
Communication-Efficient (Client-Aided) Secure
Two-Party Protocols and Its Application

Satsuya Ohata1 and Koji Nuida1,2

1 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
satsuya.ohata@aist.go.jp

2 The University of Tokyo, Tokyo, Japan nuida@mist.i.u-tokyo.ac.jp

Abstract. Secure multi-party computation (MPC) allows a set of par-
ties to compute a function jointly while keeping their inputs private.
Compared with the MPC based on garbled circuits, some recent re-
search results show that MPC based on secret sharing (SS) works at a
very high speed. Moreover, SS-based MPC can be easily vectorized and
achieve higher throughput. In SS-based MPC, however, we need many
communication rounds for computing concrete protocols like equality
check, less-than comparison, etc. This property is not suited for large-
latency environments like the Internet (or WAN). In this paper, we con-
struct semi-honest secure communication-efficient two-party protocols.
The core technique is Beaver triple extension, which is a new tool for
treating multi-fan-in gates, and we also show how to use it efficiently.
We mainly focus on reducing the number of communication rounds, and
our protocols also succeed in reducing the number of communication
bits (in most cases). As an example, we propose a less-than comparison
protocol (under practical parameters) with three communication rounds.
Moreover, the number of communication bits is also 38.4% fewer. As a
result, total online execution time is 56.1% shorter than the previous
work adopting the same settings. Although the computation costs of our
protocols are more expensive than those of previous work, we confirm
via experiments that such a disadvantage has small effects on the whole
online performance in the typical WAN environments.

1 Introduction

Secure multi-party computation (MPC) [33,17] allows a set of parties to com-
pute a function f jointly while keeping their inputs private. More precisely, the
N(≥ 2) parties, each holding private input xi for i ∈ [1, N], are able to com-
pute the output f(x1, · · · , xN) without revealing their private inputs xi. Some
recent research showed there are many progresses in the research on MPC based
on secret sharing (SS) and its performance is dramatically improved. SS-based
MPC can be easily vectorized and suitable for parallel executions. We can obtain
large throughput in SS-based MPC since we have no limit on the size of vec-
tors. This is a unique property on SS-based MPC, and it is compatible with the
SIMD operations like mini-batch training in privacy-preserving machine learn-
ing. We cannot enjoy this advantage in the MPC based on garbled circuits (GC)

ar
X

iv
:1

90
7.

03
41

5v
2

 [
cs

.C
R

]
 4

 J
an

 2
02

0

2 S. Ohata and K. Nuida

or homomorphic encryption (HE). The most efficient MPC scheme so far is
three-party computation (3PC) based on 2-out-of-3 SS (e.g., [2,9]). In two-party
computation (2PC), which is the focus of this paper, we need fewer hardware
resources than 3PC. Although it does not work at high speed since we need
heavy pre-computation, we can mitigate this problem by adopting slightly new
MPC models like client/server-aided models that we denote later.

In addition to the advantage as denoted above, the amount of data transfer
in online phase is also small in SS-based MPC than GC/HE-based one. How-
ever, the number of communication rounds we need for computation is large
in SS-based MPC. We need one interaction between computing parties when
we compute an arithmetic multiplication gate or a boolean AND gate, which is
time-consuming when processing non-linear functions since it is difficult to make
the circuit depth shallow. This is a critical disadvantage in real-world privacy-
preserving applications since there are non-linear functions we frequently use
in practice like equality check, less-than comparison, max value extraction, ac-
tivation functions in machine learning, etc. In most of the previous research,
however, this problem has not been seriously treated. This is because they as-
sumed there is (high-speed) LAN connection between computing parties. Under
such environments, total online execution time we need for processing non-linear
functions is small even if we need many interactions between computing parties
since the communication latency is usually very short (typically ≤ 0.5ms). This
assumption is somewhat strange in practice, as the use of LAN suggests that
MPC is executed on the network that is maintained by the same administra-
tor/organization. In that case, it is not clear if the requirement for SS that
parties do not collude is held or not. Hence, it looks more suitable to assume
non-local networks like WAN. However, large communication latency in WAN
becomes the performance bottleneck in SS-based MPC. We find by our experi-
ments that the time caused by the communication latency occupies more than
99% in some cases for online total execution time. To reduce the effect of the
large communication latency, it is important to develop SS-based MPC with
fewer communication rounds. In other words, we should put in work to make
the circuit shallower to improve the concrete efficiency of SS-based MPC.

1.1 Related Work

MPC Based on Secret Sharing There are many research results on SS-based
MPC. For example, we have results on highly-efficient MPC (e.g., [2,9]), concrete
tools or the toolkit (e.g., [12,28,5,27]), mixed-protocol framework [13,31,24], ap-
plication to privacy-preserving machine learning or data analysis (e.g., [26,21,31,24,10]),
proposal of another model for speeding up the pre-computation [23,26], etc. As
denoted previously, however, we have not been able to obtain good experimental
results for computing large circuits over WAN environments. For example, [26]
denoted the neural network training on WAN setting is not practical yet.

MPC Based on Garbled Circuit or Homomorphic Encryption There are
also many research results on GC/HE-based MPC. For example, we have results

Communication-Efficient Secure Two-Party Protocols and Its Application 3

on the toolkit (e.g., [22]), encryption switching protocols [20,11], application to
private set intersection (e.g., [30]) or privacy-preserving machine learning (e.g.,
[6,15,29,7,18,19]), etc. Recently, we have many research results on GC for more
than three parties (e.g., [25,35]) and Arithmetic GC (e.g., [1]). Note that it is
difficult to improve the circuit size on standard boolean GC [34], which is a
bottleneck on GC-based MPC. Moreover, [4,8] proposed the GC-based MPC
for WAN environments and showed the benchmark using AES, etc. Even if we
adopt the most efficient GC [34] with 128-bit security, however, we need to send
at least 256-bit string per an AND gate. This is two orders of magnitude larger
than SS-based MPC. We construct the round-efficient protocol while keeping
data traffic small.

1.2 Our Contribution

There are two main contributions in this paper. First, we propose the method for
treating multi-fan-in gates in semi-honest secure SS-based 2PC and show how
to use them efficiently. Second, we propose many round-efficient protocols and
show their performance evaluations via experiments. We explain the details of
them as follows:

1. We propose the method for treating multi-fan-in MULT/AND gates over Z2n

and some techniques for reducing the communication rounds of protocols.
Our N -fan-in gates are based on the extension of Beaver triples, which is a
technique for computing standard 2-fan-in gates. In our technique, however,
we have a disadvantage that the computation costs and the memory costs
are exponentially increased by N ; that is, we have to limit the size of N in
practice. On the other hand, we can improve the costs of communication.
More concretely, we can compute arbitrary N -fan-in MULT/AND with one
communication round and the amount of data transfer is also improved.
Moreover, we show performance evaluation results on above multi-fan-in
gates via experiments. More concretely, see Sections 3 and 5.1.

2. We propose round-efficient protocols using multi-fan-in gates. We need fewer
interactions for our protocols between computing parties in online phase than
previous ones. When we use shares over Z232 , compared with the previous
work [5], we reduce the communication rounds as follows: Equality : (5→ 2),
Comparison : (7→ 3), and Max for 3 elements:(18→ 4). Moreover, we show
the performance evaluation results on our protocols via experiments. From
our experiments, we find the computation costs for multi-fan-in gates and
protocols based on them have small effects on the whole online performance
in the typical WAN environments. We also implement an application (a
privacy-preserving exact edit distance protocol for genome strings) using
our protocols. More concretely, see Sections 4, 5.2, and 5.3.

4 S. Ohata and K. Nuida

2 Preliminaries

2.1 Syntax for Secret Sharing

A 2-out-of-2 secret sharing ((2, 2)-SS) scheme over Z2n consists of two algorithms:
Share and Reconst. Share takes as input x ∈ Z2n , and outputs (JxK0, JxK1) ∈ Z2

2n ,
where the bracket notation JxKi denotes the share of the i-th party (for i ∈
{0, 1}). We denote JxK = (JxK0, JxK1) as their shorthand. Reconst takes as input
JxK, and outputs x. For arithmetic sharing JxKA = (JxKA0 , JxKA1) and boolean
sharing JxKB = (JxKB0 , JxKB1), we consider power-of-two integers n (e.g. n = 64)
and n = 1, respectively.

2.2 Secure Two-Party Computation Based on (2,2)-Additive Secret
Sharing

Here, we explain how to compute arithmetic ADD/MULT gates on (2, 2)-additive
SS. We use the standard (2, 2)-additive SS scheme, defined by

– Share(x): randomly choose r ∈ Z2n and let JxKA0 = r and JxKA1 = x−r ∈ Z2n .
– Reconst(JxKA0 , JxKA1): output JxKA0 + JxKA1 .

We can compute fundamental operations; that is, ADD(x, y) := x + y and
MULT(x, y) := xy. JzK ← ADD(JxK, JyK) can be done locally by just adding each
party’s shares on x and on y. JwK ← MULT(JxK, JyK) can be done in various ways.
We will use the standard method based on Beaver triples (BT) [3]. Such a triple
consists of bt0 = (a0, b0, c0) and bt1 = (a1, b1, c1) such that (a0 + a1)(b0 + b1) =
(c0 + c1). Hereafter, a, b, and c denote a0 + a1, b0 + b1, and c0 + c1, respectively.
We can compute these BT in offline phase. In this protocol, each i-th party Pi
(i ∈ {0, 1}) can compute the multiplication share JzKi = JxyKi as follows: (1)
Pi first compute (JxKi − ai) and (JyKi − bi). (2) Pi sends them to P1−i. (3) Pi
reconstruct x′ = x−a and y′ = y−b. (4) P0 computes JzK0 = x′y′+x′b0+y′a0+c0
and P1 computes JzK1 = x′b1 +y′a1 +c1. Here, JzK0 and JzK1 calculated as above
procedures are valid shares of xy; that is, Reconst(JzK0, JzK1) = xy. We abuse
notations and write the ADD and MULT protocols simply as JxK + JyK and
JxK · JyK, respectively. Note that similarly to the ADD protocol, we can also
locally compute multiplication by constant c, denoted by c · JxK.

We can easily extend above protocols to boolean gates. By converting +
and − to ⊕ in arithmetic ADD and MULT protocols, we can obtain XOR and
AND protocols, respectively. We can construct NOT and OR protocols from the
properties of these gates. When we compute NOT(JxKB0 , JxKB1), P0 and P1 out-
put ¬JxKB0 and JxKB1 , respectively. When we compute OR(JxK, JyK), we compute
¬AND(¬JxK,¬JyK). We abuse notations and write the XOR, AND, NOT, and OR
protocols simply as JxK⊕JyK, JxK∧JyK, ¬JxK (or JxK), and JxK∨JyK, respectively.

2.3 Semi-Honest Security and Client-Aided Model

In this paper, we consider simulation-based security notion in the presence of
semi-honest adversaries (for 2PC) as in [16]. We show the definition in Ap-
pendix A. As described in [16], composition theorem for the semi-honest model

Communication-Efficient Secure Two-Party Protocols and Its Application 5

holds; that is, any protocol is privately computed as long as its subroutines are
privately computed.

In this paper, we adopt client-aided model [26,27] (or server-aided model [23])
for 2PC. In this model, a client (other than computing parties) generates and
distributes shares of secrets. Moreover, the client also generates and distributes
some necessary BTs to the computing parties. This improves the efficiency of
offline computation dramatically since otherwise computing parties would have
to generate BTs by themselves jointly via heavy cryptographic primitives like
homomorphic encryption or oblivious transfer. The only downside for this model
is the restriction that any computing party is assumed to not collude with the
client who generates BTs for keeping the security.

3 Core Tools for Round-Efficient Protocols

In this section, we propose a core tool for round-efficient 2PC that we call
“Beaver triple extension (BTE)”. Moreover, we explain some techniques for pre-
computation to reduce the communication rounds in online phase.

3.1 Example: 3-fan-in MULT/AND via 3-Beaver Triple Extension

Here, we explain the case of 3-fan-in gates as an example. We consider how
to extend the mechanism of a 2-fan-in MULT gate to a 3-fan-in MULT gate
(3-MULT); that is, we consider how to construct a special BT that cancels the
terms coming out from (x − a)(y − b)(z − c) other than xyz. We can obtain
such one by extending the standard BT. It consists of (a0, b0, c0, d0, e0, f0, g0)
for P0 and (a1, b1, c1, d1, e1, f1, g1) for P1 satisfying the conditions a0 + a1 =
a, · · · , g0 + g1 = g, ab = d, bc = e, ca = f , and abc = g. We call the above
special BT as 3-Beaver triple extension (3-BTE) in this paper. We can compute
the 3-MULT using above 3-BTE as follows:

1. Pi (i ∈ {0, 1}) compute (JxKi − ai), (JyKi − bi), and (JzKi − ci).
2. Pi send them to another party.
3. Pi reconstruct x′ = x− a, y′ = y − b, and z′ = z − c.
4. P0 computes JwK0 = x′y′z′+x′y′c0 + y′z′a0 + z′x′b0 +x′e0 + y′f0 + z′d0 + g0

and P1 computes JwK1 = x′y′c1 + y′z′a1 + z′x′b1 + x′e1 + y′f1 + z′d1 + g1.

JwK0 and JwK1 are valid shares of xyz. We can obviously construct a boolean
3-BTE and 3-fan-in AND gate (3-AND) by converting + and − to ⊕ in the
3-MULT case and also obtain 3-fan-in OR gates (3-OR).

3.2 N-fan-in MULT/AND via N-Beaver Triple Extension

N-Beaver Triple Extension Let N be a positive integer. Let M = ZM for
some M (e.g., M = 2n). Write [1, N] = {1, 2, . . . , N}. We define a client-aided
protocol for generating N -BTE as follows:

6 S. Ohata and K. Nuida

1. Client randomly chooses Ja{`}K0 and Ja{`}K1 from M (` = 1, . . . , N). Let
a{`} ← Ja{`}K0 + Ja{`}K1. For each I ⊆ [1, N] with |I| ≥ 2, by setting aI ←∏
`∈I a{`}, client randomly chooses JaIK0 ∈M and sets JaIK1 ← aI − JaIK0.

2. Client sends all the JaIK0 to P0 and all the JaIK1 to P1.

Note that, in the protocol above, the process of randomly choosing JaIK0 and
then setting JaIK1 ← aI − JaIK0 is equivalent to randomly choosing JaIK1 and
then setting JaIK0 ← aI−JaIK1. Therefore, the roles of P0 and P1 are symmetric.

Multiplication Protocol For ` = 1, . . . , N , let (Jx`K0, Jx`K1) be given shares
of `-th secret input value x` ∈M. The protocol for multiplication is constructed
as follows:

1. Client generates and distributes N -BTE (JaIK0)I and (JaIK1)I to the two
parties as described above.

2. For k = 0, 1, Pk computes Jx′`Kk ← Jx`Kk − Ja{`}Kk for ` = 1, . . . , N and
sends those Jx′`Kk to P1−k.

3. For k = 0, 1, Pk computes x′` ← Jx′`K1−k + Jx′`Kk for ` = 1, . . . , N .
4. P0 outputs JyK0 given by

JyK0 ←
N∏
`=1

x′` +
∑

∅6=I⊆[1,N]

 ∏
`∈[1,N]\I

x′`

 JaIK0

while P1 outputs JyK1 given by

JyK1 ←
∑

∅6=I⊆[1,N]

 ∏
`∈[1,N]\I

x′`

 JaIK1 .

We can prove the correctness and semi-honest security of this protocol. Due
to the page limitation, we show the proofs in Appendix B.

3.3 Discussion on Beaver Triple Extension

We can achieve the same functionality of N-MULT/AND by using 2-MULT/AND
multiple times and there are some trade-offs between these two strategies.

Memory, Computation, and Communication Costs In the computation of
N -fan-in MULT/AND using N -BTE, the memory consumption and computation
cost increase exponentially with N . Therefore, we have to put a restriction on
the size of N and concrete settings change optimal N . In this paper, we use
N-MULT/AND for N ≤ 9 to construct round-efficient protocols.

N -fan-in MULT/AND using N -BTE needs fewer communication costs. No-
tably, the number of communication rounds of our protocol does not depend
on N and this improvement has significant effects on practical performances in

Communication-Efficient Secure Two-Party Protocols and Its Application 7

WAN settings. Because of the problems on the memory/computation costs we
denoted above, however, there is a limitation for the size of N . When we use

L-fan-in MULT/AND (L ≤ N) gates, we need dlogNeblogLc communication rounds for

computing N -fan-in MULT/AND. When we set L = 8, for example, we need two
communication rounds to compute a 64-fan-in AND.

Comparison with Previous Work Damg̊ard et al. [12] also proposed how to
compute N -fan-in gates in a round-efficient manner using Lagrange interpola-
tion. Each of their scheme and ours has its merits and demerits. Their scheme
has an advantage over memory consumption and computational costs; that is,
their N -fan-in gates do not need exponentially large memory and computation
costs. On the other hand, their scheme needs two communication rounds to com-
pute N -fan-in gates for any N and requires the share spaces to be Zp (p: prime).
A 2PC scheme over Z2n is sometimes more efficient than one over Zp when we
implement them using low-level language (e.g., C++) since we do not have to
compute remainders modulo 2n for all arithmetic operations.

3.4 More Techniques for Reducing Communication Rounds

On Weights At Most One We consider the plain input x that all bits are 0,
or only a single bit is 1 and others are 0. For example, we consider x = 00100000
and its boolean shares (JxKB0 , JxKB1) = (10011011, 10111011). We find these are
correct boolean shares of x since JxKB0 ⊕ JxKB1 = x holds. In this setting, we can
compute the share representing whether all the bits of x are 0 or not without
communications between P0 and P1. More concretely, we can compute it by
locally computing XOR for all bits on each share. In the above example, P0

and P1 compute
⊕

JxKB0 = 1 and
⊕

JxKB1 = 0, respectively. 1 ⊕ 0 = 1 means
there is 1 in x. This technique is implicitly used in the previous work [5] for
constructing an arithmetic overflow detection protocol (Overflow), which is an
important building block for constructing less-than comparison and more. We
show more skillful use of this technique for constructing Overflow to avoid heavy
computation in our protocols. More concretely, see Section 4.2.

Arithmetic Blinding We consider the situation that two clients who have
secrets also execute computation (i.e., an input party is equal to a computing
party), which is the different setting from client-aided 2PC. In this case, P0 and
P1 randomly split the secret x and y into x0, x1 and y0, y1, respectively. Then P0

sends x1 to P1 and P1 sends y0 to P0. If P0 and P1 previously obtain a0, b0, c0
and a1, b1, c1, respectively, P0 and P1 can compute JzK = xy via the standard
multiplication protocol. During this procedure, both P0 and P1 obtain x−a and
y − b. Here, P0 finds a and P1 finds b since P0 and P1 know the value of x and
y, respectively. Therefore, it does not matter if P0 and P1 previously know the
corresponding values; that is, P0 can send b0 to P1 and P1 can send a1 to P0 in
the pre-computation phase. This operation does not cause security problems.

8 S. Ohata and K. Nuida

By above pre-processing, P0 and P1 can directly send x − a and y − b in
the multiplication protocol, respectively. As a result, we can reduce the amount
of data transfer in the multiplication protocol. Note that in the setting that
the input party is not equal to the computing party (e.g., standard client-aided
2PC), this pre-processing does not work well since P0 and P1 do not have x
and y, respectively and cannot compute JzK = xy correctly. Even in the client-
aided 2PC setting, however, this situation appears in the boolean-to-arithmetic
conversion protocol. More concretely, see Section 4.3.

Trivial Sharing We consider the setting that an input party is not equal to
a computing party, which is the same one as standard client-aided 2PC. In this
situation, we can use the share JbKi (i ∈ {0, 1}) itself as a secret value for com-
putations by considering another party has the share J0K1−i. Although we find
this technique in the previous work [5], we can further reduce the communica-
tion rounds of two-party protocols by combining this technique and BTE. More
concretely, see Section 4.3.

4 Communication-Efficient Protocols

In this section, we show round-efficient 2PC protocols using BTE and the tech-
niques in Section 3.4. For simplicity, in this section, we set a share space to Z216

and use N -fan-in gates (N ≤ 5) to explain our proposed protocols. Although
we omit the protocols over Z232/Z264 due to the page limitation, we can obtain
the protocols with the same communication rounds with Z216 by using 7 or less
fan-in AND over Z232 and 9 or less fan-in AND over Z264 . We omit the correctness
of the protocols adopting the same strategy in the previous work [5].

4.1 Equality Check Protocol and Its Application

An equality check protocol Equality(JxKA, JyKA) outputs JzKB, where z = 1 iff
x = y. We start from the approach by [5] and focus on reducing communication
rounds. In Equality, roughly speaking, we first compute t = x−y and then check if
all bits of t are 0 or not. If all the bits of t are 0, it means t = x−y = 0. Although
we can perform this functionality via 16-OR, we cannot directly execute such a
large-fan-in OR gate. We need log2 16 = 4 communication rounds for the above
procedure if we only use 2-OR with a tree structure. However, if we can use
4-OR, we can execute Equality with log4 16 = 2 communication rounds. We
show our two-round Equality as in Algorithm 1: In this strategy, more generally,

we need dlogne
blogLc communication rounds for executing Equality when we set the

share space to Z2n and use N-OR (N ≤ L).

We can also obtain a round-efficient table lookup protocol TLU (or, 1-out-of-
L oblivious transfer) using our Equality. We show the construction of three-round
TLU in Appendix C.1.

Communication-Efficient Secure Two-Party Protocols and Its Application 9

Algorithm 1 Our Proposed Equality

Functionality: JzKB ← Equality(JxKA, JyKA)
Ensure: JzKB, where z = 1 iff x = y.
1: P0 and P1 locally compute JtKA0 = JxKA0 − JyKA0 and JtKA1 = JyKA1 − JxKA1 , respectively.
2: Pi (i ∈ {0, 1}) locally extend JtKAi to binary and see them as boolean shares; that

is, Pi obtain [Jt[15]KBi , · · · , Jt[0]KBi].
3: Pi compute Jt′[j]KB ← 4-OR(Jt[4j]KB, Jt[4j + 1]KB, Jt[4j + 2]KB, Jt[4j + 3]KB)

for j ∈ [0, · · · , 3].
4: Pi compute Jt′′KB ← 4-OR(Jt′[0]KB, Jt′[1]KB, Jt′[2]KB, Jt′[3]KB).
5: Pi compute JzKB = ¬Jt′′KB.
6: return JzKB.

4.2 Overflow Detection Protocol and Applications

An arithmetic overflow detection protocol Overflow has many applications and
is also a core building block of less-than comparison protocol. The same as
the approach by [5], we construct Overflow via the most significant non-zero bit
extraction protocol MSNZB. We first explain how to construct MSNZB efficiently
and then show two-round Overflow.

A protocol for extracting the most significant non-zero bit (MSNZB(JxKB =
[Jx[15]KB, · · · , Jx[0]KB])) finds the position of the first “1” of the x and outputs
such a boolean share vector JzKB = [Jz[15]KB, · · · , Jz[0]KB]; that is, for example, if
x = 0010011100010000, then z = 0010000000000000. To find the position of the
first “1” in x in a privacy-preserving manner, we use a “prefix-OR” operation [5].
In this procedure, we first replace further to the right bits than leftmost 1 with
1 via 2-OR gates and obtain x′ = 0 · · · 011 · · · 1. Then, we compute z = x′ ⊕
(x′ � 1). In this MSNZB, we need four communication rounds since 2-OR runs
four times even if we parallelize the processing. Intuitively, we can construct
two-round MSNZB via 4-OR; that is, we compute multi-fan-in prefix-OR using
N-OR (N ≤ 4). In this intuitive two-round MSNZB, however, computation costs
significantly increase since we have to compute 4-OR many times. Therefore, we
consider how to reduce them while keeping the number of communication rounds.
We show our two-round MSNZB as in Algorithm 2. In this construction, we first
separate a bit string into some blocks and compute in-block MSNZB. Then, we
compute correct MSNZB for x via in-block MSNZB. In Algorithm 2, we separate
16-bit string uniformly into 4 blocks for avoiding the usage of large fan-in OR.
This MSNZB is more efficient than the intuitive construction since we use fewer
(= 4 + 4) 4-fan-in gates.

Based on the above MSNZB, we can construct an arithmetic overflow detec-
tion protocol Overflow(JxKA, k). This protocol outputs JzKB, where z = 1 iff the
condition (JxKA0 mod 2k + JxKA1 mod 2k) ≥ 2k holds. Overflow is an important
building block of many other protocols that appear in the later of this section.
We also start from the approach by [5]. In their Overflow, we check whether
or not there exists 1 in u = (−JxK1 mod 2k) at the same position of MSNZB
on d = ((JxK0 mod 2k) ⊕ (−JxK1 mod 2k)). Even if we apply our two-round

10 S. Ohata and K. Nuida

Algorithm 2 Our Proposed MSNZB

Functionality: JzKB ← MSNZB(JxKB)
Ensure: JzKB = [Jz[15]KB, · · · , Jz[0]KB], where z[j] = 1 for the largest value j such that

x[j] = 1 and z[k] = 0 for all j 6= k.
1: Pi (i ∈ {0, 1}) set Jt[j]KBi = Jx[j]KBi for j ∈ [3, 7, 11, 15]. Then Pi parallelly compute

Jt[j]KB ← 2-OR(Jx[j]KB, Jx[j + 1]KB) for j ∈ [2, 6, 10, 14],
Jt[j]KB ← 3-OR(Jx[j]KB, Jx[j + 1]KB, Jx[j + 2]KB) for j ∈ [1, 5, 9, 13], and
Jt[j]KB ← 4-OR(Jx[j]KB, Jx[j + 1]KB, Jx[j + 2]KB, Jx[j + 3]KB) for j ∈ [0, 4, 8, 12].

2: Pi compute Jt′[j]KBi = Jt[j]KBi for j ∈ [3, 7, 11, 15] and compute
Jt′[j]KBi = Jt[j]KBi ⊕ Jt[j + 1]KBi for j ∈ [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14].

3: Pi locally compute Js[j]KBi =
⊕4j+3

k=4jJt
′[k]KBi for j ∈ [1, 2, 3].

4: Pi compute Jz[j]KBi = Jt′[j]KBi for j ∈ [12, · · · , 15]. Then Pi parallelly compute
Jz[j]KB ← 2-AND(Jt′[j]KB,¬Js[3]KB) for j ∈ [8, · · · , 11],
Jz[j]KB ← 3-AND(Jt′[j]KB,¬Js[2]KB,¬Js[3]KB) for j ∈ [4, · · · , 7], and
Jz[j]KB ← 4-AND(Jt′[j]KB,¬Js[1]KB,¬Js[2]KB,¬Js[3]KB) for j ∈ [0, · · · , 3].

5: return JzKB = [Jz[15]KB, · · · , Jz[0]KB].

MSNZB in this section, we need three communication rounds for their Overflow
since we need one more round to check the above condition using 2-AND. Here,
we consider further improvements by combining MSNZB and 2-AND; that is,
we increase the fan-in of AND on the step 4 in Algorithm 2 and push the com-
putation of 2-AND into that step as in Algorithm 3: In our Overflow, we need a
communication for the steps 2 and 6 in Algorithm 3 and succeed in constructing
two-round Overflow using N-AND (N ≤ 5) over Z216 . If we set the share space to
Z232/Z264 , we need to use N-AND for N ≤ 7/N ≤ 9 for constructing two-round
Overflow, respectively. Moreover, in Appendix D, we show more round-efficient
Overflow. Although we need more computation and data transfer than Overflow
in this section, we can compute Overflow with one communication round (for
small share spaces in practice).

We have many applications of Overflow. We show the concrete construction
of less-than comparison (Comparison) in Appendix C.2, which is a building block
of the maximum value extraction protocol. In particular, thanks to the round-
efficient Overflow, we can obtain a three-round Comparison. Morita et al. [27]
proposed a constant (= five)-round Comparison using multi-fan-in gates that
works under the shares over Zp [12]. Our Comparison is more round-efficient
than theirs under the parameters we consider in this paper.

4.3 Boolean-to-Arithmetic Conversion Protocol and Extensions

A boolean-to-arithmetic conversion protocol B2A(JxKB) outputs JzKA, where z =
x. In (1-bit) boolean shares, there are four cases; that is, (JxKB0 , JxKB1) = (0, 0),
(0, 1), (1, 0), (1, 1). Even if we consider these boolean shares as arithmetic ones,
it works well in the first three cases; that is, 0 ⊕ 0 = 0 + 0, 0 ⊕ 1 = 0 + 1, and
1⊕ 0 = 1 + 0. However, 1⊕ 1 6= 1 + 1 and we have to correct the output of this
case. Based on this idea and the technique in Section 3.4 (trivial sharing), [5] pro-

Communication-Efficient Secure Two-Party Protocols and Its Application 11

Algorithm 3 Our Proposed Overflow

Functionality: JzKB ← Overflow(JxKA, k)
Ensure: JzKB, where z = 1 iff (JxKA0 mod 2k) + (JxKA1 mod 2k) ≥ 2k.
1: P0 locally extends (JxKA0 mod 2k) to binary and obtains

JdKB0 = [Jd[15]KB0 , · · · , Jd[0]KB0]. P1 also locally extends (−JxKA1 mod 2k) to binary
and obtains JdKB1 = [Jd[15]KB1 , · · · , Jd[0]KB1].

2: Pi (i ∈ {0, 1}) set Jt[j]KBi = Jd[j]KBi for j ∈ [3, 7, 11, 15]. Then Pi parallelly compute
Jt[j]KB ← 2-OR(Jd[j]KB, Jd[j + 1]KB) for j ∈ [2, 6, 10, 14],
Jt[j]KB ← 3-OR(Jd[j]KB, Jd[j + 1]KB, Jd[j + 2]KB) for j ∈ [1, 5, 9, 13], and
Jt[j]KB ← 4-OR(Jd[j]KB, Jd[j + 1]KB, Jd[j + 2]KB, Jd[j + 3]KB) for j ∈ [0, 4, 8, 12].

3: Pi compute Jt′[j]KBi = Jt[j]KBi for j ∈ [3, 7, 11, 15] and compute
Jt′[j]KBi = Jt[j]KBi ⊕ Jt[j + 1]KBi for j ∈ [0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14].

4: Pi locally compute Jw[j]KBi =
⊕4j+3

k=4jJt
′[k]KBi for j ∈ [1, 2, 3].

5: P0 sets Ju[j]KB0 = 0 for j ∈ [0, · · · , 15] and
P1 sets Ju[j]KB1 = Jd[j]KB1 for j ∈ [0, · · · , 15].

6: Pi parallelly compute
Jv[j]KB ← 2-AND(Jt′[j]KB, Ju[j]KB) for j ∈ [12, · · · , 15],
Jv[j]KB ← 3-AND(Jt′[j]KB, Ju[j]KB,¬Jw[3]KB) for j ∈ [8, · · · , 11],
Jv[j]KB ← 4-AND(Jt′[j]KB, Ju[j]KB,¬Jw[2]KB,¬Jw[3]KB) for j ∈ [4, · · · , 7], and
Jv[j]KB ← 5-AND(Jt′[j]KB, Ju[j]KB,¬Jw[1]KB,¬Jw[2]KB,¬Jw[3]KB) for j ∈ [0, · · · , 3].

7: Pi locally compute JzKBi =
⊕15

`=0Jv[`]KBi .
8: Pi compute JzKB = ¬JzKB.
9: If JxKA1 = 0, then P1 locally computes JzKB1 = JzKB1 ⊕ 1

10: return JzKB.

Algorithm 4 Our Proposed B2A

Functionality: JzKA ← B2A(JxKB)
Ensure: JzKA, where z = x.
1: In pre-computation phase, the client randomly chooses a, b ∈ Z216 , computes c =
ab, chooses a randomness r ∈ Z216 , and sets (c0, c1) = (r, c − r). Then the client
sends (a, c0) and (b, c1) to P0 and P1, respectively.

2: Pi (i ∈ {0, 1}) set JxKAi = JxKBi .
3: P0 computes x′ = JxKA0 − a and P1 computes
x′′ = JxKA1 − b. Then they send them to each other.

4: P0 computes JzKA0 = JxKA0 − 2(x′x′′ + x′′ · a+ c0) and
P1 computes JzKA1 = JxKA1 − 2(x′ · b+ c1).

5: return JzKA

posed the construction of B2A. In their protocol, we use a standard arithmetic
multiplication protocol and need one communication round. In the setting of
client-aided 2PC, however, B2A satisfies the condition that input party is equal
to the computing party. Therefore, we can apply the techniques in Section 3.4
(arithmetic blinding) and construct more efficient B2A as in Algorithm 4: Al-
though the number of communication rounds is the same as in [5], our protocol
is more efficient. First, the data transfer in online phase is reduced from 2n-bits
to n-bits. Moreover, the number of randomnesses we need in pre-computation is

12 S. Ohata and K. Nuida

reduced from five to three, and the data amount for sending from the client to
P0 and P1 is reduced from 3n-bits to 2n-bits.

We can extend the above idea and obtain protocols like BX2A: JbKB× JxKA =
JbxKA, BC2A: JbKB × JcKB = JbcKA, and BCX2A: JbKB × JcKB × JxKA = JbcxKA.
These protocols are useful when we construct a round-efficient maximum value
extraction protocol (and its variants) in Section 4.4.

BX2A: JbKB × JxKA = JbxKA We usually need to compute the multiplication
of a boolean share JbKB and an arithmetic one JxKA (e.g., TLU in Section C.1,
ReLU function in neural networks). We call this protocol BX2A in this paper.
[24] proposed one-round BX2A under the (2, 3)-replicated SS, such construction
in 2PC has not been known. By almost the same idea as B2A, we can construct
one-round BX2A in 2PC as follows:

1. Pi (i ∈ {0, 1}) set JbKAi = JbKBi .

2. P0 sets Jb′KA0 = JbKB0 and Jb′′KA0 = 0, and P1 sets Jb′KA1 = 0 and Jb′′KA1 = JbKB1 .

3. Pi compute

JsKAi ← 2-MULT(JbKA, JxKA)

JtKAi ← 3-MULT(Jb′KA, Jb′′KA, JxKA).

4. Pi computes JzKAi = JsKAi − 2JtKAi .

Here, we denote this computation as Jbx− 2b0b1xKA.

BC2A: JbKB × JcKB = JbcKA Almost the same idea as BX2A, we can compute
JbKB×JcKB = JbcKA (BC2A) with one communication round. We use this protocol
in 3-Argmax/3-Argmin in Section 4.4. We can construct one-round BC2A by
computing

Jbc− 2b0b1 − 2c0c1 + 2b0c0b1c1 + 2b0c0b1c1KA.

We need 2-MULT and 4-MULT for this protocol.

BCX2A: JbKB × JcKB × JxKA = JbcxKA Almost the same idea as the above
protocols, we can also compute JbKB × JcKB × JxKA = JbcKA (BCX2A) with one
communication round. We use this protocol in Max/Min in Section 4.4. We can
construct one-round BC2A by computing

Jbcx− 2b0b1x− 2c0c1x+ 2b0c0b1c1x+ 2b0c0b1c1xKA.

We need 3-MULT and 5-MULT for this protocol.

Communication-Efficient Secure Two-Party Protocols and Its Application 13

Algorithm 5 Our Proposed 3-Max

Functionality: JzKA ← Max(JxKA)
Ensure: JzKA, where z is the largest element in x.
1: Pi (i ∈ {0, 1}) parallelly compute

Jc01KB ← Comparison(Jx[0]KA, Jx[1]KA),
Jc02KB ← Comparison(Jx[0]KA, Jx[2]KA), and
Jc12KB ← Comparison(Jx[1]KA, Jx[2]KA).

2: Pi compute Jc10KBi = ¬Jc01KBi , Jc20KBi = ¬Jc02KBi , and Jc21KBi = ¬Jc12KBi .
3: Pi parallelly compute

Jt[0]KAi ← BCX2A(Jc10KB, Jc20KB, Jx[0]KA),
Jt[1]KAi ← BCX2A(Jc01KB, Jc21KB, Jx[1]KA), and
Jt[2]KAi ← BCX2A(Jc02KB, Jc12KB, Jx[2]KA).

4: Pi compute JzKAi = Σ2
j=0Jt[j]KAi .

5: return JzKA.

4.4 The Maximum Value Extraction Protocol and Extensions

The maximum value extraction protocol Max(JxKA) outputs JzKA, where z is the
largest value in x. We first explain the case of Max for three elements (3-Max),
which is used for computing edit distance, etc. We denote a j-th element of x
as x[j]; that is, x = [x[0], x[1], x[2]].

We start from a standard tournament-based construction. If the condition
x[0] < x[1] holds, x′ = x[1]. Otherwise, x′ = x[0]. By repeating the above
procedure once more using Jx′KA and Jx[2]KA, we can extract the maximum value
among x. In this strategy, we need 16 (= (6+1+1)×2) communication rounds,
and 8 (= (3 + 1) × 2) communication rounds even if we apply our three-round
Comparison (in Section 4.2) and BX2A (in Section 4.3). This is mainly because we
cannot parallelly execute Comparison. To solve this disadvantage, we first check
the magnitude relationship for all elements using Comparison. Then we extract
the maximum value. Based on these ideas, we show our 3-Max as in Algorithm 5:
Although the computation costs obviously increased, this is four-round 3-Max
by applying our Comparison and BCX2A.

Based on the above idea, we can also obtain the minimum value extraction
protocol, argument of the maximum/minimum extraction protocols, and (argu-
ment of) the maximum/minimum value extraction protocols withN(> 3) inputs.
We show the construction of these protocols in Appendix C.3, Appendix C.4,
and Appendix C.5, respectively.

5 Performance Evaluation

We demonstrate the practicality of our arithmetic/boolean gates and proto-
cols. We implemented 2PC simulators and performed all benchmarks on a single
laptop computer with Intel Core i7-6700K 4.00GHz and 64GB RAM. We im-
plemented simulators using Python 3.7 with Numpy v1.16.2 and vectorized all
gates/protocols. We assumed 10MB/s (= 80000bits/ms) bandwidth and 40ms

14 S. Ohata and K. Nuida

pre-comp. online comp. # of comm. data trans. # of comm. comm. online total
time (ms) time (ms) bits (bit) time (ms) rounds latency (ms) exec. time (ms)

0.015 0.019 2 2.5 × 10−5 1 40 40.0

2-AND 2.39 0.033 2 × 103 2.5 × 10−2 1 40 40.1

2439 19.4 2 × 106 25.0 1 40 84.4

0.041 0.032 3 3.75 × 10−5 1 40 40.0

3-AND 4.80 0.053 3 × 103 3.75 × 10−2 1 40 40.1

4899 33.1 3 × 106 37.5 1 40 110.6

0.067 0.055 4 5.0 × 10−5 1 40 40.1

4-AND 9.04 0.091 4 × 103 5.0 × 10−2 1 40 40.1

9383 62.8 4 × 106 50.0 1 40 152.8

0.11 0.089 5 6.25 × 10−5 1 40 40.1

5-AND 17.2 0.16 5 × 103 6.25 × 10−2 1 40 40.2

17700 111.7 5 × 106 62.5 1 40 214.2

0.20 0.16 6 7.5 × 10−5 1 40 40.2

6-AND 33.0 0.28 6 × 103 7.5 × 10−2 1 40 40.4

34059 203.0 6 × 106 75.0 1 40 318.0

0.38 0.32 7 8.75 × 10−5 1 40 40.3

7-AND 64.3 0.53 7 × 103 8.75 × 10−2 1 40 40.6

66123 370.8 7 × 106 87.5 1 40 498.3

0.76 0.64 8 1.0 × 10−4 1 40 40.6

8-AND 125.1 1.06 8 × 103 1.0 × 10−1 1 40 41.2

129553 700.7 8 × 106 100.0 1 40 840.7

1.63 1.39 9 1.125 × 10−4 1 40 41.4

9-AND 245.2 2.25 9 × 103 1.125 × 10−1 1 40 42.4

255847 1346 9 × 106 112.5 1 40 1498.5

Table 1. Evaluation on N-AND with 1(upper)/1000(middle)/1000000(lower) batch.

RTT latency as typical WAN settings, and calculate the data transfer time
(DTT) and communication latency (CL) using these values. We adopted the
client-aided model; that is, we assumed in our experiments that clients generate
BTE in their local environment without using HE/OT.

5.1 Performance of Basic Gates

Here we show experimental results on N-AND. We set N = [2, · · · , 9] and 1 to
106(= 1000000) batch in our experiments. Here we show the experimental results
on the cases of 1/1000/1000000 batch. The experimental results on other cases
(10/100/10000/100000 batch) are in Appendix E. The results are as in Table 1
and Figure 1: We find (1) the pre-computation time, online computation time,
and data transfer time are exponentially growing up with respect to N ; (2) the
dominant part in online total execution time is WAN latency especially in the
case of small batch. If we compute N(> 2)-AND using multiple 2-AND gates,
we need two or more communication rounds. Therefore, our scheme is especially
suitable for the 2PC with relatively small batch (e.g., ≤ 105) as it yields low
WAN latency.

5.2 Performance of Our Protocols

Here we show experimental results on our proposed protocols (Equality, Comparison,
and 3-Max). We implemented the baseline protocols [5] and our proposed ones
in Section 4. Same as the evaluation of N-AND, we here show the results of
our experiments over Z232 with 1/1000/1000000 batch in Table 2 and Figure 2

Communication-Efficient Secure Two-Party Protocols and Its Application 15

0.019 0.032 0.055 0.089
0.16

0.32

0.64

1.39

0

0.5

1

1.5

2-AND 3-AND 4-AND 5-AND 6-AND 7-AND 8-AND 9-AND

O
n

li
n

e
 C

o
m

p
u

ta
ti

o
n

 T
im

e
 [

m
s
]

Gate

Batch Size: 1

0.033 0.053 0.091 0.16
0.28

0.53

1.06

2.25

0

0.5

1

1.5

2

2.5

2-AND 3-AND 4-AND 5-AND 6-AND 7-AND 8-AND 9-AND

O
n

li
n

e
 C

o
m

p
u

ta
ti

o
n

 T
im

e
 [

m
s
]

Gate

Batch Size: 1000

19.4 33.1 62.8 111.7
203

370.8

700.7

1346

0

500

1000

1500

2-AND 3-AND 4-AND 5-AND 6-AND 7-AND 8-AND 9-AND

O
n

li
n

e
 C

o
m

p
u

ta
ti

o
n

 T
im

e
 [

m
s
]

Gate

Batch Size: 1000000

0.019 0.02 0.021
0.033

0.14

1.24

19.4

0.01

0.1

1

10

1 10 100 1000 10000 100000 1000000

O
n

li
n

e
 C

o
m

p
u

ta
ti

o
n

 T
im

e
 [

m
s
]

Batch Size

2-AND

0.055 0.055 0.059 0.091

0.34

2.88

62.8

0.01

0.1

1

10

100

1 10 100 1000 10000 100000 1000000

O
n

li
n

e
 C

o
m

p
u

ta
ti

o
n

 T
im

e
 [

m
s
]

Batch Size

4-AND

0.64 0.67 0.7 1.06

3.88

57.7

700.7

0.1

1

10

100

1000

1 10 100 1000 10000 100000 1000000

O
n

li
n

e
 C

o
m

p
u

ta
ti

o
n

 T
im

e
 [

m
s
]

Batch Size

8-AND

Fig. 1. Relations between N (fan-in number), batch size, and online computation time
for N-AND: we show the relations between N and online computation time with
1/1000/1000000 batch (left), and show the relations between batch size and online
computation time for 2/4/8-AND (right).

(relations between batch size and online execution time). Other results (pro-
tocols over Z216 , Z264 , and Z232 with other batch sizes) are in Appendix E.
Same as the cases with N-AND, WAN latency is the dominant part of the on-
line total execution time. In relatively small batch (≤ 104), all our protocols
are faster than baseline ones in the online total execution time since ours re-
quire fewer communication rounds. For example in Comparison with 1 batch, we
need more online computation time than the baseline one (0.54ms → 2.1ms).
However, communication costs of our Comparison are smaller than baseline one
(the number of communication rounds: 7 → 3, the number of communication
bits: 970 → 712). As a result, our Comparison is 56.1% faster than baseline one
(280.6ms→ 122.1ms) in our WAN settings. As already mentioned, our protocols
are not suitable for a (extremely) large batch since the computation cost is larger
than baseline ones.

5.3 Application: Privacy-Preserving (Exact) Edit Distance

We implemented a privacy-preserving edit distance protocol using our protocols
(Equality, B2A, and 3-Min). Unlike many previous works on approximate edit
distance (e.g., [32]), here we consider the exact edit distance. We computed an

16 S. Ohata and K. Nuida

pre-comp. online comp. # of comm. data trans. # of comm. comm. online total
time (ms) time (ms) bits (bit) time (ms) rounds latency (ms) exec. time (ms)

Equality 0.15 0.18 62 7.75 × 10−4 5 200 200.2

(1 batch) 0.76 0.52 38 4.75 × 10−4 2 80 80.5

Comparison 1.5 0.54 970 1.21 × 10−2 7 280 280.6

(1 batch) 3.9 2.1 712 8.9 × 10−3 3 120 122.1

3-Max 3.1 1.2 2196 2.75 × 10−2 18 720 721.2

(1 batch) 9.7 2.3 3960 4.95 × 10−2 4 160 162.3

Equality 74.7 0.61 62 × 103 0.78 5 200 201.4

(103 batch) 500.5 1.1 38 × 103 0.48 2 80 80.9

Comparison 1398 8.25 970 × 103 12.1 7 280 300.4

(103 batch) 2745 11.6 712 × 103 8.9 3 120 140.5

3-Max 2891 17.5 2196 × 103 27.5 18 720 765.0

(103 batch) 8635 36.3 3960 × 103 49.5 4 160 245.8

Equality 77574 761.4 62 × 106 780 5 200 1741

(106 batch) 500617 1233 38 × 106 480 2 80 1793

Comparison 1445847 13895 970 × 106 12100 7 280 26275

(1060 batch) 2799437 20748 712 × 106 8900 3 120 29768

3-Max 2956155 28252 2196 × 106 27500 18 720 56472

(106 batch) 8571664 69935 3960 × 106 49500 4 160 119595

Table 2. Evaluation of our protocols over Z232 for 1/103/106 batches. In each cell, we
show our experimental results on the baseline (upper) and ours (lower).

0.52 0.52 0.59 1.09
5.57

101.2

1233

0.1

1

10

100

1000

10000

O
n

li
n

e
 C

o
m

p
u

ta
ti

o
n

 T
im

e
 [

m
s
]

Batch Size

Equality (32bit)

2.06 2.15 3.18
11.62

138.2

2171

20748

1

10

100

1000

10000

100000

O
n

li
n

e
 C

o
m

p
u

ta
ti

o
n

 T
im

e
 [

m
s
]

Batch Size

Comparison (32bit)

2.32 2.66
5.63

36.32

631.5

7121

69935

1

10

100

1000

10000

100000

O
n

li
n

e
 C

o
m

p
u

ta
ti

o
n

 T
im

e
 [

m
s
]

Batch Size

3-Max (32bit)

Fig. 2. Relations between batch size and online computation/execution time of the
protocols over Z232 .

edit distance between two length-L genome strings (S0 and S1) via standard
dynamic programming (DP). It appears four characters in the strings; that is,
A, T, G, and C. In DP-matrix, we fill the cell x[i][j] by the following rule:

x[i][j] = 3-Min([x[i− 1][j] + 1, x[i][j − 1] + 1, x[i− 1][j − 1] + e])

Here, e = 0 if the condition S0[i] = S1[j] holds, and otherwise e = 1. We can
compute e using Equality (two rounds) and B2A (one round). To reduce the total
online execution time, we calculate the edit distance as follows:

1. To reduce the total communication rounds, we parallelly compute e for all
cells and store them in advance. Thanks to this procedure, we can avoid
calculating e every time when we fill cells. We only need three communication
rounds for this step.

2. Diagonal cells in DP-matrix are independent with each other. Therefore, we
can parallelly compute these cells x[d][0], x[d− 1][1], · · · , x[0][d] (for each d)
to reduce the communication rounds.

Communication-Efficient Secure Two-Party Protocols and Its Application 17

string pre-comp. online comp. data trans. comm. online total
length time (s) time (s) time (s) latency (s) exec. time (s)

4 0.04 0.01 4.0 × 10−4 1.24 1.25

8 0.14 0.02 1.4 × 10−3 2.52 2.54

16 0.57 0.04 5.7 × 10−3 5.08 5.13

32 2.2 0.10 2.3 × 10−2 10.2 10.3

64 8.1 0.22 9.2 × 10−2 20.4 20.7

128 33.4 0.54 3.7 × 10−1 40.9 41.8
256 135.7 1.5 1.5 84.9 84.9
512 534.1 4.8 5.9 163.8 174.5

1024 2262 16.0 23.4 327.6 367.0

Table 3. Experimental results of privacy-preserving exact edit distance with 2`-length
two strings (` = [2, · · · , 10]).

By applying the above techniques, we can compute exact edit distance for two
length-L strings with 3+4(2L−1) = (8L−1) communication rounds. We used the
arithmetic shares and protocols over Z216 in our experiments. The experimental
results are as in Table 3: As we can see from the experimental results, most
of the online total execution time is occupied by the communication latency;
that is, GC-based approaches may be much faster than SS-based one in WAN
environments. However, if we would like to compute edit distances between many
strings at the same time (e.g., the situation that the client has one string and
the server has 1000 strings, and the client would like to compute edit distances
between client’s string and all of server’s strings), SS-based approach will be
much faster than GC-based one.

Acknowledgements. This work was partly supported by JST CREST JP-
MJCR19F6 and the Ministry of Internal Affairs and Communications Grant
Number 182103105.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. SIAM
J. Comput. 43(2), 905–929 (2014). https://doi.org/10.1137/120875193

2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput
semi-honest secure three-party computation with an honest majority. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, Vienna, Austria, October 24-28, 2016. pp. 805–817 (2016).
https://doi.org/10.1145/2976749.2978331

3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Ad-
vances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings. pp.
420–432 (1991). https://doi.org/10.1007/3-540-46766-1 34

4. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24-28, 2016.
pp. 578–590 (2016). https://doi.org/10.1145/2976749.2978347

5. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418
(2012). https://doi.org/10.1007/s10207-012-0177-2

https://doi.org/10.1137/120875193
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1145/2976749.2978347
https://doi.org/10.1007/s10207-012-0177-2

18 S. Ohata and K. Nuida

6. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: 22nd Annual Network and Distributed System Security Sym-
posium, NDSS 2015, San Diego, California, USA, February 8-11, 2015 (2015)

7. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic eval-
uation of deep discretized neural networks. In: Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2018, Proceedings, Part III. pp. 483–512 (2018).
https://doi.org/10.1007/978-3-319-96878-0 17

8. Byali, M., Joseph, A., Patra, A., Ravi, D.: Fast secure computation for small pop-
ulation over the internet. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, Octo-
ber 15-19, 2018. pp. 677–694 (2018). https://doi.org/10.1145/3243734.3243784

9. Chida, K., Genkin, D., Hamada, K., Ikarashi, D., Kikuchi, R., Lindell, Y., Nof, A.:
Fast large-scale honest-majority MPC for malicious adversaries. In: Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III. pp. 34–64
(2018). https://doi.org/10.1007/978-3-319-96878-0 2

10. Chida, K., Hamada, K., Ikarashi, D., Kikuchi, R., Kiribuchi, N., Pinkas, B.: An
efficient secure three-party sorting protocol with an honest majority. Cryptology
ePrint Archive, Report 2019/695 (2019)

11. Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. In: Ad-
vances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I.
pp. 308–338 (2016). https://doi.org/10.1007/978-3-662-53018-4 12

12. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Theory of Cryptography, Third Theory of Cryptography Confer-
ence, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings. pp. 285–304
(2006). https://doi.org/10.1007/11681878 15

13. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-
protocol secure two-party computation. In: 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February
8-11, 2015 (2015)

14. Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni, S., Zohner, M.:
Pushing the communication barrier in secure computation using lookup tables. In:
24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017 (2017)

15. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In: Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016. pp. 201–210
(2016)

16. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press (2004)

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proceedings of the
19th Annual ACM Symposium on Theory of Computing, 1987, New York, New
York, USA. pp. 218–229 (1987). https://doi.org/10.1145/28395.28420

18. Hesamifard, E., Takabi, H., Ghasemi, M., Wright, R.N.: Privacy-
preserving machine learning as a service. PoPETs 2018(3), 123–142 (2018).
https://doi.org/10.1515/popets-2018-0024

https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1145/3243734.3243784
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-662-53018-4_12
https://doi.org/10.1007/11681878_15
https://doi.org/10.1145/28395.28420
https://doi.org/10.1515/popets-2018-0024

Communication-Efficient Secure Two-Party Protocols and Its Application 19

19. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A low latency
framework for secure neural network inference. In: 27th USENIX Security Sym-
posium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. pp.
1651–1669 (2018)

20. Kolesnikov, V., Sadeghi, A.R., Schneider, T.: How to combine homomorphic en-
cryption and garbled circuits - improved circuits and computing the minimum
distance efficiently. In: International Workshop on Signal Processing in the En-
cryptEd Domain (SPEED’09) (2009)

21. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network pre-
dictions via minionn transformations. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017. pp. 619–631 (2017).
https://doi.org/10.1145/3133956.3134056

22. Liu, X., Deng, R.H., Choo, K.R., Weng, J.: An efficient privacy-
preserving outsourced calculation toolkit with multiple keys. IEEE
Trans. Information Forensics and Security 11(11), 2401–2414 (2016).
https://doi.org/10.1109/TIFS.2016.2573770

23. Mohassel, P., Orobets, O., Riva, B.: Efficient server-aided 2pc for mobile phones.
PoPETs 2016(2), 82–99 (2016)

24. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. pp.
35–52 (2018). https://doi.org/10.1145/3243734.3243760

25. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
The garbled circuit approach. In: Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, Denver, CO, USA, October
12-16, 2015. pp. 591–602 (2015). https://doi.org/10.1145/2810103.2813705

26. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017. pp. 19–38 (2017).
https://doi.org/10.1109/SP.2017.12

27. Morita, H., Attrapadung, N., Teruya, T., Ohata, S., Nuida, K., Hanaoka, G.:
Constant-round client-aided secure comparison protocol. In: Computer Security
- 23rd European Symposium on Research in Computer Security, ESORICS 2018,
Barcelona, Spain, September 3-7, 2018, Proceedings, Part II. pp. 395–415 (2018).
https://doi.org/10.1007/978-3-319-98989-1 20

28. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and com-
parison without bit-decomposition protocol. In: Public Key Cryptography - PKC
2007, 10th International Conference on Practice and Theory in Public-Key Cryp-
tography, Beijing, China, April 16-20, 2007, Proceedings. pp. 343–360 (2007).
https://doi.org/10.1007/978-3-540-71677-8 23

29. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-
preserving deep learning via additively homomorphic encryption. IEEE
Trans. Information Forensics and Security 13(5), 1333–1345 (2018).
https://doi.org/10.1109/TIFS.2017.2787987

30. Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI with
linear communication. In: Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III. pp. 122–
153 (2019). https://doi.org/10.1007/978-3-030-17659-4 5

https://doi.org/10.1145/3133956.3134056
https://doi.org/10.1109/TIFS.2016.2573770
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/2810103.2813705
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1007/978-3-319-98989-1_20
https://doi.org/10.1007/978-3-540-71677-8_23
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1007/978-3-030-17659-4_5

20 S. Ohata and K. Nuida

31. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushan-
far, F.: Chameleon: A hybrid secure computation framework for machine learning
applications. In: Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, AsiaCCS 2018, Incheon, Republic of Korea, June 04-08,
2018. pp. 707–721 (2018). https://doi.org/10.1145/3196494.3196522

32. Schneider, T., Tkachenko, O.: EPISODE: efficient privacy-preserving similar
sequence queries on outsourced genomic databases. In: Proceedings of the
2019 ACM Asia Conference on Computer and Communications Security, Asi-
aCCS 2019, Auckland, New Zealand, July 09-12, 2019. pp. 315–327 (2019).
https://doi.org/10.1145/3321705.3329800

33. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986. pp. 162–167 (1986). https://doi.org/10.1109/SFCS.1986.25

34. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data trans-
fer in garbled circuits using half gates. In: Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part
II. pp. 220–250 (2015). https://doi.org/10.1007/978-3-662-46803-6 8

35. Zhu, R., Cassel, D., Sabry, A., Huang, Y.: NANOPI: extreme-scale actively-secure
multi-party computation. In: Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, Oc-
tober 15-19, 2018. pp. 862–879 (2018). https://doi.org/10.1145/3243734.3243850

https://doi.org/10.1145/3196494.3196522
https://doi.org/10.1145/3321705.3329800
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1145/3243734.3243850

Communication-Efficient Secure Two-Party Protocols and Its Application 21

A Semi-Honest Security

Here, we recall the simulation-based security notion in the presence of semi-
honest adversaries (for 2PC) as in [16].

Definition 1. Let f : ({0, 1}∗)2 → ({0, 1}∗)2 be a probabilistic 2-ary function-
ality and fi(x) denotes the i-th element of f(x) for x = (x0, x1) ∈ ({0, 1}∗)2
and i ∈ {0, 1}; f(x) = (f0(x), f1(x)). Let Π be a 2-party protocol to compute
the functionality f . The view of party Pi for i ∈ {0, 1} during an execution of
Π on input x = (x0, x1) ∈ ({0, 1}∗) where |x0| = |x1|, denoted by ViewΠ

i (x),
consists of (xi, ri,mi,1, . . . ,mi,t), where xi represents Pi’s input, ri represents
its internal random coins, and mi,j represents the j-th message that Pi has re-
ceived. The output of all parties after an execution of Π on input x is denoted
as OutputΠ(x). Then for each party Pi, we say that Π privately computes f
in the presence of semi-honest corrupted party Pi if there exists a probabilistic
polynomial-time algorithm S such that

{(S(i, xi, fi(x)), f(x))} ≡ {(ViewΠ
i (x),OutputΠ(x))}

where the symbol ≡ means that the two probability distributions are statistically
indistinguishable.

As described in [16], composition theorem for the semi-honest model holds; that
is, any protocol is privately computed as long as its subroutines are privately
computed.

B Correctness and Security of N -MULT/AND

B.1 Correctness of the Protocol

We have

JyK0 + JyK1 =

N∏
`=1

x′` +
∑

∅6=I⊆[1,N]

 ∏
`∈[1,N]\I

x′`

 aI .

Since aI =
∏
`∈I a{`}, we have

∑
∅6=I⊆[1,N]

 ∏
`∈[1,N]\I

x′`

 aI = (x′1 + a{1}) · · · (x′N + a{N})− x′1 · · ·x′N

therefore (by noting that x′` = x` − a{`})

JyK0 + JyK1 =

N∏
`=1

(x′` + a{`}) =

N∏
`=1

x` .

Hence JyK0 and JyK1 form shares of x1 · · ·xN , as desired.

22 S. Ohata and K. Nuida

B.2 Security Proof of the Protocol

First we consider the security of the multiplication protocol against semi-honest
P0 (not colluding with Client). Let (Jx`K0, Jx`K1) (` = 1, . . . , N) be fixed input
shares, and let ζ ∈ M. We consider the conditional distribution of the view of
P0 for the case where the local output is JyK0 = ζ.

The view of P0 consists of JaIK0 for ∅ 6= I ⊆ [1, N] and Jx′`K1 for ` = 1, . . . , N
(note that the party uses no randomness in the protocol). Let αI for ∅ 6= I ⊆
[1, N] and γ` for ` = 1, . . . , N be elements ofM. Let E denote the corresponding
event that JaIK0 = αI holds for any ∅ 6= I ⊆ [1, N] and Jx′`K1 = γ` holds for
any ` = 1, . . . , N . By the construction of the protocol, if the event E occurs and
moreover JyK0 = ζ, then we have

ζ = α[1,N] + ϕ0((αI)I 6=[1,N], (γ`)`)

where

ϕ0((αI)I 6=[1,N], (γ`)`) :=

N∏
`=1

γ` +
∑

I⊆[1,N]
I 6=∅,[1,N]

αI
∏

`∈[1,N]\I

γ` .

This implies that the conditional probability Pr[E | JyK0 = ζ] is 0 if ζ 6=
α[1,N] + ϕ0((αI)I 6=[1,N], (γ`)`). We consider the other case where ζ = α[1,N] +
ϕ0((αI)I 6=[1,N], (γ`)`). Then the event E implies JyK0 = ζ. Hence we have

Pr[E ∧ JyK0 = ζ] = Pr[E] ,

therefore
Pr[E | JyK0 = ζ] = Pr[E]/Pr[JyK0 = ζ] .

Now the event E occurs if and only if JaIK0 = αI for any ∅ 6= I ⊆ [1, N]
and Ja{`}K1 = Jx`K1 − γ` for any ` = 1, . . . , N . As the choices of JaIK0’s and
Ja{`}K1’s are uniformly random and independent, it follows that Pr[E] does not
depend on αI ’s and γ`’s. On the other hand, we have Pr[JyK0 = ζ] = 1/|M|
(independent of αI ’s and γ`’s), as for any choice of JaIK0 for I 6= ∅, [1, N] and of
Jx′`K1 there is precisely one possibility of Ja[1,N]K0 that satisfies ζ = Ja[1,N]K0 +
ϕ0((JaIK0)I 6=[1,N], (Jx′`K1)`). Hence Pr[E | JyK0 = ζ] is independent of αI ’s and
γ`’s as well.

The argument above implies that, the distribution of the view of P0 for fixed
inputs and given local output JyK0 = ζ is the uniform distribution on the set of
tuples ((αI)I , (γ`)`) of elements ofM satisfying α[1,N] +ϕ0((αI)I 6=[1,N], (γ`)`) =
ζ. The latter distribution can be sampled by freely choosing αI for I 6= [1, N]
and γ` for ` = 1, . . . , N and then adjusting the value of α[1,N]. Hence, the view
of P0 is efficiently and perfectly simulatable, implying the security against semi-
honest P0. The argument showing the security against semi-honest P1 is similar
(due to the aforementioned symmetry of the two parties in generating BTE),
where we use the function ϕ1 instead of ϕ0 given by

ϕ1((αI)I 6=[1,N], (γ`)`) :=
∑

I⊆[1,N]
I 6=∅,[1,N]

αI
∏

`∈[1,N]\I

γ` .

Communication-Efficient Secure Two-Party Protocols and Its Application 23

This concludes the security proof of the protocol.

C Applications and Extensions of Our Protocols

C.1 Table Lookup

We can also obtain a round-efficient table lookup protocol TLU (or, 1-out-of-
L oblivious transfer) using our Equality. As shown in previous results, TLU is
useful function in secure computation (e.g., [14]). Here, we consider the table of
arithmetic keys/values with size L (pairs of a j-th key Kj and a j-th value Vj
for j ∈ [0, · · · , L− 1]). We consider the situation that each computing party has
shares of the table and a share of the index JidKAi and wants to obtain a share of
the value Vj where id = Kj . To execute this protocol, we first check the equality
of id and Kj for j ∈ [0, · · · , L− 1] via Equality. Then, we extract Vj using BX2A
(in Section 4.3). We only need three communication rounds for this TLU.

C.2 Less-Than Comparison

To keep self-consistency of this paper, we explain how to construct a less-than
comparison protocol Comparison(JxKA, JyKA), which outputs JzKB, where z = 1
iff the condition x < y holds. The high-level construction of this protocol is
completely the same as in [5]; that is,

1. Pi (i ∈ {0, 1}) check whether the condition

JxKA0 mod 2n−1 + JxKA1 mod 2n−1 > 2n−1

holds or not using Overflow and then compute Jx′KB = JofxKB ⊕ JmsbxKB
(and the same for y and d = x − y, and obtain Jy′KB and Jd′KB). Here, ofx
denote the execution results of the above Overflow and msbx denote the most
significant bit of (binary expanded) x. We can extract the most significant
bit of x, y, and d via the above operations.

2. Pi compute

JvKB ← 2-AND((Jx′KB ⊕ Jy′KB), Jy′KB)

JwKB ← 2-AND(¬(Jx′KB ⊕ Jy′KB), Jd′KB).

3. Pi compute JzKB = JvKB ⊕ JwKB.

C.3 The Minimum Value Extraction Protocol

We can easily convert Max into Min by replacing the input order in step 1
in Algorithm 5 and obtain the minimum value extraction protocol for three
elements (3-Min). We use this 3-Min for executing privacy-preserving exact edit
distance protocol in Section 5.3.

24 S. Ohata and K. Nuida

C.4 Argmax and Argmin

We can easily obtain Argmax/Argmin (by modifying Max/Min) as follows:

1. We replace Jt[j]KA ← BCX2A(J∗KB, J∗∗KB, JxKA) in Algorithm 5 by Jt′[j]KA ←
BC2A(J∗KB, J∗∗KB).

2. Pi compute JzKAi = Σ2
j=0(j · Jt′[j]KAi) in the step 4 in Algorithm 5, .

We can execute Argmax/Argmin with three communication rounds. We need
fewer communication bits since we can avoid using BCX2A in these protocols.
Note that in the above step 2, we need no interaction between computing parties
since j is public.

C.5 N-Max/Min for N > 3

Even in the cases of Max/Min for four or more elements, we can construct round-
efficient Max/Min with the same strategy as in Algorithm 5. However, there are
two points of notice as follows:

1. In N-Max/Min, we need to (parallelly) execute Comparison N(N−1)
2 times.

In the tournament-based strategy, we only need to execute Comparison for
dlogNe times; that is, in our protocols, computation costs and the amount
of communication bits rapidly increase with respect to N .

2. For large N , we cannot directly use BCX2A (or BC2A). Although we can
construct the protocol like JbcdxKA = JbKB× JcKB× JdKB× JxKA, we can easily
imagine that the computation costs we need for such a protocol increase
drastically. To avoid such a disadvantage, we should split the step 3 in Al-
gorithm 5 into some other protocols (e.g., (N − 1)-AND and BX2A). This
means we need more communication rounds to execute N-Max/Min for large
N .

D One-Round Overflow

In this section, we explain another construction of Overflow. Although we need
more computation and data transfer than two-round Overflow in Section 4.2, we
can compute the following Overflow with one communication round (for slightly
small share spaces in practice).

Protocol Let χ[P] denote a bit that is 1 if the condition P holds and 0 otherwise.
Let Overflow(a, b; c) = χ[a + b ≥ c]. Here, n1 and n2 are parameters with n =
n1 + n2:

1. Pi (i ∈ {0, 1}) parses JxKAi = yi || zi where yi is the n1 most significant bits
of xi and zi is the n2 least significant bits of xi.

2. For each a1 = 1, . . . , 2n1 − 1,

(a) P0 sets α
〈a1;1〉
0 ← χ[y0 = a1] and α

〈a1;2〉
0 ← 0.

Communication-Efficient Secure Two-Party Protocols and Its Application 25

(b) P1 sets α
〈a1;1〉
1 ← 0 and α

〈a1;2〉
1 ← χ[y1 ≥ 2n1 − a1].

Let Jα〈a1;j〉KB = (α
〈a1;j〉
0 , α

〈a1;j〉
1) for j = 1, 2.

3. For each a2 = 1, . . . , 2n2 − 1 and j = 0, . . . , n1 − 1, P0 sets

β
〈a2;j〉
0 ←

{
y0[j] if y0 6= 0 and z0 = a2 ,

1 otherwise,

where y0[j] denotes the j-th bit of y0. P1 sets

β
〈a2;j〉
1 ←

{
y1[j] if y1 6= 0 and z1 ≥ 2n2 − a2 ,

1 otherwise.

Let Jβ〈a2;j〉KB = (β
〈a2;j〉
0 , β

〈a2;j〉
1).

4. For each a3 = 1, . . . , 2n2 − 1,

(a) P0 sets γ
〈a3;1〉
0 ← χ[y0 = 0], γ

〈a3;2〉
0 ← χ[y0 = 2n1 − 1], γ

〈a3;3〉
0 ← χ[z0 =

a3], and γ
〈a3;4〉
0 ← 0.

(b) P1 sets γ
〈a3;1〉
1 ← χ[y1 = 0], γ

〈a3;2〉
1 ← χ[y1 = 2n1 − 1], γ

〈a3;3〉
1 ← 0, and

γ
〈a3;4〉
1 ← χ[z1 ≥ 2n2 − a3].

Let Jγ〈a3;j〉KB = (γ
〈a3;j〉
0 , γ

〈a3;j〉
1) for j = 1, 2, 3, 4.

5. Two parties execute the followings in parallel: For each a1 = 1, . . . , 2n1 − 1,
compute

Jb〈a1〉1 K ← 2-AND(Jα〈a1;1〉KB, Jα〈a1;2〉KB)

by using 2-AND. For each a2 = 1, . . . , 2n2 − 1, compute

Jb〈a2〉2 KB ← n1-AND(Jβ〈a2;0〉KB, Jβ〈a2;1〉KB,

. . . , Jβ〈a2;n1−1〉KB)

by using n1-AND. For each a3 = 1, . . . , 2n2 − 1, compute

Jb〈a3〉3 KB ← 4-AND(Jγ〈a3;1〉K, Jγ〈a3;2〉KB,

Jγ〈a3;3〉KB, Jγ〈a3;4〉KB)

by using 4-AND.
6. Pi locally compute

JdKBi ←
2n1−1⊕
a1=1

Jb〈a1〉1 KBi ⊕
2n2−1⊕
a2=1

Jb〈a2〉2 KBi ⊕
2n2−1⊕
a3=1

Jb〈a3〉3 KBi .

Then Pi output the share JdKBi .

All the steps except Step 5 can be locally executed by each party. Hence,
in total, only 1 round of communication is required which is spent during Step
5, where (2n1 − 1) 2-ANDs, (2n2 − 1) n1-ANDs, and (2n2 − 1) 4-ANDs are
performed in parallel. For example, when n = 15 and (n1, n2) = (8, 7), these are
255 2-ANDs, 127 8-ANDs, and 127 4-ANDs.

26 S. Ohata and K. Nuida

Correctness First, we note that an overflow occurs modulo 2n for (x0, x1) if
and only if, either an overflow occurs modulo 2n1 for (y0, y1), or y0+y1 = 2n1−1
and an overflow occurs modulo 2n2 for (z0, z1). As the two events are disjoint, it
follows that

Overflow(x0, x1; 2n)

= Overflow(y0, y1; 2n1)⊕ (χ[y0 + y1 = 2n1 − 1] ∧ Overflow(z0, z1; 2n2)) .

Moreover, we have

χ[y0 + y1 = 2n1 − 1] =

n1−1∧
j=0

(y0[j]⊕ y1[j]) ,

therefore Overflow(x0, x1; 2n) is the XOR of Overflow(y0, y1; 2n1) andn1−1∧
j=0

(y0[j]⊕ y1[j])

 ∧ Overflow(z0, z1; 2n2) . (1)

For the term Overflow(y0, y1; 2n1), we note that the overflow occurs if and
only if there is a (in fact, unique) a1 = 1, . . . , 2n1 −1 satisfying that y0 = a1 and
a1 + y1 ≥ 2n1 (i.e., y1 ≥ 2n1 − a1). These 2n1 − 1 events are all disjoint. In the
protocol, the bit α〈a1;1〉 is 1 if and only if y0 = a1, and the bit α〈a1;2〉 is 1 if and
only if y1 ≥ 2n1 − a1. Therefore, we have

Overflow(y0, y1; 2n1) =

2n1−1⊕
a1=1

α〈a1;1〉 ∧ α〈a1;2〉 =

2n1−1⊕
a1=1

b
〈a1〉
1 .

The same argument implies that, the bit in Eq.(1) is equal to
n1−1∧
j=0

(y0[j] ⊕ y1[j])

 ∧ 2n2−1⊕
a2=1

χ[z0 = a2] ∧ χ[z1 ≥ 2
n2 − a2]

=

2n2−1⊕
a2=1


n1−1∧
j=0

(y0[j] ⊕ y1[j])

 ∧ χ[z0 = a2] ∧ χ[z1 ≥ 2
n2 − a2]

 .

(2)

To decrease the depth of the circuit in Eq.(2), we consider to let P0 modify
the bits y0[j] in a way that the AND-term becomes 0 if z0 (known to P0) is not
equal to a2. Now observe that, unless y1 = 0, at least one of the bits y1[j] is
1, therefore the AND-term would become 0 if all bits y0[j] were 1. Accordingly,
instead of y0[j], we use a bit y′0[j]a2 that is y0[j] if z0 = a2 and is 1 if z0 6= a2.
Then we haven1−1∧

j=0

(y0[j]⊕ y1[j])

 ∧ χ[z0 = a2] ∧ χ[z1 ≥ 2n2 − a2]

=

n1−1∧
j=0

(y′0[j]a2 ⊕ y1[j])

 ∧ χ[z1 ≥ 2n2 − a2]

Communication-Efficient Secure Two-Party Protocols and Its Application 27

unless y1 = 0. Similarly, we let P1 modify the bits y1[j] in a way that the AND-
term becomes 0 if z1 (known to P1) is smaller than 2`2 − a2. Namely, instead of
y1[j], we use a bit y′1[j]a2 that is y1[j] if z1 ≥ 2n2 − a2 and is 1 otherwise. Then
the same argument implies thatn1−1∧

j=0

(y′0[j]a2 ⊕ y1[j])

 ∧ χ[z1 ≥ 2n2 − a2] =

n1−1∧
j=0

(y′0[j]a2 ⊕ y′1[j]a2)

unless y0 = 0. Summarizing, the bit in Eq.(1) is equal to

2n2−1⊕
a2=1

n1−1∧
j=0

(y′0[j]a2 ⊕ y′1[j]a2)


unless y0 = 0 or y1 = 0.

Now we want to adjust the computation result in the case where y0 = 0
or y1 = 0. Before doing that, we modify the computation further in order to
simplify the situation: for i = 0, 1, we change the bits y′i[j]a2 in a way that

it always becomes 1 when yi = 0. The resulting bit is equal to β
〈a2;j〉
i in the

protocol, and the corresponding computation result

2n2−1⊕
a2=1

n1−1∧
j=0

(β
〈a2;j〉
0 ⊕ β〈a2;j〉1)

 =

2n2−1⊕
a2=1

n1−1∧
j=0

β〈a2;j〉

 =

2n2−1⊕
a2=1

b
〈a2〉
2 (3)

is still equal to the bit in Eq.(1) unless y0 = 0 or y1 = 0. On the other hand,
when y0 = 0 or y1 = 0, the bit in Eq.(3) is equal to 0, as now one of the two

vectors (β
〈a2;0〉
i , β

〈a2;n1−1〉
i) (i = 0, 1) is (1, 1, . . . , 1) while the other has at

least one component being 1. When y0 = y1 = 0, the bit in Eq.(1) is also equal
to 0 and hence is equal to the bit in Eq.(3) as desired. From now, we consider
the other case where precisely one of y0 and y1 is equal to 0; in the protocol,

this is equivalent to γ
〈a3;1〉
0 ⊕ γ〈a3;1〉1 = 1, i.e., γ〈a3;1〉 = 1. Under the condition,

the bit in Eq.(1) becomes 1 if and only if the other yi which is not equal to 0 is

equal to (11 · · · 1)2 = 2n1 − 1 (i.e., γ〈a3;2〉 = γ
〈a3;2〉
0 ⊕ γ〈a3;2〉1 = 1 in the protocol)

and Overflow(z0, z1; 2n2) = 1. By expanding the bit Overflow(z0, z1; 2n2) in the
same way as the aforementioned case of Overflow(y0, y1; 2n1), it follows that the
bit in Eq.(1) is equal to

2n2−1⊕
a3=1

γ〈a3;1〉 ∧ γ〈a3;2〉 ∧ γ〈a3;3〉 ∧ γ〈a3;4〉 =

2n2−1⊕
a3=1

b
〈a3〉
3

under the current condition. Note that the bit above is 0 when the current
condition (i.e., precisely one of y0 and y1 is 0) is not satisfied.

Summarizing the arguments, the bit in Eq.(1) is equal to

2n2−1⊕
a2=1

b
〈a2〉
2 ⊕

2n2−1⊕
a3=1

b
〈a3〉
3

28 S. Ohata and K. Nuida

pre-comp. online comp. # of comm. data trans. # of comm. comm. online total
time (ms) time (ms) bits (bit) time (ms) rounds latency (ms) exec. time (ms)

0.037 0.020 2 × 101 2.5 × 10−4 1 40 40.0

2-AND 0.24 0.021 2 × 102 2.5 × 10−3 1 40 40.0

23.2 0.14 2 × 104 2.5 × 10−1 1 40 40.4

243.1 1.2 2 × 105 2.5 1 40 43.7

0.085 0.033 3 × 101 3.75 × 10−4 1 40 40.0

3-AND 0.50 0.035 3 × 102 3.75 × 10−3 1 40 40.0

46.3 0.21 3 × 104 3.75 × 10−1 1 40 40.6

489.8 1.9 3 × 105 3.75 1 40 45.7

0.15 0.055 4 × 101 5.0 × 10−4 1 40 40.1

4-AND 0.94 0.059 4 × 102 5.0 × 10−3 1 40 40.1

89.3 0.34 4 × 104 5.0 × 10−1 1 40 40.8

929.0 2.9 4 × 105 5.0 1 40 47.9

0.26 0.096 5 × 101 6.25 × 10−4 1 40 40.1

5-AND 1.8 0.098 5 × 102 6.25 × 10−3 1 40 40.1

168.6 0.58 5 × 104 6.25 × 10−1 1 40 41.2

1763 5.0 5 × 105 6.25 1 40 51.3

0.49 0.17 6 × 101 7.5 × 10−4 1 40 40.2

6-AND 3.4 0.18 6 × 102 7.5 × 10−3 1 40 40.2

327.8 1.0 6 × 104 7.5 × 10−1 1 40 41.8

3379 13.1 6 × 105 7.50 1 40 60.6

0.96 0.32 7 × 101 8.75 × 10−4 1 40 40.3

7-AND 6.5 0.34 7 × 102 8.75 × 10−3 1 40 40.3

644.6 2.0 7 × 104 8.75 × 10−1 1 40 42.9

6564 27.4 7 × 105 8.75 1 40 76.2

1.9 0.67 8 × 101 1.0 × 10−3 1 40 40.7

8-AND 12.8 0.70 8 × 102 1.0 × 10−2 1 40 40.7

1274 3.9 8 × 104 1.0 1 40 44.9

12868 57.7 8 × 105 10.0 1 40 107.7

3.9 1.4 9 × 101 1.125 × 10−3 1 40 41.4

9-AND 25.3 1.5 9 × 102 1.125 × 10−2 1 40 41.5

2538 9.9 9 × 104 1.125 1 40 51.0

25515 121.7 9 × 105 11.25 1 40 173.0

Table 4. Evaluation of N-AND with 10(top)/100(second from the top)/10000(third
from the top)/100000(bottom) batch.

in any case, therefore we have

Overflow(x0, x1; 2n) =

2n1−1⊕
a1=1

b
〈a1〉
1 ⊕

2n2−1⊕
a2=1

b
〈a2〉
2 ⊕

2n2−1⊕
a3=1

b
〈a3〉
3

= d

as desired. This completes the proof of correctness for the protocol.

E Other Experimental Results

Here we show the experimental results of our gates and protocols we omit in
Section 5.

Communication-Efficient Secure Two-Party Protocols and Its Application 29

pre-comp. online comp. # of comm. data trans. # of comm. comm. online total
time (ms) time (ms) bits (bit) time (ms) rounds latency (ms) exec. time (ms)

5.3 0.52 20 × 101 4.75 × 10−3 2 80 80.5

Equality 50.3 0.59 20 × 102 4.75 × 10−2 2 80 80.6

5003 5.6 20 × 104 4.75 2 80 90.4

50051 101.2 20 × 105 4.75 × 101 2 80 228.7

28.1 2.2 712 × 101 8.9 × 10−2 3 120 122.3

Comparison 266.9 3.2 712 × 102 8.9 × 10−1 3 120 124.1

27810 138.2 712 × 104 8.9 × 101 3 120 347.2

282130 2171 712 × 105 8.9 × 102 3 120 3181

83.5 2.7 3960 × 101 2.75 × 10−1 4 160 163.0

3-Max 841.3 5.6 3960 × 102 2.75 4 160 168.4

86345 631.5 3960 × 104 2.75 × 102 4 160 1067

863023 7121 3960 × 105 2.75 × 103 4 160 10031

Table 5. Evaluation of our protocols over Z232 with 10(top)/100(second from the
top)/10000(third from the top)/100000(bottom) batch.

pre-comp. online comp. # of comm. data trans. # of comm. comm. online total
time (ms) time (ms) bits (bit) time (ms) rounds latency (ms) exec. time (ms)

0.17 0.17 20 2.5 × 10−4 2 80 80.2

0.59 0.17 20 × 101 2.5 × 10−3 2 80 80.2

4.6 0.19 20 × 102 2.5 × 10−2 2 80 80.2

Equality 46.0 0.36 20 × 103 2.5 × 10−1 2 80 80.6

447.3 1.8 20 × 104 2.5 2 80 84.3

4591 30.5 20 × 105 2.5 × 101 2 80 135.5

45982 376.9 20 × 106 2.5 × 102 2 80 706.9

0.95 0.98 280 3.5 × 10−3 3 120 121.0

6.4 0.98 280 × 101 3.5 × 10−2 3 120 121.0

58.3 1.3 280 × 102 3.5 × 10−1 3 120 121.6

Comparison 598.9 3.7 280 × 103 3.5 3 120 127.2

5995 30.5 280 × 104 3.5 × 101 3 120 185.5

60666 555.7 280 × 105 3.5 × 102 3 120 1026

607179 5349 280 × 106 3.5 × 103 3 120 8969

2.5 1.2 1752 2.19 × 10−2 4 160 161.2

19.8 1.3 1752 × 101 2.19 × 10−1 4 160 161.5

189.7 2.4 1752 × 102 2.19 4 160 164.6

3-Max 1947 12.0 1752 × 103 2.19 × 101 4 160 193.9

20121 216.0 1752 × 104 2.19 × 102 4 160 595.0

199728 2415 1752 × 105 2.19 × 103 4 160 4765

1976891 22868 1752 × 106 2.19 × 104 4 160 44928

Table 6. Evaluation of our protocols over Z216 with 1 to 106 batch (from the top to
the bottom).

30 S. Ohata and K. Nuida

pre-comp. online comp. # of comm. data trans. # of comm. comm. online total
time (ms) time (ms) bits (bit) time (ms) rounds latency (ms) exec. time (ms)

2.5 1.4 72 9.0 × 10−4 2 80 81.4

12.7 1.5 72 × 101 9.0 × 10−3 2 80 81.5

112.9 1.8 72 × 102 9.0 × 10−2 2 80 81.9

Equality 1152 4.7 72 × 103 9.0 × 10−1 2 80 85.6

11404 53.4 72 × 104 9.0 2 80 142.4

114999 658.8 72 × 105 9.0 × 101 2 80 828.8

1156086 7862 72 × 106 9.0 × 102 2 80 8842

22.0 5.8 1900 2.38 × 10−2 3 120 125.8

183.3 6.3 1900 × 101 2.38 × 10−1 3 120 126.5

1819 11.6 1900 × 102 2.38 3 120 134.0

Comparison 18894 74.4 1900 × 103 2.38 × 101 3 120 218.2

186987 975.0 1900 × 104 2.38 × 102 3 120 1333

1861936 13418 1900 × 105 2.38 × 103 3 120 15918

19098870 245178 1900 × 106 2.38 × 104 3 120 269098

58.5 6.3 9348 1.17 × 10−1 4 160 166.4

543.7 8.3 9348 × 101 1.17 4 160 169.5

5487 23.7 9348 × 102 1.17 × 101 4 160 195.4

3-Max 56608 270.0 9348 × 103 1.17 × 102 4 160 547.0

564780 3440 9348 × 104 1.17 × 103 4 160 4770

5721530 42420 9348 × 105 1.17 × 104 4 160 54280
− − − − − − −

Table 7. Evaluation of our protocols over Z264 with 1 to 106 batch (from the top to the
bottom). We could not execute 3-Max with 1000000 batch in our experiments because
of the memory shortage.

	Communication-Efficient (Client-Aided) Secure Two-Party Protocols and Its Application

