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Abstract. Modern logic engines widely fail to decide axiom sets that are
satisfiable only in an infinite domain. This paper specifies an algorithm
that automatically generates a database of independent infinity axiom
sets with fewer than 1000 characters. It starts with complete theories of
pure first-order logic with only one binary relation (FOLRr) and generates
further infinity axiom sets S of FOLr with fewer than 1000 characters
such that no other infinity axiom set with fewer than 1000 characters
exists in the database that implies S. We call the generated infinity axiom
sets S “superpostulates”. Any formula that is derivable from (satisfiable)
superpostulates is also satisfiable. Thus far, we have generated a database
with 2346 infinity superpostulates by running our algorithm. This paper
ends by identifying three practical uses of the algorithmic generation
of such a database: (i) for systematic investigations of infinity axiom
sets, (ii) for deciding infinity axiom sets and (iii) for the development of
saturation algorithms.
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Modern logic engines for first-order formulas (FOL), such as Vampire, CVC4,
Spass or i-Prover, are very powerful in proving theorems (or refutations) or
in deciding formulas with finite models (counter-models). For formulas that
have only infinite models, however, these engines widely fail.! One exception is

! Exceptions include infinity axiom sets that can be decided by saturation, such as the
theory of immediate successors as stated in FOL with identity (cf. (14) on p. 15). How-
ever, in regard to FOL without identity, infinity axiom sets are only rarely solved, and
only a few of them are included in the Thousands of Problems for Theorem Provers
(TPTP) library, namely, problems SY0635+1 to SYO638+1. Among these problems,
only SYO638+1 can be solved by SPASS due to chaining rules, which directly apply
to the transitivity axioms. Furthermore, Infinox decides the finite unsatisfiability of

SY0638+1 only by virtue of the plain properties of the relation involved.
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Infinox, which decides the finite unsatisfiability of some relevant TPTP prob-
lems due to specific model-theoretic principles (cf. [3]).2 In contrast to Infinox,
we investigate how to gemerate hitherto unknown and intricate infinity axiom
sets (superpostulates) of FOLg to make it possible to decide an infinite number
of infinity axiom sets related to these superpostulates. No engine is currently
able to solve most of the superpostulates we generate.

In this paper, we refer only to FOLRg, i.e., FOL without function symbols, with-
out identity and with only one binary relation. Based on Herbrand’s reduction of
FOL to dyadic FOL, Kalmar has proven that FOLp is a reduction class (cf. [7]).
Boolos, Jeffrey and Burgess have defined and proven the algorithm for reducing
FOL to FOLg in modern terms (cf. [2], Sect. 21.3). Borger, Gradel and Gurevich
have specified prenex normal forms of FOL g-formulas with prenexes of the form
VAV (= [V3VY, (0,1)]-class) or of the form YWW3 (= [V33, (0, 1)]-class) as the two
minimal classes of FOL g with infinity axioms (cf. Theorem 6.5.4, p. 309) and have
presented the following two examples for the two classes (cf. [1], p. 307):

Va3yVz(—Rxx A Rxy A (Ryz — Rxz)) (1)
VaVyVz3u(—Rzx A Rxu A (Rxy A Ryz — Rxz)) (2)

They also specify another formula with the prenex V3V (cf. [1], p. 33):
VaIuVy(—Rxx A Rzu A (Ryr — Ryu)) (3)

(1) and (3) are both derivable from (2). Thus, to decide that the latter is
satisfiable, it is sufficient to decide that the former are likewise satisfiable. This
method of deciding infinity axioms can be extended by specifying infinity axioms
that imply other infinity axioms.

However, prenex normal forms do not provide a syntax that is suitable for
this task. Different prenex normal forms can be converted into each other by
equivalence transformation. For example, formula (2), which is a member of the
minimal class [V33, (0, 1)], can easily be converted into a member of the minimal
class [V3V, (0,1)], as shown in Table 1.

Table 1. Converting different prenex normal forms into each other

No. | Formula Strategy
(i) |VaVyVz3u(-Rzz A Rzu A (Rzy A Ryz — Rxz)) (2)
(i) | Vz=Rzz A VzIuRzu A VaVy(-Rzy V Vz(-Ryz V Rxz)) Miniscoping

(iii) | Vo Rxoxe A Va13ys Rx1yr A VezVay(—~Razazy V Vas(~Rxaxs V Rxzes)) Renaming

(iv) | Ve13y1 Voo VasVeaVes (~Rzoxs A Rziyr A (mRzszzy V (mRxaws V Rxgws))) | Prenexing

2 A further exception with respect to the engines on the TPTP site is Decider. This
engine is able to identify infinity axiom sets of pure FOL without identity due to
the implementation of a strong saturation algorithm that is not based on resolu-
tion. However, the complexity of the implemented algorithm is exponential, and the
Decider engine is not optimized for rapid decision making. Thus, it fails to decide
complex formulas within reasonable time and memory limits.
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Likewise, it may well be that a formula of the minimal class [V3V,(0,1)]
can be converted into a formula of a decidable class, e.g., with prenexes starting
with existential quantifiers followed by universal quantifiers (=3*v*, (0, 1)]-class).
Similarly, the distribution of bound variables in the matrix is not standardized in
prenex normal forms. Thus, many equivalent variations are possible. Therefore,
the syntax of prenex normal forms is not well suited for investigating the internal
properties and relations of infinity axioms.

This is why we do not refer to infinity azioms (and, thus, to prenex nor-
mal forms) in the following. Instead, we refer to the opposite of prenex normal
forms, namely, anti-prenex normal forms, in which the scopes of quantifiers are
minimized. We refer to infinity axiom sets in terms of sets of anti-prenex normal
forms. To do so, we define primary formulas via negation normal forms (NNFs)
as follows:

Definition 1. A first-order formula ¢ is primary (= in anti-prenex form) if ¢
is an NNF' and either

1. does not contain A or V or
2. contains A\ or V iff either
(a) any conjunction of n conjuncts (n > 1) is preceded by a sequence of
existential quantifiers of minimal length 1, where all n conjuncts contain
each variable of the existential quantifiers in that sequence, or
(b) any disjunction of n disjuncts (n > 1) is preceded by a sequence of uni-
versal quantifiers of minimal length 1, where all n disjuncts contain each
variable of the universal quantifiers in that sequence.

Thus, lines (ii) and (iii) of Table1 are conjunctions of three primary formulas,
while lines (i) and (iv) do not contain primary formulas. Any first-order for-
mula can be converted into a disjunction of conjunctions of primary formulas
(=FOLDNF); cf. [8] for an algorithm for doing so. Since the satisfiability of
a disjunction can be decided by deciding the satisfiability of each disjunct, we
consider only conjunctions of primary formulas or, analogously, (finite) sets of
axioms (= theories) in anti-prenex form.

Definition 2. An axiom set is a finite set of primary formulas.

Definition 3. An infinity axiom set is a finite set of primary formulas that is
satisfiable only within an infinite domain.

From here on, we will express all axiom sets of FOLg in standardized notation.

Definition 4. A set of primary formulas (axioms) of FOLg is in standardized
notation if

1. the binary predicate used is R and
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2. for each primary formula (axiom) A,
— the m universal quantifiers of A are binding variables x1 to x,, from left
to right and
— the n existential quantifiers of A are binding variables y, to y, from left
to right.

Ezample 1. In standardized notation, formula (2) is converted into the following
infinity axiom set:

VxlﬁRxlzl, Vxlﬂlezlyl, Vx1Vx2(—\Rx1x2 \Y VIg(“RIQJEg \Y RIlIg)) (4)

This axiom set was the example used by Hilbert and Bernays to motivate
proof theory by showing that the consistency of (4) cannot be proven by finite
interpretations (“Methode der Aufweisung”; cf. [6], p. 10). The third axiom
expresses transitivity.

Formula (3) is equivalent to the following infinity axiom set from [11], p. 183:

Vri-Rxixq, Ve (Rfclyl A\ V(EQ(“RICQZ’l \Y R$2y1)) (5)

Like (1), (3) and (5) are derivable from (4). The following infinity axiom set
(6) is taken from [2], p. 138:

VI1V$2(—|R1‘1I2 vV ﬁngzl),Vxlﬂlexlyl,V$1V$2 (—\R$1332 \2 V$3(—\Ra¢21‘3 vV Rwlxg)) (6)

Like (2), this infinity axiom set is equivalent to (4).

The formulas mentioned up to this point are examples of infinity axiom sets
of FOLRg given in the standard literature. They are all satisfiable by interpreting
Rzy as ¢ < y over Q. Thus, they are all derivable from the complete dense
linear order (DLO) axiom set without endpoints. In the following sections, we will
generate a system of DLO variants without identity, to which all of the mentioned
standard examples belong. We use the term “system of formulas” to refer to
a recursive set of formulas generated by rules that can be implemented by a
computer program. Our investigation may serve as a case study for investigating
systems of infinity axiom sets of FOLg.

Our goal is the automated generation of a system of consistent infinity axiom
sets S of a limited length L such that no other infinity axiom sets S2 of length
<L exist such that S2 implies S. We call these infinity axiom sets S “superpostu-
lates”. Superpostulates enable the reduction of a large number of infinity axiom
sets to a small number of infinity axiom sets of limited length. The term and
the general idea of studying systems of superpostulates originated in the work
of Sheffer (cf. [12]). Sheffer, however, neither published his work nor developed
his logic project to a full extent. His student Langford made use of Sheffer’s
idea in [9]. Langford intended to prove that the axiom set for linear orderings is
a complete superpostulate. Urquhart (cf. [14], p. 44), however, objected to the
correctness of his proof and showed how to correct it. Langford proved similar
results for the theories of betweenness and cyclic order. All of his examples are
equivalent to formulas of decidable classes without existential quantifiers and
with identity, which have the finite model property (cf. [1], Theorem 6.5.1, p.
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307). To our knowledge, neither Langford nor Sheffer studied superpostulates in
terms of infinity axiom sets.

The following sections investigate infinity axiom sets related to the complete
DLO axiom set without endpoints. Section 2 introduces further terminology and
specifies a superpostulate DLOg for FOLg, which is a DLO variant without
identity and without endpoints from which all of the mentioned infinity axiom
sets follow. After having specified a complete infinity axiom set, Sect. 3 specifies
an infinite sequence of infinity axiom sets, each strictly implying the next and
all implied by (5). Section4 then specifies a system of superpostulates based on
DLOg; Sect. 5 refers to a system THS based on the complete theory of immedi-
ate successors without identity. Finally, we conclude by identifying several prac-
tical uses of our method of algorithmic generation of systems of superpostulates
in Sect. 6.

2 Superpostulates

We first introduce some terminology as a basis for defining the term superpos-
tulate.

Definition 5. An axiom A is independent of a set of axioms S if A is not
implied by S and S N A is consistent.

Definition 6. An axiom set A is complete in FOLg if for any FOLg-formula
B, either B or =B follows from A.

Remark 1. Throughout this paper, we consider FOLg. This means that an axiom
set A is complete iff no FOLg-formula B is independent of A.

We measure the length of an axiom set by the number of characters it contains
in standardized notation.

Definition 7. An aziom set A of length < L is L-complete in FOLg if for any
FOLg-formula B of length < L, either B or =B follows from A.

Remark 2. Definition 7 implies that no formula B of length < L exists such that
A of length < L is strictly implied by B if A is L-complete.

Definition 8. An aziom set A is minimal if A does not contain any redundant
part that can be eliminated to result in a logically equivalent axiom set.

Definition 9. A superpostulate (SP) is a minimal and consistent set of inde-
pendent axioms that is L-complete.

It is desirable to define superpostulates as complete (and not merely L-complete)
theories. However, we abstain from doing so because we intend to define a prac-
tical algorithm for generating infinity axiom sets. The standard of preserving
completeness, however, faces both practical and theoretical problems, as we will
show in Sect.4. Thus, we merely presume that the generation of a system of
superpostulates is based on complete theories and aims for completeness rela-
tive to a length L of up to 1000 characters (cf. p. 11).
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Definition 10. An infinity superpostulate is a satisfiable superpostulate that
has only infinite models.

Any semi-decider is able to prove that a formula is implied by or inconsistent
with another formula or finite axiom set. Since these are the only two options
in the case of complete superpostulates, it is decidable whether a given formula
is implied by a complete superpostulate. Furthermore, all (finite) infinity axiom
sets that are implied by a set of infinity superpostulates are decidable.

From the following axiom set DLOg, all infinity axiom sets of the standard
literature mentioned in Sect. 1 follow:

Va1~ Rz, Vo Iy Reyr, Vo 3y Ry,
levgcg(ﬁRxle V Va3 (ﬁR.’L‘Ql‘g V lexg)), (7)
Vmng(Rxle vV V$3(R$2$3 vV ﬂRZ‘1l‘3)),

VxNzg(—'Rzla:g \Y E'yl (R,Ilyl N Ryldig))

Axiom 1 (irreflexivity), Axioms 2 and 3 (no right endpoint and no left end-
point), Axiom 4 (transitivity) and Axiom 6 (density) are identical to axioms of
DLO without endpoints. However, DLO also contains trichotomy, i.e., the axiom
VaVy(RxyV RyxVx = y), which involves identity. The trichotomy axiom of DLO
is replaced by Axiom 5 (transitivity of =R) in DLOg.

Formula (7) contains all of the axioms of the infinity axiom set given in
formula (4). Additionally, Axioms 3, 5 and 6 are added to those in (4). These
axioms are not essential for satisfiability in an infinite domain.

Definition 11. An aziom A of a superpostulate SP is essential if SP without
A is no longer an infinity axiom.

The set of the essential axioms plus the negation of an inessential axiom is also
an infinity axiom set, but it is not necessarily a complete one.

In the following, we prove that (7) is a complete superpostulate by proving
the relevant properties.

Theorem 1. (7) is an infinity aziom set.

Proof. If (7) is satisfiable, then it is satisfiable only in an infinite domain; this
is because it implies (4), which is known to be an infinity axiom set. Thus,
it remains to be shown that (7) is satisfiable. This is done by providing the
following model over Q for (7): S(R) = {(x,y) | * < y}. It can be proven that
this interpretation is indeed a model by paraphrasing each axiom. We use the
common forms of the transitivity axioms (Axiom 4 and Axiom 5) and the density
axiom (Axiom 6) for convenience:
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Axiom 1 Vr-Rxx

$(Axiom 1) | All rational numbers (r.n.) are no less than (<) themselves (irreflexivity of <)

Axiom 2 Va13y1 Rriyr

S(Axiom 2) | For all r.n. z1, some r.n. y; exists such that 1 < y1 (no right endpoint)

Axiom 3 Va13y1 Ryi1z1

S(Axiom 3) | For all r.n. z1, some r.n. y; exists such that y1 < z1 (no left endpoint)

Axiom 4 Va1VaoVes(Rrize A Rrors — Rxix3)

S(Axiom 4) | For all r.n. z1, z2, and 3, if 21 < x2 and z2 < x3, then z1 < x3 (transitivity
of <)

Axiom 5 Va1VaoVes(—Rx1x2 A “"Rxoxs — —Rzixs)

S(Axiom 5) | For all r.n. z1, x2, and z3, if 1 £ x2 and z2 £ 3, then z1 £ z3 (transitivity
of £)
Axiom 6 Va1Vao(Rrize — Jy1(Rz1y1 A Ryiz2))

S(Axiom 6) | For all r.n. 1 and x9, if 1 < x2, then there exists an r.n. y; such that
z1 < y1 and y1 < z2 (density)

Therefore, (7) is satisfiable; this is so only in an infinite domain, which means
that (7) is an infinity axiom set. O

Theorem 2. (7) is minimal.
Proof. This is ensured by systematically producing the following:

1. all possible axiom sets A’ from (7) with one axiom eliminated (case 1a) or
with the conjunct in Axiom 6 eliminated (case 1b),

2. all possible axiom sets A” with one disjunct in Axioms 4 to 6 eliminated (case
2), and

3. all possible axiom sets A" obtained by (a) reducing the universal quantifiers
in Axioms 4 to 6 and (8) replacing Axiom 2 and Axiom 3 with Va1 Rx121 or
Jy1 Ry1y1 (case 3).

In case 2 and case 3 (), the resulting sets A” and A" have been proven to
be inconsistent by Vampire in any arbitrary case; in case 3 («), the resulting
axioms in A’ have been proven to be redundant by Vampire. In case la, the
results of eliminating Axiom 1 or Axiom 4 have been proven to be finite axiom
sets by Vampire. Therefore, the resulting axiom sets are not equivalent. Axioms
2, 3, 5 and 6 are not redundant (and, thus, cannot be eliminated) because they
can be proven to be independent axioms by replacing them with their negations,
which, in turn, results in infinity axiom sets. This can be seen by referring to
the following interpretations:
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Axiom 1 | Axiom 2 | Axiom 3 | Axiom 4 | Axiom 5 | Axiom 6 | &

+ - + + + + x <y over QF

+ + - + + + x <y over Q”

4 + + + = + x<y—1over Q
+ + + + + - T <y over Z

The conjunct in Axiom 6 is not redundant because eliminating it results in
a redundant axiom, whereas Axiom 6 itself is not redundant. a

Theorem 3. (7) is complete.
Proof. We extend (7) by the following defining axiom of x1 = xs:
Va1Vao(r1 = x9 < Vaz(Rrixs <« Rroxs)) (8)

The union of (7) and (8) is equivalent to DLO without endpoints (as proven by
Vampire). Thus, DLO without endpoints is a conservative extension of (7) and,
by conservativeness, (7) is complete if DLO is complete.® Since DLO without
endpoints is known to be complete, (7) is also complete. O

We say that an infinity axiom set B is weaker than A if B is strictly implied by
A, that is, A+ B, but B+ A does not hold. Before we consider how to generate
further superpostulates, let us first consider the opposite: infinity axiom sets
that are as weak as possible.

3 Weak Infinity Axiom Sets

The set given in formula (5) is the weakest infinity axiom set mentioned in the
standard literature. The following infinite axiom sets, however, strictly follow
from (5):

Va13y (Reiyn A Ve (~Rzoxy V Raayr) A —Ryiyr) 9)
Va1 3y1 (Rz1y1 A “Ryi21 A Ve (~Rxazy V Rxayr)) (10)

Formula (9) strictly follows from (5), and (10), in turn, strictly follows from
(9). We first prove that (10) is an infinity axiom. We then show that it can
still be systematically weakened without losing the property of being an infinity
axiom set.

Theorem 4. (10) is an infinity axiom.

Proof. We first show that there exists a denumerable model of (10) and then
show that (10) has no finite model.

We assume the natural numbers as the domain and interpret Rzy as z < y.
Then, it is true that for all natural numbers z, there exists a number y; such

3 For extensions by definitions, cf., e.g., [13], section 4.6.
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that 1 < y; and y; £ x1, and that for all zs, if 5 < x1, then x5 < y1. Thus, a
denumerable model of (10) exists.

We prove that (10) has no finite model by contradiction. Suppose that there
is a finite model M of (10), where the elements of its domain are listed as
mi, ..., M. Let n; = my. In the following, we consider how to satisfy the three
conjuncts in the scope of Vz13y;. By the first conjunct, there must be some n in
the domain such that (ny,n) is in $(R). Let ny be the first element for which this
is true. Thus, we have (n1,nq2) € S(R). By the second conjunct, we have that
(n2,n1) ¢ S(R). It follows that ny # ng is in F(R). Again, by the first conjunct,
there must be some n such that (ng,n). Let ng be the first element for which
this is the case; thus, we have (ng,n3) € $(R) and, by the second conjunct,
(n3,n2) ¢ S(R), and therefore, ny # n3. By the third conjunct, we have either
(n1,n2) ¢ S(R) or (n1,ng) € S(R). Since we already have (ni,n2) € S(R),
the second of these statements, i.e., (n1,n3) € S(R), must be true. Then, by
the second conjunct, we have (n3,n;) ¢ S(R). Thus, we also have n; # ng
(in addition to na # m3) since we have (ng,n1) ¢ S(R) and (n1,n3) € I(R).
Continuing in this manner, we obtain n4, which is different from all of ny, ns, and
ng3; then, we obtain ns, which is different from n; to n4; and so on. However,
by the time we reach nyyi, we will have exceeded the number of elements of
the domain. Thus, our supposition that the domain of M is finite leads to a
contradiction. Therefore, (10) has no finite model. O

Formula (10) is a simple and weak infinity axiom that no TPTP engine is
able to decide.*

Theorem 5. From (10), an infinite number of strictly weaker infinity axiom
sets follow.

Proof. We consider the iterative derivation of strictly weaker axioms from (10)
by applying the rule A+ BV A (VI), as shown in Table 2.

Table 2. Infinity axioms implied by (10)

No. | Axiom Rule
i) Vx13y1 (Rx1y1 A - Ryix1 A VCEQ("RiL'Qxl \Y R:l‘gyl)) (10)
ii) | Vz13y1(Rziy1 A ~Ryi1z1 AVre(Vez—Rrsze V —Rrax1 V Rrayi)) \ai

iil) | Vo1 3y1 (Rz1y1 A—Ry1z1 AVze (Va3 (Vega—~RraxsV-Rxsza)V-Rrox1V Rroyr)) | VI

iV) Vx13y1 (Rx1y1 A Ryi1x1 AVza (ng (VLE4 (Vx5ﬂRx5m4 Vv ﬁR:E4I3) Vv ‘!Rxgztg) V| VI
—Rxaz1 V Rzay1))

Lines (ii), (iii), etc., follow from (10) with the application of nothing but VI,
which is a valid derivation rule. Each result is, in turn, a primary formula. To
verify that iteratively applying VI generates a sequence of weaker infinity axiom

4 This can be checked on the site http://tptp.org/cgi-bin/SystemOnTPTP.
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sets, one must determine how the proof of Theorem 4 still applies. Formula (10)
allows one to directly conclude that n; # ng once ny # ng and ng # ng are
established. Applying VI once (cf. line (ii)), however, allows one to conclude
only that either (ny,n3) € S(R) or (n4,n2) ¢ I(R) (where ny is the element
introduced by V3, which cannot be presumed to be either identical to or dif-
ferent from mq, na, or ng). Due to the first two conjuncts, ny # ng follows from
(n1,n3) € S(R), and ny # ny follows from (ng, ne) ¢ I(R). Considering further
objects of the domain introduces further objects that must be different from
all objects in one of the established alternative sets of objects. With each fur-
ther application of VI, further alternative sets arise. Thus, each axiom resulting
from VI establishes a wider range of objects that cannot be identical. Therefore,
each application allows for less powerful inferences concerning the non-identity
of the elements in pairs satisfying S(R), and thus, each resulting axiom is strictly
weaker. Nevertheless, the resulting axioms still necessitate that at least one of
the newly considered objects (e.g., n3 and n4 in step 2 of the argument after
ny # no is established in step 1) in each step of the argument must be different
from at least one of the already considered objects (e.g., n1 and no in step 1).
Therefore, the resulting axioms still cannot be satisfied under the assumption of
only a finite number of objects. Consequently, we generate an endless sequence
of increasingly weaker infinity axioms. O

There are many further infinite sequences of non-equivalent infinity axiom
sets that are implied by (7). They all can be proven to be satisfiable by proving
that they follow from (7).

4 A System of Superpostulates: The DLOg-System

We are searching for a system of infinity superpostulates that is automatically
generated by transformation rules from a complete theory such as (7). The rules
specified in this section are a starting point for the general project of generating
systems of infinity superpostulates from a given complete axiom set. We do not
claim that our third rule preserves completeness.

Definition 12. A DLOg-system is a system of infinity superpostulates gener-
ated from (7).

Definition 13. An infinity axiom set is a DLOg-variant if it is derivable from
a superpostulate of a DLORg-system.

The following two rules yield structurally similar infinity axiom sets of FOLg.
They trivially preserve the property of being a complete infinity axiom set in
the case of FOLR:

Rule 1: Exchange all negated literals for non-negated literals and all non-
negated literals for negated literals.
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Rule 2: Exchange the variables in positions 1 and 2 in all atomic propositional
functions.

These rules do not necessarily yield new (non-equivalent) infinity axiom sets.
Rule 1, for example, converts Axiom 4 of superpostulate (7) into Axiom 5 and
vice versa. Rule 2 does not change Axiom 1, does convert Axiom 2 into Axiom
3 and vice versa, and yields equivalent axioms in the cases of Axioms 4 and 5.
In fact, applying these rules to our superpostulate (7) results in only one further
complete superpostulate:

Vzi1Rx121, Vo1 Iy~ Ry, Ve Iy~ Ry 21,
Va1Veo(Rx12o V Va3 (Rrexs V nRryxg)), (1)
Vxlvgcg(—\Rxle V V3 (_\R.%‘gl‘g V R$1$3))7
Vmng(Rxlxg V Hyl(_'Rl‘lyl A\ _‘Rylxg))

The crucial problem in considering systems of superpostulates is specifying
rules beyond Rules 1 and 2. Replacing Axiom 2 or Axiom 3 with its negation
results in a complete variant of DLO » with endpoints.’? Thus, one might consider
a rule that replaces axioms with their negations. However, the case in which
completeness is preserved by simply replacing an axiom with its negation is
an exceptional one. This is true only if one cannot replace an axiom A of a
complete theory S with a strictly weaker axiom that is still independent of S
without A. For example, there is no primary formula X that is strictly implied
by Vz13y; Rx1y1 (=Axiom 2) and is not implied by Axiom 1 and Axioms 3-6
of (7). The same does not hold, e.g., for Axiom 1. Therefore, simply replacing
Axiom 1 of (7) with its negation does not preserve completeness since Jy; 7 Ry1y1
could be added as an independent axiom.

To preserve completeness when replacing an axiom A of an axiom set S with
its negation, one must generate an axiom set S’ that is minimally weaker than
S and does not imply A.

Definition 14. An aziom set S2 is minimally weaker than an aziom set S1 if
S2 is strictly weaker than S1 and no intermediate axiom set S3 exists such that
S3 is strictly weaker than S1 and S2 is strictly weaker than S3.

Only adding the negation of an axiom A of S to S/, which is minimally weaker
than S, preserves completeness. However, the generation of a minimally weaker
axiom set S’ from a given axiom set S gives rise to intricate practical and
theoretical problems. We cannot even prove whether a minimal weaker axiom
set S’ exists for any axiom set S. The main theoretical and practical problem
is that one must specify some upper bound for an axiom set that preserves
completeness if one axiom is replaced with its negation. We leave it as an open

5 The same is not true in the case of negating Axiom 2 and Axiom 3. DLO with
both endpoints is complete only if one adds the axiom Jy; Jy2y1 # y2. Without this
further axiom, the remaining axioms have a trivial finite model in a domain with
only one object. We abstain from generating a DLO g-variant with left and right
endpoints.
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question whether this problem is solvable and, if so, how it can be solved. Instead,
we confine our DLOg-system to superpostulates of a certain length.
To do so, we adopt the following two restrictions:

Restriction 1: We set an upper bound for any considered axiom set with a
length L of 1000 characters.

Restriction 2: We make use of an incomplete calculus that does not significantly
increase the length of formulas when generating implied formulas.

These restrictions are justified by the practical aim of generating a system
of infinity superpostulates.

Due to our restrictions, the considered superpostulates are simple enough to
make use of the following assumption:

Assumption 1. If one of the following cases holds, this is proven by the stan-
dard casc-mode of Vampire within a time limit of 300s:

1. a considered part of a considered axiom set is redundant,

2. a considered minimal axiom set is inconsistent, or

3. the considered axiom set is implied by another considered axiom set or implies
either (10) or (12).

In fact, Vampire is able to almost immediately identify these cases for the simple
axiom sets that we consider here in nearly all cases. By Assumption 1, we assume
that Vampire can solve the semi-decidable problems 1 to 3 for axiom sets with
fewer than 1000 characters to obtain a positive result within 300s. In other
words, our algorithm runs Vampire with a time limit of 300 s, and if the problem
is not solved within this time limit, then we assume a negative solution. The
reliability of Assumption 1 is based on extensive experience.

To generate strictly weaker axioms A’ from an axiom A by applying an infer-
ence rule, we make use of an incomplete calculus that does not include rules for
the introduction of disjuncts (VI) and conjuncts (A), which would increase the
length of axioms. For this reason, we cannot ensure the generation of minimally
weaker axiom sets and, thus, do not necessarily preserve completeness. Instead,
we consider only rules concerning quantifiers: one rule for changing the order of
quantifiers (QEx), two for universal quantifier elimination (VE1 and VE2) and
two for existential quantifier introduction (3I1 and 3I2); cf. Table 3. The abbre-
viated notations for the rules specify only the relevant syntactic changes. For
example, FuVr - VYv3p means that the order of two quantifiers is changed in a
primary formula. We tacitly presume that a sequence of universal (existential)
quantifiers is orderless; each of the quantifiers of such a sequence can be consid-
ered as either the leftmost or rightmost quantifier of the sequence. p/v means
that p is replaced with v. In the case of VE1, v may also be replaced with the
variable of a new existential quantifier preceding the resulting axiom. Vvp(v, v)
indicates that v occurs more than once in the scope of Yv. ¢(u/v, 1) means that
at least one occurrence of p is replaced with v. We tacitly presume that new
variables are used if a new quantifier is introduced.
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Table 3. Quantifier rules

QEx: JuVv - Vrdu
VEL: 3pvve(p,v) = 3pe(p,v/w) - 311 Vvp(v,v) = Vv3ue(v,v/w)
J12: Spep(p, p) = IpIve(p/v,p) VE2: VuVve(p,v,v) = Vup(p, v/ )

We establish the following rules for the application of the quantifier rules.
VE1 can be applied such that Ju is taken from an axiom that differs from A after
having variables renamed and PN laws applied to the effect that Vv is directly
to the right of Ju. Before VE1 can be applied to quantifiers of one and the same
axiom, PN laws must be applied to the effect that existential quantifiers that are
separated by A from other existential quantifiers are pulled outwards. The same
holds for universal quantifiers that are separated by V from other universal quan-
tifiers. Thus, the numbers of quantifiers in a sequence of existential quantifiers
and a sequence of universal quantifiers from which Ju and Vv are to be chosen
are increased. VE2 and QEx can also be applied to universal quantifiers that
are separated by V; QEx additionally can be applied to existential quantifiers
that are separated by A from the universal quantifier. In these cases, PN laws
are applied to exchange the order of the universal quantifiers and A or V. The
results of the application of these rules are converted into a minimized FOLDNF
in standardized notation (cf. p. 3). One application of a quantifier rule results
in conversion from a set of primary formulas to a set of primary formulas. Thus,
each application comprises the application of equivalence rules to prepare for the
application of QEx, VE1 or VE2 and to convert the result into an FOLDNF. In
the case in which the resulting FOLDNF is, in fact, a disjunction, we consider
only disjuncts as axiom sets that are strictly implied by the axiom set prior to
the application of a quantifier rule. Furthermore, we consider each conjunct of a
disjunct of an FOLDNF as a separate axiom.

Given an axiom set S that includes axiom A, we consider the totality of all
possible applications of the 5 quantifier rules to A. In the case of VE1, this may
involve different orders of the prior application of PN laws in addition to the
elimination of the universal quantified variable by variables bound by different
existential quantifiers. QEx can be applied to all 3u and all Vv such that Ju
occurs in a sequence of existential quantifiers directly to the left of a sequence of
universal quantifiers containing Vv. 311 and 312 may replace variables in different
positions. The totality of possible applications of QEx, VE1, VE2, 311, and JI2
to A realizes all different applications of the five rules.

Our method of generating a DLOg-system is based on all possible non-
redundant applications of the quantifier rules starting from (7).

Definition 15. An application of a quantifier rule to an axiom A of an axiom
set S is non-redundant if it results in a strictly weaker axiom set S’ and the
ariom A’ that replaces A in S is not implied by S’ without A’.

If, however, S’ implies S or if A’ is not independent in S’, then the application
of a quantifier rule is redundant.
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To ensure that all superpostulates are, in fact, infinity axiom sets, we consider
only superpostulates that imply the very weak infinity axiom set given in (10)
or its counterpart given in (12), as generated by Rule 2:

Vridy, (Ryll‘l A Rxiy1 A VJ?Q(“RJHQL‘Q vV Ry1$2)) (12)

DLOpg without endpoints, with a left endpoint, and with a right endpoint all
imply either (10) or (12).

By Assumption 1 and our quantifier rules, it is possible to apply the following
algorithm to generate a set S* of further superpostulates from a superpostulate
S.

Algorithm 1. Generate S* from S, which includes A, as follows:

1. Set S* ={}.

2. Specify the set A’ of all non-redundant applications of the quantifier rules to

A.

Generate the powerset A” of A’.

4. Traverse the members Ay, Ao, ..., Ay of A”, beginning with the largest set
A’. Replace A in S with the members of A; and denote the result by S’; if
A; = {}, then S’ = S without A.

(a) Delete redundant axioms and redundant subexpressions in S’.

(b) If S§',—A is fewer than 1000 characters and consistent, then delete all
proper subsets of A; in A”.

(c¢) If =A is additionally independent of S’, then denote the conversion of the
resulting axiom set S’ U {—A} set into standard notation by S”.

(d) If S” implies (10) or (12), then append S” to S*.

©w

Remark 3. For simplicity, our implemented algorithm in fact considers only A’
(instead of its powerset A”) and merely deletes redundant axioms (and no other
subexpressions) in S”.

Ezample 2. Applying Algorithm 1 to Axiom 1 of (7) results in a set S* with the
following superpostulate as its only member:

Jy1 Ry1yr, Ve 3y ~Rayr, Vo Iy~ Ry xq,
Va13y1 (Reiyn A ~Ryiyr), Va1 Iy (Ryixr A ~Ryy), (13)
Axioms 4, 5, and 6 of (7)

Note that the application of VE1 to replace x; in Axiom 1 of (7) with y; in
Axiom 6 is redundant. Set (13) can, in turn, serve as a starting point for the
application of Algorithm 1. Applying Algorithm 1 to Axiom 1 of (13) results in
(7) once again (consider the implied minimization strategies!).

Let us use S** to denote the result of applying Algorithm 1 to all of the
axioms of S; S** is the union of all results S*. Furthermore, let us use St to
denote the totality of the generated superpostulates. Finally, we use S*** to
denote the subset of S** that contains only superpostulates that are not implied
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START

INPUT: Apply Algorithm 1 to Delete members of
St= all axioms ofthe i-th | ' S* 5 S*impliedby  |—»/ S**
{Complete Theory, e.g, member of St members of St
DL )

[E1] i<
i=i+1 length of St — STOP

Fig. 1. Flowchart of Rule 3

by superpostulates in St. Figure 1 provides a flowchart of our general algorithm
(Rule 3).

Based on Algorithm 1, we generate a DLO g-system by means of the following
rule:

Rule 3: Starting from (7), generate infinity superpostulates by iteratively
applying Algorithm 1 to all axioms of all generated superpostulates until
no further superpostulates are generated. Restriction: Delete superpostulates
if they are implied by previously generated superpostulates.

The restriction ensures that no other infinity axiom set of Sp strictly implies
S; this is the best we can do to generate L-complete infinity axiom sets up to
a length of 1000 characters. Furthermore, the restriction avoids repetitions and
loops (cf. the application of Algorithm 1 to Axiom 1 of (13) in Example 2).

Remark 4. With our implementation of Rule 3, we have generated 732 super-
postulates in approximately 1000 h of run time. We have generated a database of
2196 infinity superpostulates in TPTP format by applying Rules 1 to 3 starting
with DLOg. None of these superpostulates can be currently solved by any of the
TPTP-engines. Additionally, we have generated a database of 60 weak infinity
DLOg-variants. 8 of them can be solved by SPASS within 60s.

5 The THSg-System

A prominent alternative complete theory to start with is the theory of immediate
successors (THS), which can be defined as follows in familiar notation:

Vr—Rxzx,
VaIyVz(Rrz « z = y),
JaVy(Vz-Rzy < y = x),

Vo(JyRyx — FyVz(Rzx — 2z =y))

(14)

The following reduction THSg of THS to FOLR can be proven to be complete
by adding the defining axiom VaVy(z = y < Vz(Rzz < Ryz)AVz(Rzx < Rzy))
and proving the equivalence to (14):
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Vri-Rxixq, Iy Vo1~ Rxiyr, Ve, Iy Reiya,
Vo Voo (Vas(—nRxixs V " Rxoxs) V Vay(—Rraxy V Rraxs)), (15)
VaVao(Vas(—Rxsxy V " Rrsze) V Vas(—Rxizs V Rroxy)),
Vo 1Vao(Vas(—mRxixs V Rrexs) V y1 Ryi122) V ys Ryox1)

Vampire is able to solve (14) by saturation in 300s, but it cannot solve (15)
or variants thereof. Axioms 1, 2, and 3 of THSg are part of DLOg with a left
endpoint, and Axiom 6 follows from Axiom 5 of DLOg. Axioms 4 and 5 of THSg
contradict Axioms 1, 2, and 6 of DLOg. Axioms 4, 5, and 6 of DLOg contradict
Axioms 1, 2, and 4 of THSR.

Remark 5. Our algorithm has generated a database of 156 superpostulates from
(15) and terminated after approximately 200 h of run time. 32 of them are solved
by CVC4. None of the 156 superpostulates implies any of the superpostulates of
the DLOR-system or any of the weak DLO gp-variants.

6 Conclusion

From a theoretical point of view, it would be desirable to generate a database
of complete infinity axiom sets. However, this would involve the problem of
generating minimally weaker infinity axiom sets that may be of arbitrary length.
Here, our intent is to provide a pragmatic algorithm that, in fact, generates
significant infinity axiom sets. Thus, we restrict the generated infinity axiom sets
to a certain length. This restriction does not imply that the generated sets are
not complete theories; rather, it means only that we are unable to guarantee that
they are. Our algorithm starts with a complete theory of FOLg, such as DLOg or
THSg, and automatically generates further infinity axiom sets .S with fewer than
1000 characters such that, roughly speaking, no other infinity axiom sets with
fewer than 1000 characters exist that strictly imply infinity axiom sets 5. We say
“roughly speaking” here because in addition to limiting the set length, we use
an incomplete calculus without inference rules that would significantly increase
complexity, and we test the restriction only on the basis of already generated
entries in our database. We believe that the theoretical question concerning an
(unrestricted) algorithm that does, in fact, preserve completeness is an important
one, but we do not aim to answer it in this paper. Instead, our final objective
is a practical algorithm, and we maintain that we have achieved this aim. Thus
far, we have generated more than 2250 superpostulates in 10 weeks of run time.
All of these superpostulates are hard problems.

Note that it is not trivial to automatically generate infinity axiom sets. Infin-
ity axiom sets (not to say systems of infinity axiom sets) (i) are rarely encoun-
tered, (ii) can seldom be solved by logic engines, (iii) are hard problems even
when they are short in length, and (iv) have not been systematically studied;
moreover, (v) only a few of them exist in the TPTP library, and no systematic
archive of infinity axiom sets is available. Therefore, we believe that our database
is of practical importance for (i) systematically studying infinity axiom sets, (ii)
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deciding the satisfiability of additional infinity axiom sets that follow from our
database, and (iii) improving saturation algorithms by enabling the decidabil-
ity of infinity axiom sets. In regard to (i), we are investigating the question
of whether starting our algorithm with different complete FOLg theories will
yield identical superpostulates. MacPherson conjectured that any w-categorical
axiom set has the strict order property (cf. [10] and [4] for detailed discussions).
Proofs of the property of being w-categorical widely depend on identity. In light
of MacPherson’s conjecture, it would be interesting to study the limits of the
DLOg-system. We have also reduced Goldbach’s conjecture to FOLg and intend
to study its internal relations with other infinity axiom sets in our still-growing
database. In regard to (ii), we have proven in Sect.3 that an infinite number
of additional infinity axiom sets follow from our superpostulates. A database of
superpostulates will make it possible to decide the satisfiability of infinity axiom
sets that are implied by one of the entries of the database. In regard to (iii),
we are currently working on saturation algorithms that can cope with infinity
axiom sets. We know from our work how important it is to test such algorithms
on a variety of intricate examples during development.
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