive types, e.g.,

M(z:L,y: Liz: L2 oy :8)={L, L, I, LI}

if o, B are not inductive types. In the last point of the definition, the requirement
I > ¢ guarantees I > 7;, and thus M(A) »=nu M(4A', z; : 73).

Lemma 7. The A-case-expansion of a proof in Bip-normal form is Bip-normal
and has the same type.

Proof. By induction on the definition of A-case-expansion, using Corollary 2.
Note that in the last point of the definition, taking the -normal form requires
reducing only the redexes created directly by substituting x with ¢;¢z;. But then
because the constructor arguments are variables x;, the (-contraction will result
in one of the branches with some variables renamed, which cannot create new
redexes if the original term was Gtp-normal.

Definition 4. A case-context Clty,...,t,] with branches ¢1,...,t, is defined
inductively.

— If ¢ is not a case expression then it is an empty case-context with a single
branch ¢.

— If Ci[t1],...,Cyu[ts] are case-contexts with branches f1,...,t, respectively,
then case(t;#] = Ci[t1] | ... | Culta]) is a case-context with branches
1.t (i-e. the concatenation of the branch lists for Cq,...,Cy).
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We write C[t;]; for a case-context with branches t1,...,t, with n unspecified.

Note that for every term there exists a unique decomposition into a case-context
C'[t;]; with branches t;. We write t = C[t;]; if C[t;]; is the case-context decompo-
sition of ¢. By definition, the branches of a case-context are not case expressions.

If t = C[t;]; is a case-context, then by C[t;]; we denote the term ¢ with
branch ¢; replaced by t; (which may now have a different case-context decom-
position if ¢} is a case expression). If C1[t;]; and Cs[u,]; are case-contexts, then
Clw; j)i,; = C1[Calw; ;];]i is a case-context with branches w; ; if w; ; are not
case expressions (and the result is well-typed).

Definition 5. The e-normal form of a set element t is t.
Thee- normal form of a Biup-normal proof ¢ is defined by induction on ¢.

— Ift = Az : a.u, and o is the (z : a)-case-expansion of the e-normal form of u,
then Az : a.u’ is the e-normal form of ¢.

- If t = zt, and v} is the e-normal form of w;, and u, = C;lw,,];,, then
C1[Cyl. .. Cplzwj, ... wj, 15, - - Jj2)j: 18 the e-normal form of ¢.

— If t = ¢qW then the e-normal form of ¢ is defined analogously to the previous
point (not modifying ¢).

— Ift = case(zw;a) : 71 = t1 | ... | Tk : Th = ti), and u} is the e-normal form
of u;, and t} is the (#; : 7;)-case-expansion of the e-normal form of ¢;, and
up = Ci[wji}jm then

Ch[Csl. .. Cplcase(zwj, ...w; ;21 : 71 =t | .o | Tkt o = )i - Jinlin
is the e-normal form of t.

Lemma 8. The e-normal form of a Bip-normal proof is Bip-normal and has the
same type.

Proof. Induction on the definition of e-normal form. We use Lemma 7 to handle
case-expansions of e-normal forms in the first and the last point of the definition.

For the second point, note that if u; = C;[w,,];, with the case-context C; non-
empty, then each w;, must be a proof because it is a branch of a case expression.
Hence, wj, cannot occur in the type of zwj, ... w;,. If the case-context C; is
empty, then w;, = u; and either v} is a proof and it does not occur in the type
of zwj, ... wj,, or it is a set element and u; = w;. Thus each zwj, ... w;, has the
same type as z. It follows that C1[Cs]. .. Cyzwj, ... wj, ]}, - . ];,];, has the same
type as zu. An analogous observation applies to the case-context manipulations
in the last point.

We restate the definition of long normal forms from Sect. 4 specialised to the
first-order fragment.

Definition 6. Any set element is in long normal form. A proof t is in long
normal form (Inf) if:

—t=Azr:at,and ' is in (z : a)-ce-Inf (see below);
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— t = zu, and t : 7 with 7 not a product, and each u; is in Inf and not a case

expression;
— t =cqw, and t : I, and each w; is in Inf and not a case expression;
—t=case(at;@1: 71 = t1|...| % : T = t&), and t : 7 with 7 not a product,

and each u; is in Inf and not a case expression, and each ¢; is in (& : 7;)-ce-Inf.
A proof t is in A-case-expanded long normal form (A-ce-Inf) if:

— A=) and t is in Inf;

- A=uz:qa A and « is not an inductive type I§ with I > ¢, and ¢t is in
A’-ce-Inf;

- A=z:1q A with I > q, and t = case(x;21 : 71 = t1 | ... | Tk : Th = tr),
and each ¢; is in A’ @ : Tj-ce-Inf and = ¢ FV(¢;).

Formally, the definition is by mutual induction on pairs (size of ¢, length of A)
ordered lexicographically (with A = () for Inf).

Lemma 9. Ift is in A-ce-Inf and the type of t is not a product, then t is in Inf.
Proof. Induction on the definition of A-ce-Inf.

Lemma 10. If t is in A-ce-Inf, * ¢ A and x : 1§, then the t-normal form
of tle;qy/x] is in A-ce-Inf.

Proof. Induction on the definition of Inf and A-ce-Inf.

Lemma 11. If t is a proof in Inf and the type of t is not a product, then the
A-case-expansion of t is in A-ce-Inf.

Proof. By induction on the definition of A-case-expansion, using Lemma 10.
Lemma 12. Ift = C[t;]; is in Inf, then so is each t;.
Proof. Induction on the case-context C, using Lemma 9.

Lemma 13. If u = Clu;]; is in A-ce-Inf and all v} are in Inf, then Clu}]; is in
A-ce-Inf (assuming it is well-typed).

Proof. Induction on the case-context C.

Lemma 14. The e-normal form of an n-long Bip-normal proof is in long normal
form.

Proof. Induction on the definition of e-normal form, using the previous three
lemmas.

Finally, we are ready to prove the completeness theorem. We consider a basic
variant of our procedure (Sects. 3.1 and 3.2) which does not perform the looping
check for conjectures of sort *°. With first-order restrictions on term formation,
it is to be understood that the procedure performs corresponding actions only
when the resulting term is well-typed, e.g., the introduction and elimination
actions are not performed for conjectures of sort *°.
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Theorem 3 (Completeness for the first-order fragment). If the conjec-
ture is a proposition or a set and the inhabitation problem has a solution, then
our procedure will find one.

Proof. One checks that the procedure with the restrictions outlined above per-
forms an exhaustive search for (minimal) inhabitants in long normal form. Note
that if the conjecture is a proposition or a set, then in any subgoal the conjecture
is still a proposition or a set.

By Theorem 2, Lemma 6, Lemma 8 and Lemma 14, for any solution ¢ : 7
there exists a solution ¢’ : 7 in long normal form. This implies completeness
of our procedure without the looping check. By Corollary 2, loop checking for
propositional conjectures does not compromise completeness.
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