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Abstract. The word problem for a finite set of ground identities is
known to be decidable in polynomial time, and this is also the case if
some of the function symbols are assumed to be commutative. We show
that decidability in P is preserved if we also assume that certain function
symbols f are extensional in the sense that f(s1, . . . , sn) ≈ f(t1, . . . , tn)
implies s1 ≈ t1, . . . , sn ≈ tn. In addition, we investigate a variant of
extensionality that is more appropriate for commutative function sym-
bols, but which raises the complexity of the word problem to coNP.

1 Introduction

One motivation for this work stems from Description Logic (DL) [1], where
constant symbols (called individual names) are used within knowledge bases
to denote objects or individuals in an application domain. If such objects are
composed of other objects, it makes sense to represent them as (ground) terms
rather than constants. For example, the couple consisting of individual a in the
first component and individual b in the second component is more reasonably
represented by the term f(a, b) (where f is a binary function symbol denoting
the couple constructor) than by a third constant c that is unrelated to a and b.
In fact, if we have two couples, one consisting of a and b and the other of a′ and
b′, and we learn (by DL reasoning or from external sources) that a is equal to
a′ and b is equal to b′, then this automatically implies that f(a, b) is equal to
f(a′, b′), i.e., that this is one and the same couple, whereas we would not obtain
such a consequence if we had introduced constants c and c′ for the two couples.

If we use terms to represent objects, and can learn (e.g., by DL reasoning)
that two terms are supposed to be equal, we need to be able to decide which
other identities between terms can be derived from the given ones. Fortunately,
this problem (usually called the word problem for ground identities) is decid-
able in polynomial time. The standard approach for deciding this word problem
is congruence closure [3,5,10,12]. Basically, congruence closure starts with the
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given set of ground identities E, and then extends it using closure under reflexiv-
ity, symmetry, transitivity, and congruence. The set CC (E) obtained this way is
usually infinite, and the main observation that yields decidability in polynomial
time is that one can restrict it to the subterms of E and the subterms of the
terms for which one wants to decide the word problem. An alternative approach
for deciding the word problem for ground identities is based on term rewriting.
Basically, in this approach one generates an appropriate canonical term rewrit-
ing system from E, and then decides whether two terms are equal modulo the
theory E by computing their canonical forms and checking whether they are
syntactically equal. This was implicit in [15], and made explicit in [7] (see also
[6,16] for other rewriting-based approaches).

In the motivating example from DL, but also in other settings where con-
gruence closure is employed (such as SMT [13,17]), it sometimes makes sense to
assume that certain function symbols satisfy additional properties that are not
expressible by finitely many ground identities. For example, one may want to
considered couples where the order of the components is irrelevant, which means
that the couple constructor function is commutative. Another interesting prop-
erty for (ordered) couples is extensionality: if two couples are equal then they
must have the same first and second components, i.e., the couple constructor f
must satisfy the extensionality rule f(x, y) ≈ f(x′, y′) ⇒ x ≈ x′ ∧ y ≈ y′. While
it is known that adding commutativity does not increase the complexity (see,
e.g., [5,8]), extensionality has, to the best of our knowledge, not been considered
in this context before. The problem with extensionality is that it allows us to
derive “small” identities from larger ones. Consequently, it is conceivable that
one first needs to generate such large identities using congruence and applying
other rules, before one can get back to a smaller one through the application
of extensionality. Thus, it is not obvious that also with extensionality one can
restrict congruence closure to a finite set of terms determined by the input. Here,
we will tackle this problem using a rewriting-based approach. Our proofs imply
that, also with extensional symbols, proofs of identities that detour through
“large” terms can be replaced by proofs using only “small” terms, but it is not
clear how this could be shown directly without the rewriting-based approach.

In the next section, we show how the rewriting-based approach of [7] can
be extended such that it can also handle commutative symbols. In contrast to
approaches that deal with associative-commutative (AC) symbols [4,11] using
rewriting modulo AC, we treat commutativity by introducing an additional
rewrite system consisting of appropriately ordered ground instances of commu-
tativity. This sets the stage for our rewriting-based approach that works in the
presence of commutative symbols and extensional symbols presented in Sect. 4.
In this section, we do not consider symbols f that are both commutative and
extensional since extensionality as defined until now is not appropriate for com-
mutative symbols: for arbitrary terms s, t, commutativity yields f(s, t) ≈ f(t, s),
and thus extensionality implies s ≈ t, which shows that the equational theory
becomes trivial. In Sect. 5, we introduce the notion of c-extensionality, which is
more appropriate for commutative symbols. Whereas the approaches developed
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in Sects. 3 and 4 yield polynomial time decision procedures for the word problem,
c-extensionality makes the word problem coNP-complete.

Due to space constraints not all proofs can be given here. Detailed proofs
can be found in [2].

2 Preliminaries on Equational Theories and Term
Rewriting

We assume that the reader is familiar with basic notions and results regarding
equational theories, universal algebra, and term rewriting. Here, we briefly recall
the most important notions and results and refer the readers to [3] for details.
We will keep as close as possible to the notation introduced in [3]. In particular,
we use ≈ to denote identities between terms and = to denote syntactic equality.

Terms are built as usual from variables, constants, and function symbols. An
identity is a pair of terms (s, t), which we usually write as s ≈ t. A ground term is
a term not containing variables and a ground identity is a pair of ground terms.
Given a set of identities E, the equational theory induced by E is defined (seman-
tically) as ≈E := {s ≈ t | every models of E is a model of s ≈ t}. The notion of
model used here is the usual one from first-order logic, where we assume that
identities are (implicitly) universally quantified. Since we consider signatures
consisting only of constant and function symbols, we call first-order interpreta-
tions algebras.

Birkhoff’s theorem provides us with an alternative characterization of ≈E

that is based on rewriting. A given set of identities E induces a binary relation
→E on terms. Basically, we have s →E t if there is an identity � ≈ r in E such
that s contains a substitution instance σ(�) of � as subterm, and t is obtained
from s by replacing this subterm with σ(r). Birkhoff’s theorem says that ≈E

is identical to ∗↔E , where ∗↔E denotes the reflexive, transitive, and symmetric
closure of →E .

If →E is canonical (i.e., terminating and confluent), then we have s
∗↔E t

iff s and t have the same canonical forms. The canonical form of a term s is
an irreducible term ŝ such that s

∗→E ŝ, where ∗→E denotes the reflexive and
transitive closure of →E and ŝ is irreducible if there is no s′ with ŝ →E s′.
Termination ensures that the canonical form exists and confluence that it is
unique. The relation →E is confluent if s

∗→E t1 and s
∗→E t2 imply that there

is a term t such that t1
∗→E t and t2

∗→E t. It is terminating if there is no infinite
chain t0 →E t1 →E t2 →E · · · .

Termination can be proved using a so-called reduction order, which is a well-
founded order > on terms such that � > r for all � ≈ r ∈ E implies s > t for all
terms s, t with s →E t. Since > is well-founded this then implies termination. If
→E is terminating, then confluence can be tested by checking whether all critical
pairs of E are joinable. Basically, critical pairs (t1, t2) consider the most general
forks of the form s →E t1 and s →E t2 that are due to overlapping left-hand
sides of identities. Such a pair is joinable if there is a term t such that t1

∗→E t
and t2

∗→E t.
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Usually, when considering the relation →E , one calls E a term rewriting
system rather than a set of identities, and writes its elements (called rewrite
rules) as � → r rather than � ≈ r. From a formal point of view, however, both
rewrite rules and identities are pairs of terms. Given a set of such pairs, we can
view it as a set of identities or a term rewriting system, and thus the notions
introduced above apply to both.

3 Commutative Congruence Closure Based on Rewriting

Let Σ be a finite set of function symbols of arity ≥ 1 and C0 a finite set of
constant symbols. We denote the set of ground terms built using symbols from
Σ and C0 with G(Σ,C0). In the following, let E be a finite set of identities
s ≈ t between terms s, t ∈ G(Σ,C0), and ≈E the equational theory induced
by E on G(Σ,C0), defined either semantically using algebras or (equivalently)
syntactically through rewriting [3].

It is well-known (see, e.g., [3], Lemma 4.3.3) that ≈E (viewed as a subset
of G(Σ,C0) × G(Σ,C0)) can be generated using congruence closure, i.e., by
exhaustively applying reflexivity, transitivity, symmetry, and congruence to E.
To be more precise, CC (E) is the smallest subset of G(Σ,C0) × G(Σ,C0) that
contains E and is closed under the following rules:

– if s ∈ G(Σ,C0), then s ≈ s ∈ CC (E) (reflexivity);
– if s1 ≈ s2, s2 ≈ s3 ∈ CC (E), then s1 ≈ s3 ∈ CC (E) (transitivity);
– if s1 ≈ s2 ∈ CC (E), then s2 ≈ s1 ∈ CC (E) (symmetry);
– if f is an n-ary function symbol and s1 ≈ t1, . . . , sn ≈ tn ∈ CC (E), then

f(s1, . . . , sn) ≈ f(t1, . . . , tn) ∈ CC (E) (congruence).

The set CC (E) is usually infinite. To obtain a decision procedure for the word
problem, one can show that it is sufficient to restrict the application of the
above rules to a finite subset of G(Σ,C0), which consists of the subterms of
terms occurring in E and of the subterms of the terms s0, t0 for which one wants
to decide whether s0 ≈E t0 holds or not (see, e.g., [3], Theorem 4.3.5).

This actually also works if one adds commutativity of some binary function
symbols to the theory. To be more precise, we assume that some of the binary
function symbols in Σ are commutative, i.e., there is a set of binary function
symbols Σc ⊆ Σ whose elements we call commutative symbols. In addition to
the identities in E, we assume that the identities f(x, y) ≈ f(y, x) are satisfied
for all function symbols f ∈ Σc. From a semantic point of view, this means
that we consider algebras A that satisfy not only the identities in E, but also
commutativity for the symbols in Σc, i.e., for all f ∈ Σc, and all elements a, b
of A we have that fA(a, b) = fA(b, a). Given s, t ∈ G(Σ,C0), we say that s ≈ t
follows from E w.r.t. the commutative symbols in Σc (written s ≈Σc

E t) if sA = tA

holds in all algebras that satisfy the identities in E and commutativity for the
symbols in Σc. The relation ≈Σc

E ⊆ G(Σ,C0) × G(Σ,C0) can also be generated
by extending congruence closure by a commutativity rule.



Ground Plus Commutative Plus Extensional 167

To be more precise, CCΣc(E) is the smallest subset of G(Σ,C0)× G(Σ,C0)
that contains E and is closed under reflexivity, transitivity, symmetry, congru-
ence, and the following commutativity rule:

– if f ∈ Σc and s, t ∈ G(Σ,C0), then f(s, t) ≈ f(t, s) ∈ CCΣc(E)
(commutativity).

We call CCΣc(E) the commutative congruence closure of E. Using Birkhoff’s
theorem, it is easy to see that CCΣc(E) coincides with ≈Σc

E in the sense that
s ≈ t ∈ CCΣc(E) iff s ≈Σc

E t (see Lemma 3.5.13 and Theorem 3.5.14 in [3]).
Again, it is not hard to show that the restriction of the commutative congruence
closure to a polynomially large set of terms determined by the input E, s0, t0 is
complete, which yields decidability of ≈Σc

E [5].
Here, we follow a different approach, which is based on rewriting [7,8]. Let

S(E) denote the set of subterms of the terms occurring in E. In a first step, we
introduce a new constant cs for every term s ∈ S(E) \ C0. To simplify notation,
for a constant a ∈ C0 we sometimes use ca to denote a. Let C1 be the set of new
constants introduced this way and C := C0 ∪ C1. Given a term u ∈ G(Σ,C), we
denote with û the term in G(Σ,C0) obtained from u by replacing the occurrences
of the constants cs ∈ C1 in u with the corresponding terms s ∈ S(E).

We fix an arbitrary linear order > on C, which will be used to orient identities
between constants into rewrite rules. Note that this order does not take into
account which terms the constants correspond to, and thus we may well have
cs > cf(s).

The initial rewrite system R(E) induced by E consists of the following rules:

– If s ∈ S(E) \ C0, then s is of the form f(s1, . . . , sn) for an n-ary function
symbol f and terms s1, . . . , sn for some n ≥ 1. For every such s we add the
rule f(cs1 , . . . , csn

) → cs to R(E).
– For every identity s ≈ t ∈ E we add cs → ct to R(E) if cs > ct, and ct → cs

if ct > cs.

Obviously, the cardinality of C1 is linear in the size of E, and R(E) can be
constructed in time linear in the size of E. From the above construction, it
follows that R(E) has two types of rules: constant rules of the form c → d for
c > d and function rules of the form f(c1, . . . , cn) → d.

Example 1. Consider E = {f(a, g(a)) ≈ c, g(b) ≈ h(a), a ≈ b} with Σc = {f}.
It is easy to see that we have f(h(a), b) ≈Σc

E c. Using our construction, we
first introduce the new constants C1 = {cf(a,g(a)), cg(a), cg(b), ch(a)}. If we fix the
linear order on C as cf(a,g(a)) > cg(a) > cg(b) > ch(a) > a > b > c, then we
obtain the following rewrite system: R(E) = {f(a, cg(a)) → cf(a,g(a)), g(a) →
cg(a), g(b) → cg(b), h(a) → ch(a), cf(a,g(a)) → c, cg(b) → ch(a), a → b}.

The following lemma is an easy consequence of the definition of R(E). The
first part can be shown by a simple induction on the structure of s.

Lemma 1. For all terms s ∈ S(E) we have s ≈R(E) cs. Consequently, u ≈R(E)

û and thus also u ≈Σc

R(E) û for all terms u ∈ G(Σ,C).
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Using this lemma, we can show that the construction of R(E) is correct for
consequence w.r.t. commutative symbols in the following sense:

Lemma 2. Viewed as a set of identities, R(E) is a conservative extension of
E w.r.t. the commutative symbols in Σc, i.e., for all terms s0, t0 ∈ G(Σ,C0) we
have s0 ≈Σc

E t0 iff s0 ≈Σc

R(E) t0.

In this lemma, we use commutativity of the elements of Σc as additional
identities. Our goal is, however, to deal both with the ground identities in E
and with commutativity by rewriting. For this reason, we consider the rewrite
system1

R(Σc) := {f(s, t) → f(t, s) | f ∈ Σc, s, t ∈ G(Σ,C), and s >lpo t}, (1)

where >lpo denotes the lexicographic path order (see Definition 5.4.12 in [3])
induced by a linear order on Σ ∪ C that extends > on C, makes each function
symbol in Σ greater than each constant symbol in C, and linearly orders the
function symbols in an arbitrary way. Note that >lpo is then a linear order on
G(Σ,C) (see Exercise 5.20 in [3]). Consequently, for every pair of distinct terms
s, t ∈ G(Σ,C), we have f(s, t) → f(t, s) ∈ R(Σc) or f(t, s) → f(s, t) ∈ R(Σc).

The term rewriting system R(E) ∪ R(Σc) can easily be shown to terminate
using this order. In fact, >lpo is a reduction order, and we have � >lpo r for
all rules � → r ∈ R(E) ∪ R(Σc). However, in general R(E) ∪ R(Σc) need not
be confluent. For instance, in Example 1 we have the two rewrite sequences
g(a) → g(b) → cg(b) → ch(a) and g(a) → cg(a) w.r.t. R(E) ∪ R(Σc), and the two
constants ch(a) and cg(a) are irreducible w.r.t. R(E) ∪ R(Σc), but not equal.

We turn R(E)∪R(Σc) into a confluent and terminating system by modifying
R(E) appropriately. We start with RΣc

0 (E) := R(E) and i := 0:

(a) Let RΣc
i (E)|con consist of the constant rules in RΣc

i (E). For every constant
c ∈ C, consider

[c]i := {d ∈ C | c ≈RΣc
i (E)|con d},

and let e be the least element in [c]i w.r.t. the order >. We call e the
representative of c w.r.t. RΣc

i (E) and >. If c �= e, then add c → e to
RΣc

i+1(E).
(b) In all function rules in RΣc

i (E), replace each constant by its representative
w.r.t. RΣc

i (E) and >, and call the resulting set of function rules FΣc
i (E).

Then, we distinguish two cases, depending on whether the function symbol
occurring in the rule is commutative or not.

(b1) Let f be an n-ary function symbol not belonging to Σc. For every term
f(c1, . . . , cn) occurring as the left-hand side of a rule in FΣc

i (E), consider
all the rules f(c1, . . . , cn) → d1, . . . , f(c1, . . . , cn) → dk in FΣc

i (E) with
this left-hand side. Let d be the least element w.r.t. > in {d1, . . . , dk}.
Add f(c1, . . . , cn) → d and dj → d for all j with dj �= d to RΣc

i+1(E).
1 Since this system is in general infinite, we do not generate it explicitly. But we can
nevertheless apply the appropriate rule when encountering a commutative symbol
during rewriting by just ordering its arguments according to >lpo .
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(b2) Let f be a binary function symbol belonging to Σc. For all pairs of con-
stant symbols c1, c2 such that f(c1, c2) or f(c2, c1) is the left-hand side
of a rule in FΣc

i (E), consider the set of constant symbols {d1, . . . , dk}
occurring as right-hand sides of such rules, and let d be the least element
w.r.t. > in this set. Add dj → d for all j with dj �= d to RΣc

i+1(E). In
addition, if c2 >lpo c1, then add f(c1, c2) → d to RΣc

i+1(E), and otherwise
f(c2, c1) → d.

If at least one constant rule has been added in this step, then set i := i+1
and continue with step (a). Otherwise, terminate with output ̂RΣc(E) :=
RΣc

i+1(E).

Let us illustrate the construction of ̂RΣc(E) using Example 1. In step (a),
the non-trivial equivalence classes are [a]0 = {a, b} with representative b,
[cf(a,g(a))] = {cf(a,g(a)), c} with representative c, and [cg(b)] = {cg(b), ch(a)} with
representative ch(a). Thus, a → b, cf(a,g(a)) → c, cg(b) → ch(a) are the constant
rule added to RΣc

1 (E). The function rules in FΣc
0 (E) are then f(b, cg(a)) →

c, g(b) → cg(a), g(b) → ch(a), h(b) → ch(a). For the two rules with left-hand side
g(b), we add cg(a) → ch(a) and g(b) → ch(a) to RΣc

1 (E). The rules with left-hand
sides different from g(b) are moved unchanged from FΣc

0 (E) to RΣc
1 (E) since

their left-hand sides are unique. Thus, RΣc
1 (E) = {a → b, cf(a,g(a)) → c, cg(b) →

ch(a), cg(a) → ch(a), f(b, cg(a)) → c, g(b) → ch(a), h(b) → ch(a)}.
In the second iteration step, we now have the new non-trivial equivalence

class [cg(b)]1 = {cg(b), ch(a), cg(a)} with representative ch(a). The net effect of
step (a) is, however, that the constant rules are moved unchanged from RΣc

1 (E)
to RΣc

2 (E). The function rules in FΣc
1 (E) are then f(b, ch(a)) → c, g(b) →

ch(a), h(b) → ch(a). Consequently, no constant rules are added in step (b), and the
construction terminates with output ̂RΣc(E) = {a → b, cf(a,g(a)) → c, cg(b) →
ch(a), cg(a) → ch(a), f(b, ch(a)) → c, g(b) → ch(a), h(b) → ch(a)}.

Our goal is now to show that ̂RΣc(E)∪R(Σc) provides us with a polynomial-
time decision procedure for the commutative word problem in E.

Lemma 3. The system ̂RΣc(E) can be computed from R(E) in polynomial time,
and its construction is correct in the following sense: viewed as a set of identities,
̂RΣc(E) ∪ R(Σc) is equivalent to R(E) with commutativity, i.e., for all terms
s, t ∈ G(Σ,C) we have s ≈Σc

R(E) t iff s ≈
̂RΣc (E)∪R(Σc)

t.

If we view ̂RΣc(E) ∪ R(Σc) as a term rewriting system, then we obtain the
following result.

Lemma 4. ̂RΣc(E) ∪ R(Σc) is canonical, i.e., terminating and confluent.

Proof. Termination of the term rewriting system ̂RΣc(E)∪R(Σc) can be shown
as for R(E)∪R(Σc), using the reduction order >lpo introduced in the definition
of R(Σc). Confluence can thus be proved by showing that all non-trivial critical
pairs of this system can be joined (see [2] for details). �
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Since ̂RΣc(E) ∪ R(Σc) is canonical, each term s ∈ G(Σ,C) has a unique
normal form (i.e., irreducible term reachable from s) w.r.t. ̂RΣc(E) ∪ R(Σc),
which we call the canonical form of s. We can thus use the system ̂RΣc(E) ∪
R(Σc) to decide whether terms s, t are equivalent w.r.t. E and commutativity of
the symbols in Σc, i.e., whether s ≈ t ∈ CCΣc(E), by computing the canonical
forms of the terms s and t.

Theorem 1. Let s0, t0 ∈ G(Σ,C0). Then we have s0 ≈ t0 ∈ CCΣc(E) iff s0
and t0 have the same canonical form w.r.t. ̂RΣc(E) ∪ R(Σc).

Consider the rewrite system ̂RΣc(E) that we have computed (above Lemma 3)
from the set of ground identities E in Example 1, and recall that f(h(a), b) ≈Σc

E c.
The canonical form of c is clearly c, and the canonical form of f(h(a), b) can be
computed by the following rewrite sequence:

f(h(a), b) →R(Σc) f(b, h(a)) →
̂RΣc (E) f(b, h(b)) →

̂RΣc (E) f(b, ch(a)) →
̂RΣc (E) c.

Note that the construction of ̂RΣc(E) is actually independent of the terms
s0, t0 for which we want to decide the word problem in E. This is in contrast
to approaches that restrict the construction of the congruence closure to the
subterms of E and the subterms of the terms s0, t0 for which one wants to
decide the word problem. This fact will turn out to be useful in the next section.

Since it is easy to show that reduction to canonical forms requires only a poly-
nomial number of rewrite steps, Theorem 1 thus yields the following complexity
result.

Corollary 1. The commutative word problem for finite sets of ground identities
is decidable in polynomial time, i.e., given a finite set of ground identities E ⊆
G(Σ,C0)× G(Σ,C0), a set Σc ⊆ Σ of commutative symbols, and terms s0, t0 ∈
G(Σ,C0), we can decide in polynomial time whether s0 ≈Σc

E t0 holds or not.

This complexity result has been shown before in [5] and [8], but note that,
in these papers, detailed proofs are given for the case without commutativity,
and then it is only sketched how the respective approach can be extended to
accommodate commutativity. Like the approach in this paper, the one employed
in [8] is rewriting-based, but in contrast to ours it does not explicitly use the
rewrite system R(Σc).

4 Commutative Congruence Closure with Extensionality

Here, we additionally assume that some of the non-commutative2 function sym-
bols are extensional, i.e., there is a set of function symbols Σe ⊆ Σ \ Σc whose
elements we call extensional symbols. In addition to the identities in E and

2 We will explain in the next section why the notion of extensionality introduced in
(2) below is not appropriate for commutative symbols.
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commutativity for the symbols in Σc, we now assume that also the following
conditional identities are satisfied for every n-ary function symbol f ∈ Σe:

f(x1, . . . , xn) ≈ f(y1, . . . , yn) ⇒ xi ≈ yi for all i, 1 ≤ i ≤ n. (2)

From a semantic point of view, this means that we now consider algebras A
that satisfy not only the identities in E and commutativity for the symbols in
Σc, but also extensionality for the symbols in Σe, i.e., for all f ∈ Σe, all i, 1 ≤
i ≤ n, and all elements a1, . . . , an, b1, . . . , bn of A we have that fA(a1, . . . , an) =
fA(b1, . . . , bn) implies ai = bi for all i, 1 ≤ i ≤ n. Let Σe

c = (Σc, Σ
e) and

s, t ∈ G(Σ,C0). We say that s ≈ t follows from E w.r.t. the commutative symbols
in Σc and the extensional symbols in Σe (written s ≈Σe

c

E t) if sA = tA holds in
all algebras that satisfy the identities in E, commutativity for the symbols in
Σc, and extensionality for the symbols in Σe.

The relation ≈Σe
c

E ⊆ G(Σ,C0) × G(Σ,C0) can also be generated using the
following extension of congruence closure by an extensionality rule. To be more
precise, CCΣe

c (E) is the smallest subset of G(Σ,C0) × G(Σ,C0) that contains
E and is closed under reflexivity, transitivity, symmetry, congruence, commuta-
tivity, and the following extensionality rule:

– if f ∈ Σe is an n-ary function symbol, 1 ≤ i ≤ n, and f(s1, . . . , sn) ≈
f(t1, . . . , tn) ∈ CCΣe

c (E), then si ≈ ti ∈ CCΣe
c (E) (extensionality).

Proposition 1. For all terms s, t ∈ G(Σ,C0) we have s ≈Σe
c

E t iff s ≈ t ∈
CCΣe

c (E).

Proof. This proposition is an easy consequence of Theorem 54 in [18], which
(adapted to our setting) says that ≈Σe

c

E is the least congruence containing E
that is invariant under applying commutativity and extensionality. Clearly, this
is exactly CCΣe

c (E). �


To obtain a decision procedure for ≈Σe
c

E , we extend the rewriting-based app-
roach from the previous section. Let the term rewriting system R(E) be defined
as in Sect. 3.

Example 2. Consider E′ = {f(a, g(a)) ≈ c, g(b) ≈ h(a), g(a) ≈ g(b)} with
Σc = {f} and Σe = {g}. It is easy to see that we have f(h(a), b) ≈Σe

c

E′ c.
Let the set C1 of new constants and the linear order on all constants be
defined as in Example 1. Now, we obtain the following rewrite system: R(E′) =
{f(a, cg(a)) → cf(a,g(a)), g(a) → cg(a), g(b) → cg(b), h(a) → ch(a), cf(a,g(a)) →
c, cg(b) → ch(a), cg(a) → cg(b)}.

Lemma 5. The system R(E) is a conservative extension of E also w.r.t. the
commutative symbols in Σc and the extensional symbols in Σe, i.e., for all terms
s0, t0 ∈ G(Σ,C0) we have s0 ≈Σe

c

E t0 iff s0 ≈Σe
c

R(E) t0.



172 F. Baader and D. Kapur

We extend the construction of the confluent and terminating rewrite system
corresponding to R(E) by adding a third step that takes care of extensionality.
To be more precise, ̂RΣe

c (E) is constructed by performing the following steps,
starting with R

Σe
c

0 (E) := R(E) and i := 0:

(a) Let R
Σe

c
i (E)|con consist of the constant rules in R

Σe
c

i (E). For every constant
c ∈ C, consider

[c]i := {d ∈ C | c ≈
R

Σe
c

i (E)|con d},

and let e be the least element in [c]i w.r.t. the order >. We call e the
representative of c w.r.t. R

Σe
c

i (E) and >. If c �= e, then add c → e to
R

Σe
c

i+1(E).
(b) In all function rules in R

Σe
c

i (E), replace each constant by its representative
w.r.t. R

Σe
c

i (E) and >, and call the resulting set of function rules F
Σe

c
i (E).

Then, we distinguish two cases, depending on whether the function symbol
occurring in the rule is commutative or not.

(b1) Let f be an n-ary function symbol not belonging to Σc. For every
term f(c1, . . . , cn) occurring as the left-hand side of a rule in F

Σe
c

i (E),
consider all the rules f(c1, . . . , cn) → d1, . . . , f(c1, . . . , cn) → dk in
F

Σe
c

i (E) with this left-hand side. Let d be the least element w.r.t. >
in {d1, . . . , dk}. Add f(c1, . . . , cn) → d and dj → d for all j with dj �= d

to R
Σe

c
i+1(E).

(b2) Let f be a binary function symbol belonging to Σc. For all pairs of con-
stant symbols c1, c2 such that f(c1, c2) or f(c2, c1) is the left-hand side
of a rule in F

Σe
c

i (E), consider the set of constant symbols {d1, . . . , dk}
occurring as right-hand sides of such rules, and let d be the least element
w.r.t. > in this set. Add dj → d for all j with dj �= d to R

Σe
c

i+1(E). In
addition, if c2 >lpo c1, then add f(c1, c2) → d to R

Σe
c

i+1(E), and otherwise
f(c2, c1) → d.

If at least one constant rule has been added in this step, then set i := i+ 1
and continue with step (a). Otherwise, continue with step (c).

(c) For all f ∈ Σe, all pairs of distinct rules f(c1, . . . , cn) → d, f(c′
1, . . . , c

′
n) → d

in F
Σe

c
i (E), and all i, 1 ≤ i ≤ n such that ci �= c′

i, add ci → c′
i to R

Σe
c

i+1(E) if
ci > c′

i and otherwise add c′
i → ci to R

Σe
c

i+1(E). If at least one constant rule
has been added in this step, then set i := i + 1 and continue with step (a).
Otherwise, terminate with output ̂RΣe

c (E) := R
Σe

c
i+1(E).

We illustrate the above construction using Example 2. In step (a), the non-
trivial equivalence classes are [cf(a,g(a))] = {cf(a,g(a)), c} with representative c
and [cg(b)] = {cg(a), cg(b), ch(a)} with representative ch(a). Thus, cf(a,g(a)) →
c, cg(a) → ch(a), cg(b) → ch(a) are the constant rules added to R

Σe
c

1 (E′). The func-
tion rules in F

Σe
c

0 (E′) are then f(a, ch(a)) → c, g(a) → ch(a), g(b) → ch(a), h(a) →
ch(a). Since these rules have unique left-hand sides, no constant rule is added in
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step (b). Consequently, we proceed with step (c). Since g ∈ Σe, the presence
of the rules g(a) → ch(a) and g(b) → ch(a) triggers the addition of a → b to
R

Σe
c

1 (E′). The function rules in R
Σe

c
1 (E′) are the ones in F

Σe
c

0 (E′).
In the second iteration step, we now have the new non-trivial equivalence

class [a]1 = {a, b} with representative b. The net effect of step (a) is, again,
that the constant rules are moved unchanged from R

Σe
c

1 (E′) to R
Σe

c
2 (E′). The

function rules in F
Σe

c
1 (E′) are then f(b, ch(a)) → c, g(b) → ch(a), h(b) → ch(a).

Consequently, no new constant rules are added in steps (b) and (c), and the
construction terminates with output ̂RΣe

c (E′) = {a → b, cf(a,g(a)) → c, cg(a) →
ch(a), cg(b) → ch(a), f(b, ch(a)) → c, g(b) → ch(a), h(b) → ch(a)}, which is identical
to the system ̂RΣc(E) computed for the set of identity E of Example 1.

Our goal is now to show that ̂RΣe
c (E) provides us with a polynomial-time

decision procedure for the extensional word problem in E, i.e., it allows us to
decide the relation ≈Σe

c

E . Let R(Σc) and >lpo be defined as in (1).

Lemma 6. The system ̂RΣe
c (E) can be computed from R(E) in polynomial time.

Viewed as a set of identities, ̂RΣe
c (E) ∪ R(Σc) is

– sound for commutative and extensional reasoning, i.e., for all rules s → t in
̂RΣe

c (E) ∪ R(Σc) we have s ≈Σe
c

R(E) t, and
– complete for commutative reasoning, i.e., or all terms s, t ∈ G(Σ,C) we have

that s ≈Σc

R(E) t implies s ≈
̂RΣe

c (E)∪R(Σc)
t.

Lemma 7. Viewed as a term rewriting system, ̂RΣe
c (E) ∪ R(Σc) is canonical,

i.e., terminating and confluent.

Intuitively, ̂RΣe
c (E) extends ̂RΣc(E) by additional rules relating constants

that are equated due to extensionality. However, to keep the system confluent,
we need to re-apply the other steps once two constants have been equated.

Lemma 8. If s, t ∈ G(Σ,C) have the same canonical forms w.r.t. ̂RΣc(E) ∪
R(Σc), then they also have the same canonical forms w.r.t. ̂RΣe

c (E) ∪ R(Σc).

We are now ready to prove our main technical result, from which decidability
of the commutative and extensional word problem immediately follows.

Theorem 2. Let s, t ∈ G(Σ,C0). Then we have s ≈ t ∈ CCΣe
c (E) iff s and t

have the same canonical form w.r.t. ̂RΣe
c (E) ∪ R(Σc).

Proof. Since the if-direction is easy to show, we concentrate here on the only-
if-direction. If s, t ∈ G(Σ,C0) are such that s ≈ t ∈ CCΣe

c (E), then there is a
sequence of identities s1 ≈ t1, s2 ≈ t2, . . . , sk ≈ tk such that sk = s, tk = t,
and for all i, 1 ≤ i ≤ k, the identity si ≈ ti belongs to E or can be derived
from some of the identities sj ≈ tj with j < i by apply reflexivity, transitivity,
symmetry, congruence, commutativity, or extensionality. We prove that s and t
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have the same canonical form w.r.t. ̂RΣe
c (E)∪R(Σc) by induction on the number

of applications of the extensionality rule used when creating this sequence.
In the base case, no extensionality rule is used, and thus s ≈ t ∈ CCΣc(E).

By Theorem 1, s and t have the same canonical form w.r.t. ̂RΣc(E) ∪ R(Σc),
and thus by Lemma 8 also w.r.t. ̂RΣe

c (E) ∪ R(Σc).
In the step case, we consider the last identity sm ≈ tm obtained by an

application of the extensionality rule. Then, by induction, we know that, for
each i, 1 ≤ i < m, the terms si and ti have the same canonical form w.r.t.
̂RΣe

c (E) ∪ R(Σc).
Now, consider the application of extensionality to an identity s� ≈ t� (� < m)

that produced sm ≈ tm. Thus, we have s� = f(g1, . . . , gn) and t� = f(h1, . . . , hn)
for some n-ary function symbol f ∈ Σe, and extensionality generates the new
identity gμ ≈ hμ for some μ, 1 ≤ μ ≤ n, such that sm = gμ and tm = hμ. For
ν = 1, . . . , n, let g′

ν be the canonical form of gν w.r.t. ̂RΣe
c (E) ∪ R(Σc), and h′

ν

the canonical form of hν w.r.t. ̂RΣe
c (E) ∪ R(Σc). We know that the canonical

forms of s� and t� w.r.t. ̂RΣe
c (E)∪R(Σc) are identical, and these canonical forms

can be obtained by normalizing f(g′
1, . . . , g

′
n) and f(h′

1, . . . , h
′
n). Since the rules

of R(Σc) are not applicable to these terms due to the fact that f �∈ Σc, there
are two possible cases for how the canonical forms of s� and t� can look like:

1. s� and t� respectively have the canonical forms f(g′
1, . . . , g

′
n) and f(h′

1, . . . ,
h′

n), and thus the corresponding arguments are syntactically equal, i.e., g′
ν =

h′
ν for ν = 1, . . . , n. In this case, the identity sm ≈ tm added by the application

of the extensionality rule satisfies sm ≈
̂RΣe

c (E)∪R(Σc)
tm since we have sm =

gμ ≈
̂RΣe

c (E)∪R(Σc)
g′

μ = h′
μ ≈

̂RΣe
c (E)∪R(Σc)

hμ = tm.

2. s� and t� reduce to the same constant d. Then ̂RΣe
c (E) must contain the rules

f(g′
1, . . . , g

′
n) → d and f(h′

1, . . . , h′
n) → d. By the construction of ̂RΣe

c (E),
we again have that g′

μ = h′
μ, i.e., the two terms are syntactically equal. In

fact, otherwise a new constant rule g′
μ → h′

μ or h′
μ → g′

μ would have been
added, and the construction would not have terminated yet. We thus have
again sm = gμ ≈

̂RΣe
c (E)∪R(Σc)

g′
μ = h′

μ ≈
̂RΣe

c (E)∪R(Σc)
hμ = tm.

Summing up, we have seen that we have si ≈
̂RΣe

c (E)∪R(Σc)
ti for all i, 1 ≤ i ≤ m.

Since the identities sj ≈ tj for m < j ≤ k are generated from the identities
si ≈ ti for i = 1, . . . , m and E using only reflexivity, transitivity, symmetry,
commutativity, and congruence, this implies that also these identities satisfy
sj ≈

̂RΣe
c (E)∪R(Σc)

tj . In particular, we thus have sk ≈
̂RΣe

c (E)∪R(Σc)
tk. Since

̂RΣe
c (E)∪ R(Σc) is canonical, this implies that sk = s and tk = t have the same

canonical form w.r.t. ̂RΣe
c (E) ∪ R(Σc). �


Recall that we have f(h(a), b) ≈Σe
c

E′ c for the set of identities E′ of Example 2.
We have already seen that these two terms rewrite to the same canonical form
w.r.t. ̂RΣc(E) ∪ R(Σc) = ̂RΣe

c (E′) ∪ R(Σc).
Again, it is easy to show that the decision procedure obtained by applying

Theorem 2 requires only polynomial time.
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Corollary 2. The commutative and extensional word problem for finite sets of
ground identities is decidable in polynomial time, i.e., given a finite set of ground
identities E ⊆ G(Σ,C0)×G(Σ,C0), finite sets Σc ⊆ Σ of commutative and Σe ⊆
Σ \ Σc of non-commutative extensional symbols, and terms s0, t0 ∈ G(Σ,C0),
we can decide in polynomial time whether s0 ≈Σe

c

E t0 holds or not.

We have mentioned in the introduction that it is unclear how this polynomi-
ality result could be obtained by a simple adaptation of the usual approach that
restricts congruence closure to a polynomially large set of subterms determined
by the input (informally called “small” terms in the following). The main prob-
lem is that one might have to generate identities between “large” terms before
one can get back to a desired identity between “small” terms using extensionality.
The question is now where our rewriting-based approach actually deals with this
problem. The answer is: in Case 1 of the case distinction in the proof of Theorem
2. In fact, there we consider a derived identity s� ≈ t� such that the (syntactically
identical) canonical forms of s� = f(g1, . . . , gn) and t� = f(h1, . . . , hn) are not a
constant from C, but of the form f(g′

1, . . . , g
′
n) = f(h′

1, . . . , h′
n). Basically, this

means that s� and t� are terms that are not equivalent modulo E to subterms of
terms occurring in E, since the latter terms have a constant representing them.
Thus, s�, t� are “large” terms that potentially could cause a problem: an identity
between them has been derived, and now extensionality applied to this identity
yields a new identity gμ ≈ hμ between smaller terms. Our induction proof shows
that this identity can nevertheless be derived from ̂RΣe

c (E) ∪ R(Σc), and thus
does not cause a problem.

5 Symbols that Are Commutative and Extensional

In the previous section, we have made the assumptions that the sets Σc and Σe

are disjoint, i.e., we did not consider extensionality for commutative symbols.
The reason is that the presence of a commutative and extensional symbol would
trivialize the equational theory. In fact, as already mentioned in the introduction,
if f is assumed to be commutative and extensional, then commutativity yields
f(s, t) ≈ f(t, s) for all terms s, t ∈ G(Σ,C0), and extensionality then s ≈ t. This
shows that, in this case, the commutative and extensional congruence closure
would be G(Σ,C0) × G(Σ,C0), independently of E, and thus even for E = ∅.

In this section, we consider the following variant of extensionality for com-
mutative function symbols f , which we call c-extensionality :

f(x1, x2) ≈ f(y1, y2) ⇒ (x1 ≈ y1 ∧ x2 ≈ y2) ∨ (x1 ≈ y2 ∧ x2 ≈ y1). (3)

For example, if f is a commutative couple constructor, and two couples turn out
to be equal, then we want to infer that they consist of the same two persons,
independently of the order in which they were put into the constructor.

Unfortunately, adding such a rule makes the word problem coNP-hard, which
can be shown by a reduction from validity of propositional formulae.
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Proposition 2. In the presence of at least one commutative and c-extensional
symbol, the word problem for finite sets of ground identities is coNP-hard.

We prove this proposition by a reduction from validity of propositional for-
mulae. Thus, consider a propositional formula φ, and let p1, . . . , pn be the propo-
sitional variables occurring in φ. We take the constants 0 and 1, and for every
i, 1 ≤ i ≤ n, we view pi as a constant symbol, and add a second constant sym-
bol pi. In addition, we consider the function symbols f∨, f∧, f¬, f , and assume
that f is commutative and satisfies (3). We then consider ground identities that
axiomatize the truth tables for ∨,∧,¬, i.e.,

f∨(0, 0) ≈ 0, f∨(1, 0) ≈ 1, f∨(0, 1) ≈ 1, f∨(1, 1) ≈ 1,
f∧(0, 0) ≈ 0, f∧(1, 0) ≈ 0, f∧(0, 1) ≈ 0, f∧(1, 1) ≈ 1,
f¬(0) ≈ 1, f¬(1) ≈ 0.

(4)

In addition, we consider, for every i, 1 ≤ i ≤ n, the identities f(pi, pi) ≈ f(0, 1).
Let Eφ be the set of these ground identities, and let tφ be the term obtained
from φ by replacing the Boolean operations ∨,∧, and ¬ by the corresponding
function symbols f∨, f∧, and f¬.

Proposition 2 is now an immediate consequence of the following lemma.

Lemma 9. The identity tφ ≈ 1 holds in every algebra satisfying Eφ together
with (3) and commutativity of f iff φ is valid.

To prove a complexity upper bound that matches the lower bound stated in
Proposition 2, we consider a finite signature Σ, a finite set of ground identities
E ⊆ G(Σ,C0) × G(Σ,C0) as well as sets Σc ⊆ Σ and Σe ⊆ Σ of commutative
and extensional symbols, respectively, and assume that the non-commutative
extensional symbols in Σe \Σc satisfy extensionality (2), whereas the commuta-
tive extensional symbols in Σe∩Σc satisfy c-extensionality (3). We want to show
that, in this setting, the problem of deciding, for given terms s0, t0 ∈ G(Σ,C0),
whether s0 is not equivalent to t0 is in NP.

For this purpose, we employ a nondeterministic variant of our construction of
̂RΣe

c (E). In steps (a) and (b), this procedure works as described in the previous
section. For extensional symbols f ∈ Σe \Σc, step (c) is also performed as in the
previous section. For an extensional symbol f ∈ Σe ∩ Σc, step (c) is modified
as follows: for all pairs of distinct rules f(c1, c2) → d, f(c′

1, c
′
2) → d in F

Σe
c

i (E),
nondeterministically choose whether

– c1 and c′
1 as well as c2 and c′

2 are to be identified, or
– c1 and c′

2 as well as c2 and c′
1 are to be identified,

and then add the corresponding constant rules to R
Σe

c
i+1(E) unless the respective

constants are already syntactically equal.
This nondeterministic algorithm has different runs, depending on the choices

made in the nondeterministic part of step (c). But each run r produces a rewrite
system ̂R

Σe
c

r (E).



Ground Plus Commutative Plus Extensional 177

Example 3. We illustrate the nondeterministic construction using the identities
Eφ for φ = p∨¬p from our coNP-hardness proof. Then Eφ consists of the identi-
ties in (4) together with the identity f(p, p) ≈ f(0, 1). Assuming an appropriate
order on the constants, the system R(Eφ) contains, among others, the rules

f∨(1, 0) → cf∨(1,0), cf∨(1,0) → 1, f∨(0, 1) → cf∨(0,1), cf∨(0,1) → 1
f¬(0) → cf¬(0), cf¬(0) → 1, f¬(1) → cf¬(1), cf¬(1) → 0
f(p, p) → cf(p,p), f(1, 0) → cf(1,0), cf(p,p) → cf(1,0).

In step (a) and (b) of the construction, these rules are transformed into the form

f∨(1, 0) → 1, cf∨(1,0) → 1, f∨(0, 1) → 1, cf∨(0,1) → 1
f¬(0) → 1, cf¬(0) → 1, f¬(1) → 0, cf¬(1) → 0
f(p, p) → cf(1,0), f(1, 0) → cf(1,0), cf(p,p) → cf(1,0).

(5)

Since no new constant rule is added, the construction proceeds with step (c).
Due to the presence of the rules f(p, p) → cf(1,0) and f(1, 0) → cf(1,0) for
f ∈ Σc ∩ Σe, it now nondeterministically chooses between identifying p with 1
or with 0. In the first case, the constant rules p → 1, p → 0 are added, and in
the second p → 0, p → 1 are added. In the next iteration, no new constant rules
are added, and thus the construction terminates. It has two runs r1 and r2. The
generated rewrite systems ̂R

Σe
c

r1 (E) and ̂R
Σe

c
r2 (E) share the rules in (5), but the

first contains p → 1 whereas the second contains p → 0.

Coming back to the general case, as in the proofs of Lemma 6 and Lemma 7,
we can show the following for the rewrite systems ̂R

Σe
c

r (E).

Lemma 10. For every run r, the term rewriting system ̂R
Σe

c
r (E) is produced in

polynomial time, and the system ̂R
Σe

c
r (E) ∪ R(Σc) is canonical.

Using the canonical rewrite systems ̂R
Σe

c
r (E) ∪ R(Σc), we can now charac-

terize when an identity follows from E w.r.t. commutativity of the symbols in
Σc, extensionality of the symbols in Σe \Σc, and c-extensionality of the symbols
in Σe ∩ Σc as follows.

Theorem 3. Let s0, t0 ∈ G(Σ,C0). The identity s0 ≈ t0 holds in every algebra
that satisfies E, commutativity for every f ∈ Σc, extensionality for every f ∈
Σe \ Σc, and c-extensionality for every f ∈ Σe ∩ Σc iff s0, t0 have the same
canonical forms w.r.t. ̂R

Σe
c

r (E) ∪ R(Σc) for every run r of the nondeterministic
construction.

The main ideas for how to deal with extensionality and c-extensionality in
the proof of this theorem are very similar to how extensionality was dealt with
in the proof of Theorem 2. As for all the other results stated without proof here,
a detailed proof can be found in [2]. Together with Proposition 2, Theorem 3
yields the following complexity results.
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Corollary 3. Consider a finite set of ground identities E ⊆ G(Σ,C0) ×
G(Σ,C0) as well as sets Σc ⊆ Σ and Σe ⊆ Σ of commutative and extensional
symbols, respectively, and two terms s0, t0 ∈ G(Σ,C0). The problem of deciding
whether the identity s0 ≈ t0 holds in every algebra that satisfies E, commutativ-
ity for every f ∈ Σc, extensionality for every f ∈ Σe \ Σc, and c-extensionality
for every f ∈ Σe ∩ Σc is coNP-complete.

Coming back to Example 3, we note that φ = p ∨ ¬p is valid, and thus (by
Lemma 9), the identity f∨(p, f¬(p)) ≈ 1 holds in all algebra that satisfy Eφ and
interpret f as a commutative and c-extensional symbol. Using the rewrite system
generated by the run r1, we obtain the following rewrite sequence: f∨(p, f¬(p)) →
f∨(1, f¬(p)) → f∨(1, f¬(1)) → f∨(1, 0) → 1. For the run r2, we obtain the
sequence f∨(p, f¬(p)) → f∨(0, f¬(p)) → f∨(0, f¬(0)) → f∨(0, 1) → 1. Thus, for
both runs the terms f∨(p, f¬(p)) and 1 have the same canonical form 1.

6 Conclusion

We have shown, using a rewriting-based approach, that adding commutativity
and extensionality of certain function symbols to a finite set of ground iden-
tities leaves the complexity of the word problem in P. In contrast, adding c-
extensionality for commutative function symbols raises the complexity to coNP.
For classical congruence closure, it is well-known that it can actually be com-
puted in O(n log n) [12,13]. Since this complexity upper bound can also be
achieved using a rewriting-based approach [8,16], we believe that the approach
developed here can also be used to obtain an O(n log n) upper bound for the
word problem for ground identities in the presence of commutativity and exten-
sionality, as in Sect. 4, but this question was not in the focus here.

The rules specifying extensionality are simple kinds of Horn rules whose
atoms are identities. The question arises which other such Horn rules can be
added without increasing the complexity of the word problem. It is known that
allowing for associative-commutative (AC) symbols leaves the word problem for
finite sets of ground identities decidable [4,11]. It would be interesting to see what
happens if additionally (non-AC) extensional symbols are added. The approaches
employed in [4,11] are rewriting-based, but in contrast to our treatment of com-
mutativity, they use rewriting modulo AC. It is thus not clear whether the app-
roach developed in the present paper can be adapted to deal with AC symbols.

Regarding the application motivation from DL, it should be easy to extend
tableau-based algorithms for DLs to deal with individuals named by ground
terms and identities between these terms. Basically, the tableau algorithm then
works with the canonical forms of such terms, and if it identifies two terms (e.g.,
when applying a tableau-rule dealing with number restrictions), then the rewrite
system and the canonical forms need to be updated. More challenging would be
a setting where rules are added to the knowledge base that generate new terms
if they find a certain constellation in the knowledge base (e.g., a married couple,
for which the rule introduces a ground term denoting the couple and assertions
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that link the couple with its components). In the context of first-order logic and
modal logics, the combination of tableau-based reasoning and congruence closure
has respectively been investigated in [9] and [14].
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