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Abstract. PyRes is a complete theorem prover for classical first-order
logic. It is not designed for high performance, but to clearly demonstrate
the core concepts of a saturating theorem prover. The system is written in
extensively commented Python, explaining data structures, algorithms,
and many of the underlying theoretical concepts. The prover implements
binary resolution with factoring and optional negative literal selection.
Equality is handled by adding the basic axioms of equality. PyRes uses
the given-clause algorithm, optionally controlled by weight- and age eval-
uations for clause selection. The prover can read TPTP CNF/FOF input
files and produces TPTP/TSTP proof objects.

Evaluation shows, as expected, mediocre performance compared to
modern high-performance systems, with relatively better performance
for problems without equality. However, the implementation seems to be
sound and complete.

1 Introduction

Modern automated theorem provers for first order logic such as E [7,8], Vam-
pire [3], SPASS [12] or iProver [2] are powerful systems. They use optimised
data structures, often very tight coding, and complex work flows and intricate
algorithms in order to maximise performance. Moreover, most of these programs
have evolved over years or even decades. As a result, they are quite daunting for
even talented new developers to grasp, and present a very high barrier to entry.
On the other hand, minimalist systems like leanCoP [5] do not represent typical
current ATP systems, in calculus, structure, or implementation language.

Textbooks and scientific papers, on the other hand, often leave students with-
out a clear understanding of how to translate theory into actual working code.

With PyRes, we try to fill the gap, by presenting a sound and complete the-
orem prover for first order logic based on widely used calculus and architecture,
that is written in an accessible language with a particular focus on readability,
and that explains the important concepts of each module with extensive high-
level comments. We follow an object oriented design and explain data structures
and algorithms as they are used.
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PyRes consists of a series of provers, from a very basic system without any
optimisations and with naive proof search to a prover for full first-order logic with
some calculus refinements and simplification techniques. Each variant gracefully
extends the previous one with new concepts. The final system is a saturation-
style theorem prover based on Resolution and the given-clause algorithm, option-
ally with CNF transformation and subsumption.

The system is written in Python, a language widely used in education, sci-
entific computing, data science and machine learning. While Python is quite
slow, it supports coding in a very readable, explicit style, and its object-oriented
features make it easy to go from more basic to more advanced implementations.

Students have found PyRes very useful in getting a basic understanding of
the architecture and algorithms of an actual theorem prover, and have claimed
that it enabled them to come to grips with the internals of E much faster than
they could have done otherwise.

PyRes is available as open source/free software, and can be downloaded from
https://github.com/eprover /PyRes.

2 Preliminaries

We assume the standard setting for first-order predicate logic. A signature con-
sists of finite sets P (of predicate symbols) and F' (of function symbols) with
associated arities. We write e.g. f/n € F to indicate that f is a function symbol
of arity n. We also assume an enumerable set V = {X,Y, Z,...} of variables.
Each variable is a term. Also, if f/n € F and ¢1,...,t, are terms, then so is
f(t1,...,t,). This includes the special case of constants (function symbols with
arity 0), for which we omit the parentheses. An atom is composed similarly from
p/n € P and n terms. A literal is either an atom, or a negated atom. A clause
is a (multi-)set of literals, interpreted as the universal closure of the disjunction
of its literals and written as such. As an example, p(X, g(a)) is an atom (and
a literal), =¢(g(X),a) is a literal, and p(X,g(a)) V =¢(g(X),a) Vp(X,Y) is a
three-literal clause. A first-order formula is either an atom, or is composed of
existing formulas F, G by negation —F, quantification (VX : F' and 3X : F'), or
any of the usual binary Boolean operators (FVG, FAG, F — G, F < G,...).
We assume a reasonable precedence of operators and allow the use of parenthe-
ses where necessary or helpful. A substitution is a mapping from variables to
terms, and is continued to terms, atoms, literals and clauses in the obvious way.
A match from s onto ¢ is a substitution o such that o(s) =t (where s and ¢ can
be terms, atoms, or literals). A unifier is similarly a substitution o such that
o(s) = o(t). Of particular importance are most general unifiers. If two terms are
unifiable, a most general unifier is easy to compute, and, up to the renaming of
variables, unique. We use mgu(s, t) to denote the most general unifier of s and ¢.

PyRes implements standard resolution as described in [6], but like most
implementations, it separates resolution and factoring. It also optionally adds
negative literal selection. This refinement of resolution allows the selection of an
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A, B stand for atoms, L, M stand for literals, and C, D are arbitrary clauses.

If negative literal selection is employed, additional constraints to (BR) are that —B is
selected, and that no literal in C' is selected. (CS) is a contraction rule, i.e. it replaces
the premises by the conclusion, in effect removing the larger clause.

Fig. 1. Binary resolution with subsumption

arbitray negative literal in clauses that have at least one negative literal, and
the restriction of resolution inferences involving this clause to those that resolve
on the selected literal [1]. PyRes also supports subsumption, i.e. the discarding
of clauses covered by a more general clause. The inference system, consisting of
binary resolution (BR), binary factoring (BF) and clause subsumption (CS) is
shown in Fig. 1.

3 System Design and Implementation

3.1 Architecture

The system is based on a layered software architecture. At the bottom is code
for the lexical scanner. This is followed by the logical data types (terms, liter-
als, clauses and formulas), with their associated input/output functions. Logical
operations like unification and matching are implemented as separate modules,
as are the generating inference rules and subsumption. On top of this, there are
clause sets and formula sets, and the proof state of the given-clause algorithms,
with two sets of clauses - one for those clauses that have been processed and one
set that has not yet been processed.

From a logical perspective, the system is structured as a pipeline, starting
with the parser, optionally followed by the clausifier and a module that adds
equality axioms if equality is present, then followed by the core saturation algo-
rithm, and finally, in the case of success, proof extraction and printing. To keep
the learning curve simple, we have created 3 different provers: pyres-simple is a
minimal system for clausal logic, pyres-cnf adds heuristics, indexing, and sub-
sumption, and pyres-fof extends the pipeline to support full first-order logic
with equality [11].

3.2 Implementation

Python is a high-level multi-paradigm programming language that combines
both imperative and functional programming with an object-oriented inheritance
system. It includes a variety of built-in data types, including lists, associative
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arrays/hashes and even sets. It shares dynamic typing/polymorphism, lambdas,
and a built-in list datatype with LISP, one of the classical languages for symbolic
AT and theorem proving. This enables us to implement both terms, the most
frequent data type in a saturating prover, and atoms, as simple nested lists
(s-expressions), using Python’s built-in strings for function symbols, predicate
symbols, and variables.

Literals are implemented as a class, with polarity, atom, and a flag to indicate
literals selected for inference. Logical formulas are implemented as a class of
recursive objects, with atoms as the base case and formulas being constructed
with the usual operators and quantifiers. Top-level formulas are wrapped in
a container object with meta-information. Both these formula containers and
clauses are implemented as classes sharing a common super-class Derivable
that provides for meta-information such as name and origin (read from input
or derived via an inference record). The Clause class extends this with a list of
literals, a TPTP style type, and an optional heuristic evaluation. The WFormula
class extends it with a type and the recursive Formula object.

The ClauseSet class implements simple clause sets. In addition to methods
for adding and removing clauses, it also has an interface to return potential
inference partners for a literal, and to return a superset of possibly subsuming or
subsumed clauses for a query clause. In the basic version, these simply return all
clauses (clause/literal pairs for resolution) from the set. However, in the derived
class IndexedClauseSet, simple indexing techniques (top symbol hashing for
resolution and predicate abstraction indexing, a new technique for subsumption)
return much smaller candidate sets. Resolution, factoring, and subsumption are
implemented as plain functions.

The core of the provers is a given-clause saturation algorithm, based on two
clause sets, the processed clauses and the unprocessed clauses. In the most basic
case, clauses are processed first-in-first out. At each operation of the main loop,
the oldest unprocessed clause is extracted from the unprocessed clauses. All its
factors, and all resolvents between this given clause and all processed clauses,
are computed and added to the unprocessed set. The clause itself is added to
the processed set. The algorithm stops if the given clause is empty (i.e. an
explicit contradiction), or if it runs out of unprocessed clauses. Figure 2 shows
the substantial methods of SimpleProofState. In contrast to most pseudo-code
versions, this actually working code shows e.g. that clauses have to be made
variable-disjoint (here by creating a copy with fresh variables).

The more powerful variant pyres-cnf adds literal selection, heuristic clause
selection with multiple evaluations in the style of E [9], and subsumption to this
loop. For clause selection, each clause is assigned a list of heuristic evaluations
(e.g. symbol counting and abstract creation time), and the prover selects the next
clause in a fixed scheme according to this evaluation (e.g. 5 out of 6 times, it picks
the smallest clause, once it picks the oldest). Subsumption checks are performed
between the given clause and the processed clauses. Forward subsumption checks
if the given clause is subsumed by any processed clause. If so, it is discarded.
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def processClause(self):
N NN
Pick a clause from unprocessed and process it. If the empty
clause is found, return it. Otherwise return None.
MMM
given_clause = self.unprocessed.extractFirst ()
given_clause = given_clause.freshVarCopy ()
print ("#”, given_clause)
if given_clause.isEmpty ():
# We have found an exzplicit contradiction
return given_clause

new = []

factors = computeAllFactors(given_clause)

new . extend (factors)

resolvents = computeAllResolvents(given_clause, self.processed)

new.extend (resolvents)
self.processed.addClause(given_clause)
for ¢ in new:

self . unprocessed.addClause(c)
return None

def saturate(self):

993 9

Main proof procedure. If the clause set is found
unsatisfiable , return the empty clause as a witness. Otherwise

return None.
99N

while self.unprocessed:
res = self.processClause ()
if res != None:
return res
else:
return None

While most of the code should be self-explanatory, [| stands for the empty list, and
extend() is a list method that adds the elements of another list at the end of a given
list.

Fig. 2. Simple saturation

Backward subsumption removes processed clauses that are subsumed by the
given clause.

For the full first-order pyres-fof, we first parse the input into a formula set,
and use a naive clausifier to convert it to clause normal form.

The code base has a total of 8553 lines (including comments, docstrings, and
unit tests), or 3681 lines of effective code. For comparison, our prover E has
about 377000 lines of code (about 53000 actual C statements), or 170000 when
excluding the automatically generated strategy code.
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3.3 Experiences

We would like to share some experiences about coding a theorem prover in
Python. First, the high level of abstraction makes many tasks very straightfor-
ward to code. Python’s high-level data types are a good match to the theory
of automated theorem proving, and the combination of object-orientation with
inheritance and polymorphism is particularly powerful.

Python also has good development tools. In particularly, the built-in unit-test
framework (and the coverage tool) are very helpful in testing partial products
and gaining confidence in the quality of the code. The Python profiler (cProfile)
is easy to use and produces useful results. On the negative side, the lack of a
strict type system and the ad-hoc creation of variables has sometimes caused
confusion. In particular, when processing command line options, the relevant
function sometimes has to set global variables. If these are not explicitly declared
as global, a new local variable will be created, shadowing the global variable.
Also, a misspelled name of a class- or structure member will silently create that
member, not throw an error. As an example, we only found out after exten-
sive testing that the prover never applied backward subsumption, not because
of some logic error or algorithmic problem, but because we set the value of
backward_subsuption (notice the missing letter “m”) in the parameter set to
True trying to enable it.

Overall, however, programming a prover in Python proved to be a lot easier
and faster than in e.g. programming in C, and resulted in more compact and
easier to read code. This does come at the price of performance, of course. It
might be an interesting project to develop datatype and algorithm libraries akin
to NumPy, TensorFlow, or scikit-learn for ATP application, to bring together
the best of both worlds.

4 Experimental Evaluation

We have evaluated PyRes (in the pyres-fof incarnation) with different param-
eter settings on all clausal (CNF) and unsorted first-order (FOF) problems
from TPTP 7.2.0. Table 1 summarizes the results. We have also included some
data from E 2.4, a state-of-the-art high-performance prover, Prover9 [4] (release
1109a), and leanCoP 2.2. Prover9 has been used as a standard reference in the
CASC competition for several years. LeanCoP is a very compact prover written
in Prolog. Experiments were run on StarExec Miami, a spin-off of the original
StarExec project [10]. The machines were equipped with 256 GB of RAM and
Intel Xeon CPUs running at 3.20 GHz. The per-problem time-limit was set to
300s. For Prover9 and leanCoP, we used data included with the TPTP 7.2.0
distribution.

The Best configuration for PyRes enables forward and backward subsump-
tion, negative literal selection (always select the largest literal by symbol count),
uses indexing for subsumption and resolution, and processes given clauses inter-
leaving smallest (by symbol count) and oldest clauses with a ratio of 5 to 1. The
other configurations are modified from the Best configuration as described in the
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table. For the Best configuration (and the E results), we break the number of
solutions into proofs and (counter-)saturations, for the other configurations we
only include the total number of successes. All data (and the system and scripts
used) is available at http://www.eprover.eu/E-eu/PyResl.2.html.

It should be noted that Prover9, E, and leanCoP are all using an automatic
mode to select different heuristics and strategies. leanCoP also uses strategy
scheduling, i.e. it successively tries several different strategies.

We present the results for different problem classes: UEQ (unit problems
with equality), CNE (clausal problems without equality), CEQ (clausal problem
with equality, but excluding UEQ), FNE (FOF problems without equality) and
FEQ (FOF problems with equality).

Table 1. PyRes performance (other systems for comparison)

Strategy UEQ CNE | CEQ | FNE | FEQ | All

Class size (1193) | (2383) | (4442) | (1771) | (6305) | (16094)
Best (all) 116 |1048 | 587 | 765 | 860 | 3376
Best (proofs) 113 946 | 499 | 632 | 725 | 2915
Best (sat) 3 102 88 | 133 | 135 461
No indexing 116 |1042 | 567 | 736 | 829 | 3290

No subsumption 37 448 94 | 425 | 123 | 1127
Forward sub. only |115 1039 | 581 | 765 | 861 | 3361
Backward sub. only | 40 541 | 106 | 479 | 143 | 1309
No literal selection | 73 737 | 321 | 584 | 478 | 2193
E 2.4 auto (all) 813 1939 | 2648 | 1484 | 4054 | 10938
E 2.4 auto (proofs) | 797 | 1621 |2415 | 1171 |3849 | 9853

E 2.4 auto (sat) 16 318 | 233 | 313 | 205 | 1085
Prover9-1109a (all) | 728 | 1316 | 1678 | 709 |2001 | 6432
LeanCoP 2.2 (all) 6 0 0| 969 | 1826 | 2801

A note on the UEQ results: Most of the problems are specified as unit prob-
lems in CNF. A small number are expressed in first-order format. While the
original specifications are unit equality, the added equality axioms are non-unit.
This explains the rather large decrease in the number of successes if negative
literal selection is disabled.

Overall, in the Best configuration, PyRes solves 3376 of the 16094 prob-
lems. Disabling indexing increases run time by a factor of around 3.7 (for prob-
lems with the same search behaviour), but this translates to only about 90 lost
successes. Disabling subsumption, on the other hand, reduces the number of
solutions found by 2/3rd. However, if we compare the effect of forward and
backward subsumption, we can see that forward subsumption is crucial, while
backward subsumption plays a very minor role. If we look at the detailed data,
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there are about 10 times more clauses removed by forward subsumption than
by backward subsumption. This reflects the fact that usually smaller clauses are
processed first, and a syntactically bigger clause cannot subsume a syntactically
smaller clause. Finally, looking at negative literal selection, we can see that this
extremely simple feature increases the number of solutions by over 1100.

Comparing PyRes and E, we can see the difference between a rather naive
resolution prover and a high-performance superposition prover. Maybe not unex-
pectedly, the advantage of the more modern calculus is amplified for problems
with equality. Overall, PyRes can solve about 30% of the problems E can solve.
But there is a clear partition into problems with equality (14% in UEQ, 22%
in CEQ, 21% in FEQ) and problems without equality (54% in CNE, 52% in
FNE). PyRes does relatively much better with the latter classes. Prover9 falls
in between E and PyRes. LeanCoP, for the categories it can handle, is similar
to Prover9, but like PyRes is relatively stronger on problems without equality,
and relatively weaker on problems with equality.

5 Conclusion

We have described PyRes, a theorem prover developed as a pedagogical example
to demonstrate saturation-based theorem proving in an accessible, readable, well-
documented way. The system’s complexity is orders of magnitude lower than
that of high-performance provers, and first exposure to students has been very
successful. We hope that the lower barrier of entry will enable more students to
enter the field.

Despite its relative simplicity, PyRes demonstrates many of the same prop-
erties as high-performance provers. Indexing speeds the system up significantly,
but only leads to a moderate increase in the number of problems solved. Sim-
ple calculus refinements like literal selection and subsumption (the most basic
simplification technique) have much more impact, as have search heuristics.

It is tempting to extend the system to e.g. the superposition calculus. How-
ever, implementing term orderings and rewriting would probably at least double
the code base, something that is in conflict with the idea of a small, easily
understood system. We are, however, working on a Java version, to see if the
techniques demonstrated in Python can be easily transferred to a new language
by developers not intimately familiar with automated theorem proving.
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