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Abstract. Proof-of-burn has been used as a mechanism to destroy cryp-
tocurrency in a verifiable manner. Despite its well known use, the mech-
anism has not been previously formally studied as a primitive. In this
paper, we put forth the first cryptographic definition of what a proof-
of-burn protocol is. It consists of two functions: First, a function which
generates a cryptocurrency address. When a user sends money to this
address, the money is irrevocably destroyed. Second, a verification func-
tion which checks that an address is really unspendable. We propose the
following properties for burn protocols. Unspendability, which mandates
that an address which verifies correctly as a burn address cannot be used
for spending; binding, which allows associating metadata with a partic-
ular burn; and uncensorability, which mandates that a burn address is
indistinguishable from a regular cryptocurrency address. Our definition
captures all previously known proof-of-burn protocols. Next, we design
a novel construction for burning which is simple and flexible, making
it compatible with all existing popular cryptocurrencies. We prove our
scheme is secure in the Random Oracle model. We explore the application
of destroying value in a legacy cryptocurrency to bootstrap a new one.
The user burns coins in the source blockchain and subsequently creates
a proof-of-burn, a short string proving that the burn took place, which
she then submits to the destination blockchain to be rewarded with a
corresponding amount. The user can use a standard wallet to conduct
the burn without requiring specialized software, making our scheme user
friendly. We propose burn verification mechanisms with different security
guarantees, noting that the target blockchain miners do not necessarily
need to monitor the source blockchain. Finally, we implement the verifica-
tion of Bitcoin burns as an Ethereum smart contract and experimentally
measure that the gas costs needed for verification are as low as standard
Bitcoin transaction fees, illustrating that our scheme is practical.

1 Introduction

Since the dawn of history, humans have entertained the defiant thought
of money burning, sometimes literally, for purposes ranging from artistic
effect [9] to protest [23], or to prevent it from falling into the hands of
pirates [22,12]. People did not shy away from the practice in the era of
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cryptocurrencies. Acts of money burning immediately followed the incep-
tion of Bitcoin [24] in 2009, with the first recorded instance of intentional
cryptocurrency destruction taking place on August 2010 [29], a short three
months after the first real-world transaction involving cryptocurrency in
May 2010 [8]. For the first time, however, cryptocurrencies exhibit the
unique ability for money burning to be provable retroactively in a so-
called proof-of-burn.

First proposed by Iain Stewart in 2012 [28], proof-of-burn consti-
tutes a mechanism for the destruction of cryptocurrency irrevocably and
provably. The ability to create convincing proofs changed the practice of
money burning from a fringe act to a rational and potentially useful en-
deavour. It has since been discovered that metadata of the user’s choice—
a so-called tag—can be uniquely ascribed to an act of burning, allowing
each burn to become tailored to a particular purpose. Such protocols
have been used as a consensus mechanism similar to proof-of-stake (Slim-
coin [25]), as a mechanism for establishing identity (OpenBazaar [26,34]),
and for notarization (Carbon dating [13] and OpenTimestamps [30]). A
particularly apt use case is the destruction of one type of cryptocurrency
to create another. In one prolific case, users destroyed more than 2,130.87
BTC ($1.7M at the time, $21.6M in today’s prices) for the bootstrapping
of the Counterparty cryptocurrency [1].

While its adoption is undeniable, there has not been a formal treat-
ment for proof-of-burn. This is the gap this work aims to fill.
Our contributions. A summary of our contributions is as follows:

(i) Primitive definition.Our definitional contribution introduces proof-
of-burn as a cryptographic primitive for the first time. We define it as a
protocol which consists of two algorithms, a burn address generator and
a burn address verifier. We put forth the foundational properties which
make for secure burn protocols, namely unspendability, binding, and un-
censorability. One of the critical features of our formalization is that a
tag has to be bound cryptographically with any proof-of-burn operation.
(ii) Novel construction. We propose a novel and simple construction
which is flexible and can be adapted for use in existing cryptocurrencies,
as long as they use public key hashes for address generation. To our
knowledge, all popular cryptocurrencies are compatible with our scheme.
We prove our construction secure in the Random Oracle model [6].
(iii) Bootstrapping mechanism. We propose a cryptocurrency proof-
of-burn bootstrapping mechanism which for the first time does not re-
quire target blockchain miners to connect to external blockchain networks.
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Our mechanism in principle allows burning from any proof-of-work-based
cryptocurrency.
(iv) Experimental results. We provide a compehensively tested pro-
duction grade implementation of the bootstrapping mechanism in Ethe-
reum written in Solidity, which we release as open source software. Our
implementation can be used to consume proofs of burn of a source block-
chain within a target blockchain. We provide experimental measurements
for the cost of burn verification and find that, in current Ethereum prices,
burn verification costs $0.28 per transaction. This allows coins burned on
one blockchain to be consumed on another for the purposes of, for exam-
ple, ERC-20 tokens creation [32].

Workflow. A user who wishes to burn her coins generates an address
which we call a burn address. This address encodes some user-chosen
metadata called the tag. She then proceeds to send any amount of cryp-
tocurrency to the burn address. After burning her cryptocurrency, she
proves to any interested party that she irrevocably destroyed the cryp-
tocurrency in question.
Properties. We define the following properties for a proof-of-burn pro-
tocol:

– Unspendability. No one can spend the burned cryptocurrency.
– Binding. The burn commits only to a single tag.
– Uncensorability. Miners who do not agree with the scheme cannot

censor burn transactions.

Finally, we consider the usability of a proof-of-burn protocol impor-
tant: whether a user is able to create a burn transaction using her regular
cryptocurrency wallet.
Notation. We use U(S) to denote the uniform distribution obtained by
sampling any item of the finite set S with probability 1

|S| . We denote
the support of a distribution D by [D]. We also use [n] to denote the
set of integers from 1 to n. We denote the empty string by ε and string
concatenation by ‖.

2 Defining Proof-of-Burn

We now formally define what a proof-of-burn protocol is. Let κ be the se-
curity parameter. The protocol consists of two functions GenBurnAddr and
BurnVerify and works as follows. Alice first generates an address burnAddr
to which she sends some cryptocurrency. The address is generated by in-
voking GenBurnAddr(1κ, t) and encodes information contained in a tag t,
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a string of Alice’s choice. When the transaction is completed, she gives
the transaction and tag to Bob who invokes BurnVerify(1κ, t, burnAddr) to
verify she irrevocably destroyed the cryptocurrency while committing to
the provided tag.

Definition 1 (Burn protocol). A burn protocol Π consists of two func-
tions GenBurnAddr(1κ, t) and BurnVerify(1κ, t, burnAddr) which work as
follows:

– GenBurnAddr(1κ, t): Given a tag t ∈ {0, 1}∗, generate a burn address.
– BurnVerify(1κ, t, burnAddr): Given a tag t ∈ {0, 1}∗ and an address

burnAddr, return true if and only if burnAddr is a burn address and
correctly encodes t.

We require that the burn scheme is correct.

Definition 2 (Correctness). A burn protocol Π is correct if for all
t ∈ {0, 1}∗ and for all κ ∈ N it holds that BurnVerify(1κ, t,GenBurn-
Addr(1κ, t)) = true.

With foresight, we remark that the implementation of GenBurnAddr
and BurnVerify will typically be deterministic, which alleviates the need
for a probabilistic correctness definition.

Naturally, for GenBurnAddr to generate addresses that “look” valid
but are unspendable according to the blockchain protocol requires that
the burn protocol respects its format. We abstract the address generation
and spending verification of the given system into a blockchain address
protocol:

Definition 3 (Blockchain address protocol). A blockchain address
protocol Πα consists of two functions GenAddr and SpendVerify:

– GenAddr(1κ): Returns a tuple (pk, sk), denoting the cryptocurrency
address pk (a public key) used to receive money and its respective
secret key sk which allows spending from that address.

– SpendVerify(m, σ, pk): Returns true if the transaction m spending from
receiving address pk has been authorized by the signature σ (by being
signed by the respective private key).

We note that, while the blockchain address protocol is not part of
the burn protocol, the security properties of a burn protocol Π will be
defined with respect to a blockchain address protocol Πα.
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Algorithm 1 The challenger for the burn protocol game-based security.
1: function spend-attackA,Π(κ)
2: (t,m, σ, pk)← A(1κ)
3: return (BurnVerify(1κ, t, pk) ∧ SpendVerify(m,σ, pk))
4: end function

Algorithm 2 The challenger for the burn protocol game-based security.
1: function bind-attackA,Π(κ)
2: (t, t′, burnAddr)← A(1κ)
3: return (t 6= t′ ∧ BurnVerify(1κ, t, burnAddr) ∧ BurnVerify(1κ, t′, burnAddr))
4: end function

These two functionalities are typically implemented using a public key
signature scheme and accompanied by a respective signing algorithm. The
signing algorithm is irrelevant for our burn purposes, as burning entails
the inability to spend. As the format of m is cryptocurrency-specific,
we intentionally leave it undefined. In both Bitcoin and Ethereum, m
corresponds to transaction data. When a new candidate transaction is
received from the network, the blockchain node calls SpendVerify, passing
the public key pk, which is the address spending money incoming to the
new transactionm, together with a signature σ, which signsm and should
be produced using the respective secret key.

To state that the protocol generates addresses which cannot be spent
from, we introduce a game-based security definition. The unspendability
game spend-attack is illustrated in Algorithm 1.

Definition 4 (Unspendability). A burn protocol Π is unspendable
with respect to a blockchain address protocol Πα if for all probabilistic
polynomial-time adversaries A there exists a negligible function negl(κ)
such that Pr[spend-attackA,Π(κ) = true] ≤ negl(κ).

It is desired that a burn address encodes one and only one tag. Con-
cretely, given a burn address burnAddr, BurnVerify(1κ, t, burnAddr) should
only evaluate to true for a single tag t. The game bind-attack in Algo-
rithm 2 captures this property.

Definition 5 (Binding). A burn protocol Π is binding if for all proba-
bilistic polynomial-time adversaries A there is a negligible function negl(κ)
such that Pr[bind-attackA,Π(κ)] ≤ negl(κ).
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We note here that the correctness and binding properties of a burn
protocol are irrespective of the blockchain address protocol it was de-
signed for.

We are now ready to define what constitutes a secure proof-of-burn
protocol.

Definition 6 (Security). Let Π be a correct burn protocol. We say Π is
secure with respect to a blockchain address protocol Πα if it is unspendable
and binding with respect to Πα.

The aforementioned properties form a good basis for a burn protocol.
We observe that it may be possible to detect whether an address is a burn
address. While this is desirable in certain circumstances, it allows miners
to censor burn transactions. To mitigate this, we propose uncensorability,
a property which mandates that a burn address is indistinguishable from a
regular address if its tag is not known. During the execution of protocols
which satisfy this property, when the burn transaction appears on the
network, only the user who performed the burn knows that it constitutes
a burn transaction prior to revealing the tag. Naturally, as soon as the
tag is revealed, correctness mandates that the burn transaction becomes
verifiable.

Definition 7 (Uncensorability). Let T be a distribution of tags. A
burn protocol Π is uncensorable if the distribution ensembles {(pk, sk)←
GenAddr(1κ); pk}κ and {t ← T ; pk ← GenBurnAddr(1κ, t); pk}κ are com-
putationally indistinguishable.

3 Construction

We now present our construction for an uncensorable proof-of-burn pro-
tocol. To generate a burn address, the tag t is hashed and a perturbation
is performed on the hash by toggling the last bit. Verifying a burn ad-
dress burnAddr encodes a certain tag t is achieved by invoking GenBurn-
Addr with tag t and checking whether the result matches burnAddr. If it
matches, the burnAddr correctly encodes t. Our construction is illustrated
in Algorithm 3.

We outline the blockchain address protocol for Bitcoin Pay to Public
Key Hash (P2PKH) [2], with respect to which we prove our construc-
tion secure and uncensorable in Section 5. It is parametrized by a secure
signature scheme S and a hash function H (for completeness, we give a
construction which includes the concrete hash functions and checksums
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Algorithm 3 Our uncensorable proof-of-burn protocol for Bitcoin
P2PKH.
1: function GenBurnAddrH(1κ, t)
2: th← H(t)
3: th′ ← th⊕ 1 . Key perturbation
4: return th’
5: end function
6: function BurnVerifyH(1κ, t, th′)
7: return (GenBurnAddrH(1κ, t) = th′)
8: end function

Algorithm 4 The Bitcoin P2PKH algorithm, parameterized by a signa-
ture scheme S = (Gen,Sig,Ver).
1: function GenAddrS,H(1κ)
2: (pk, sk)← Gen(1κ)
3: pkh← H(pk)
4: return (pkh, sk)
5: end function
6: function SpendVerifyS,H(m,σ, pkh)
7: (pk, σ′)← σ
8: return (H(pk) = pkh ∧ Ver(m,σ′, pk))
9: end function

of Bitcoin in Appendix A). GenAddr uses S to generate a keypair and
hashes the public key to generate the public key hash. A tuple consisting
of the public key hash and the secret key is returned. SpendVerify takes
a spending transaction m, a scriptSig σ and a public key hash pkh. The
scriptSig should contain the public key pk corresponding to pkh such that
H(pk) = pkh and a valid signature σ′ for the spending transaction m [2].
If these conditions are met, the function returns true, otherwise it returns
false. The blockchain address protocol is illustrated in Algorithm 4.

4 Comparison

We now compare three alternatives for proof-of-burn proposed in previous
work against our scheme: OP_RETURN, P2SH OP_RETURN and nothing-up-
my-sleeve. These schemes are instances of our burn primitive.

We study whether the aforementioned schemes satisfy binding, un-
spendability and uncensorability. Additionally, we compare them on how
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easily they translate to multiple cryptocurrencies, a property we call flex-
ibility, as well as whether a standard user friendly wallet can be used to
burn money. A summary of our comparison is illustrated on Table 1.

Table 1. Comparison between proof-of-burn schemes.

Binding Flexible Unspendable Uncensorable User friendly
OP_RETURN • •

P2SH OP_RETURN • • • •
Nothing-up-my-sleeve • • • •
a⊕ 1 (this work) • • • • •

OP_RETURN. Bitcoin supplies a native OP_RETURN [5] opcode. The Bitcoin
Script interpreter deems an output unspendable when this opcode is
encountered. The tag is included directly in the Bitcoin Script, hence the
scheme is binding by definition. This Bitcoin-specific opcode is inflexi-
ble and does not translate to other cryptocurrencies such as Monero [31].
It is trivially censorable. However, the output is prunable, benefiting the
network. Standard wallets do not provide a user friendly interface
for such transactions. Any provably failing [28] Bitcoin Script can be used
in OP_RETURN’s stead.

P2SH OP_RETURN. An OP_RETURN can be used as the redeemScript for
a Pay to Script Hash (P2SH) [4] address. Binding and unspendabil-
ity are accomplished by the collision resistance of the hash function
RIPEMD160 ◦ SHA256. Similarly to OP_RETURN this scheme is inflexible.
From the one-wayness of the hash function it is uncensorable. Finally,
the scheme is user friendly since any wallet can create a burn transac-
tion.

Nothing-up-my-sleeve. An address is manually crafted so that it is
clear it was not generated from a regular keypair. For example, the all-
zeros address is considered nothing-up-my-sleeve 4. The scheme is not
binding, as no tag can be associated with such a burn, and flexible
because such an address can be generated for any cryptocurrency. It is
hard to obtain a public key hashing to this address, thus funds sent to it
are unspendable. On the other hand, because a widely known address is
used, the scheme is censorable. Finally, the address is a regular recipient
and any wallet can be used to fund it, making it user friendly.

4 The Bitcoin address 1111111111111111111114oLvT2 encodes the all-zeros string and
has received more than 50,000 transactions dating back to Aug 2010.
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5 Analysis

We now move on to the analysis of our scheme. As the scheme is deter-
ministic, its correctness is straightforward to show.

Theorem 1 (Correctness). The proof-of-burn protocol Π of Section 3
is correct.

Proof. Based on Algorithm 3, BurnVerify(1κ, t,GenBurnAddr(1κ, t)) = true
if and only if GenBurnAddr(1κ, t) = GenBurnAddr(1κ, t), which always
holds as GenBurnAddr is deterministic.

We now state a simple lemma pertaining to the distribution of Ran-
dom Oracle outputs.

Lemma 1 (Perturbation). Let p(κ) be a polynomial and F : {0, 1}κ −→
{0, 1}κ be a permutation. Consider the process which samples p(κ) strings
s1, s2, . . . , sp(κ) uniformly at random from the set {0, 1}κ. The probability
that there exists i 6= j such that si = F (sj) is negligible in κ.

We will now apply the above lemma to show that our scheme is un-
spenable.

Theorem 2 (Unspendability). If H is a Random Oracle, then the
protocol Π of Section 3 is unspendable.

Proof. LetA be an arbitrary probabilistic polynomial time spend-attack
adversary. A makes at most a polynomial number of queries p(κ) to the
Random Oracle. Let Match denote the event that there exist i 6= j with
si = F (sj) where F (s) = s⊕ 1.

If the adversary is successful then it has presented t, pk, pkh such that
H(pk) = pkh and H(t)⊕ 1 = pkh. Observe that spend-attackA,Π(κ) =
true⇒Match. Therefore Pr[spend-attackA,Π(κ)] ≤ Pr[Match]. Ap-
ply Lemma 1 on F to obtain Pr[spend-attackA,Π(κ)] ≤ negl(κ).

We note that the security of the signature scheme is not needed
to prove unspendability. Were the signature scheme of the underlying
cryptocurrency ever found to be forgeable, the coins burned through
our scheme would remain unspendable. We additionally remark that the
choice of the permutation F (x) = x ⊕ 1 is arbitrary. Any one-to-one
function beyond the identity function would work equally well.
Preventing proof-of-burn. It is possible for a cryptocurrency to pre-
vent proof-of-burn by requiring every address to be accompanied by a
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Algorithm 5 The collision adversary A∗ against H using a proof-of-burn
bind-attack adversary A.
1: function A∗A(1κ)
2: (t, t′,_)← A(1κ)
3: return (t, t’)
4: end function

proof of possession [27]. To the best of our knowledge, no cryptocurrency
features this.

Next, our binding theorem only requires that the hash function used
is collision resistant and is in the standard model.

Theorem 3 (Binding). If H is a collision resistant hash function then
the protocol of Section 3 is binding.

Proof. Let A be an arbitrary adversary against Π. We will construct the
Collision Resistance adversary A∗ against H.

The collision resistance adversary, illustrated in Algorithm 5, calls A
and obtains two outputs, t and t′. If A is successful then t 6= t′ and
H(t)⊕ 1 = H(t′)⊕ 1. Therefore H(t) = H(t′).

We thus conclude that A∗ is successful in the collision game if and
only if A is successful in the bind-attack game.

Pr[bind-attackA,Π(κ) = true] = Pr[collisionA∗,H(κ) = true]

From the collision resistance of H it follows that Pr[collisionA∗,H =
true] < negl(κ). Therefore, Pr[bind-attackA,Π = true] < negl(κ), so the
protocol Π is binding.

We now posit that no adversary can predict the public key of a secure
signature scheme, except with negligible probability. We call a distribu-
tion unpredictable if no probabilistic polynomial-time adversary can pre-
dict its sampling. We give the formal definition, with some of its statistical
properties, in Appendix B.2.

Lemma 2 (Public key unpredictability). Let S = (Gen,Sig,Ver) be a se-
cure signature scheme. Then the distribution ensemble Xκ = {(sk, pk)←
Gen(1κ); pk} is unpredictable.

The following lemma shows that the output of the random oracle
is indistinguishable from random if the input is unpredictable (for the
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complete proofs see Appendix B.3). For reference, the definition of com-
putational indistinguishability is included in Appendix B.1.

Lemma 3 (Random Oracle unpredictability). Let T be an unpredictable
distribution ensemble and H be a Random Oracle. The distribution en-
semble X = {t ← T ;H(t)} is indistinguishable from the uniform distri-
bution ensemble U({0, 1}κ).

Theorem 4 (Uncensorability). Let S = (Gen, Sig,Ver) be a secure
signature scheme, H be a Random Oracle, and T be an unpredictable tag
distribution. Then the protocol of Section 3 instantiated with H,S, T is
uncensorable.

Proof. Let X be the distribution ensemble of public keys generated using
GenAddr and Y that of keys generated using GenBurnAddr.

From Lemma 2 the distribution of public keys generated from S is
unpredictable. The function GenAddr samples a public key from S and
applies the random oracle H to it. Applying Lemma 3, we obtain that
X ≈c U({0, 1}κ).

The function H ′(x) = H(x)⊕ 1 is a random oracle (despite not being
independent from the random oracleH). Since T is unpredictable, and ap-
plying Lemma 3 with random oracle H ′, we obtain that Y ≈c U({0, 1}κ).

By transitivity, X and Y are computationally indistinguishable.

From the above, we conclude that the tags used during the burn pro-
cess must be unpredictable. If the tag is chosen to contain a randomly
generated public key from a secure signature scheme, or its hash, Lem-
mas 2 and 3 show that sufficient entropy exists to ensure uncensorability.
Our cross-chain application makes use of this fact.

6 Consumption

Over the last 5 years there has been an explosion of new cryptocurren-
cies. Unfortunately, it is hard for a new cryptocurrency to gain traction.
Without traction, no market depth ensues and a cryptocurrency has dif-
ficulty getting listed in exchanges. But without being listed in exchanges,
a cryptocurrency cannot gain traction.

This chicken-and-egg situation presents the need for a solution that
circumvents exchanges and allows users to acquire the cryptocurrency di-
rectly. We propose utilizing proof-of-burn to allow users to obtain capital
on a new target cryptocurrency by burning a legacy source cryptocur-
rency. The target blockchain may support burning from multiple sources.
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Workflow. A user wishes to acquire a target cryptocurrency. She uses her
target address as a tag to generate a source burn address. She then sends
an amount of source cryptocurrency to that address. She submits a proof
of this burn to a smart contract [11] on the target chain, where it is ver-
ified and she is credited an equivalent amount of currency. Proof-of-burn
verification happens in either a centralized manner which is lighter on
computation, or in a decentralized manner using Non-Interactive Proofs
of Proof-of-Work (NIPoPoWs) [19,20,18,17,10]. Target miners need not be
connected to every other source blockchain network. We call this property
miner-isolation and propose methods to achieve it.

We now describe how a target smart contract verifies a burn took
place on the source chain. We make use of the Proof-of-Work Sidechains
mechanism [21] in which they propose a generic information transfer con-
struction. We tailor it towards our purposes for proof-of-burn transfers.
We call the user the prover and the smart contract the verifier. The prover
wishes to convince the verifier that an event occurred on the source chain.
We define an event as a simple value transfer described by a transaction
id txid, a receiving address addr and an amount. Simple value transfers
are supported by all cryptocurrencies, allowing a verifier to process burns
from a wide range of source blockchains. Note that this event type does
not yet distinguish between burn and non-burn addresses.

A verifier checks an event occurred on the source chain by ensuring
its transaction is contained in a stable block [15,16] in the best source
chain. Specifically, the following data are supplied to the smart contract
as a proof:

– tx: The transaction which contains the burn on the source chain.
– b: The block header for the block which contains tx.
– τtx: An inclusion proof showing tx ∈ b.
– τb: A proof that b is contained in the best (i.e., most proof-of-work)

source chain and is stable.

We assume the source blockchain provides a function verify-tx(addr,
amount, b, tx, τtx) which can be written in the smart contract language
of the target blockchain and verifies the validity of a source transaction.
It takes a source address addr, an amount, a block b, a transaction tx and
a proof τtx for the inclusion of tx in b. It returns true if tx contains a
transfer of amount to addr and the proof τtx is valid.

The proof τtx is usually a Merkle Tree inclusion proof. More con-
cretely, in Bitcoin, each block header contains a commitment to the set of
transaction ids in the block in the form of a Merkle Tree root. Ethereum
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stores a similar commitment in its header — the root of a Merkle–Patricia
Trie [33].

For verifying that a provided block b belongs to the best source block-
chain and is stable, we assume the existence of a function in-best-chain(b).
We explore how it can be implemented in the “Verifying block connection”
paragraph below.

Bootstraping mechanism. Being able to verify events, we can grant
target cryptocurrency to users who burn source cryptocurrency. After
burning on the source blockchain, the user calls the claim function with
the aforementioned event and a proof for it. This function ensures that
the event provided is valid and has not been claimed before (i.e. no one
has been granted target cryptocurrency for this specific event in the past),
that it corresponds to the transaction tx and that the block b is stable,
belongs to the best source chain and contains tx. Then, after verifying by
invoking BurnVerify that the receiving address of the event is a burn ad-
dress where the tag is the function caller’s address, it releases the amount
of coins burned in the form of an ERC-20 token. We present the contract
burn-verifier with this capability in Algorithm 6.

Algorithm 6 A contract for verifying burns from the source chain. This
smart contract runs within the target blockchain.
1: contract burn-verifier extends crosschain; ERC20
2: mapping(address ⇒ uint256) balances
3: claimed-events← ∅
4: function claim(e, b, τtx)
5: block-ok← in-best-chain(b)
6: tx-ok← verify-tx(e.addr, e.amount, b, e.tx, τtx)
7: event-ok← e /∈ claimed-events
8: if block-ok ∧ tx-ok ∧ event-ok ∧ BurnVerify(msg.sender, e.addr) then
9: claimed-events← claimed-events ∪ {e}
10: balances[msg.sender] += e.amount
11: end if
12: end function
13: end contract

In the interest of keeping this implementation generic we assume that
the user receives a token in return for his burn. However, instead of mint-
ing a token, the target cryptocurrency could allow the burn verifier con-
tract to mint native cryptocurrency for any user who successfully claims
an event. This would allow the target cryptocurrency to be bootstrapped
entirely though burning as desired.
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Verifying block connection.We now shift our attention to the problem
of verifying a block belongs in the best source chain. We provide multiple
ways of implementing the aforementioned in-best-chain method.
Direct observation. Miners connect to the source blockchain network
and have access to the best source chain. A miner can thus evaluate if a
block is included in that chain and is stable. This mechanism does not
provide miner-isolation. It is adopted by Counterparty.
NIPoPoWs. Verifying block connection can be achieved through NIPo-
PoWs, as in [21]. We remark that with this setup a block connection proof
may be considered valid provisionally, but there needs to be a period in
which the proof can be disputed for the smart contract to be certain for
the validity of the proof. Specifically, when a user performs a claim, they
have to put down some collateral. If they have provided a valid NIPo-
PoW, a contestation period begins. Within that period a challenger can
dispute the provided proof which – provided that the dispute is successful
– would turn the result of in-best-chain to false, abort the claim and grant
the challenger the user’s collateral. If the contestation period ends with
the proof undisputed, then in-best-chain evaluates to true, the collateral
gets returned to the user and the claim is performed successfully.
Federation. A simpler approach is to allow a federation of n nodes mon-
itoring the source chain to vote for their view of the best source chain.
This construction works under the assumption that the majority of the
federation is honest.

The best source chain is expressed as the root M of a Merkle Tree
containing the chain’s stable blocks as leaves. Each federation node con-
nects to both blockchain networks, calculatesM and submits their vote
for it every time a new source chain block is found. When a majority of
bn2 c+ 1 nodes agrees on the sameM, it is considered valid.

Having a validM, a verifier verifies a Merkle Tree inclusion proof τb
for b ∈ M and is certain the block provided is part of the best source
chain and is stable. This approach is illustrated in Algorithm 7. The more
suitable Merkle Mountain Range [10] data structure can be used to store
M in place of regular Merkle Trees, as they constitute a more efficient
append-only structure.

7 Empirical Results

In order to evaluate our consumption mechanisms, we implement the
federated consumption mechanism in Solidity. We provide a concrete im-
plementation of the burn-verifier contract described in Algorithm 6. We
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Algorithm 7 A in-best-chain implementation which verifies that a block
b is included in the best source chain using the federation mechanism.M
denotes the latest MMR approved by the federation majority.
1: votes← ∅
2: best-idx← 0
3: M← ε
4: function votefed(m,σ, pk)
5: if pk ∈ fed∧Ver(m,σ, pk) then . Check that pk is a valid federation member
6: (M∗, idx)← m
7: votes[m]← votes[m] ∪ {pk}
8: if |votes[m]| ≥ b |fed|

2 c+ 1 ∧ idx > best-idx then
9: M←M∗ . Update accepted MMR
10: best-idx← idx
11: end if
12: end if
13: end function
14: function in-best-chainM(b, τb)
15: return VerMT (M, b, τb)
16: end function

implement the crosschain parent contract from [21]. We verify transaction
data by making use of the open source bitcoin-spv library [3]. Finally, the
federation mechanism for verifying block connection is employed. The
members of the federation can vote on their computed checkpoints using
the vote function.

We release our implementation as open source software under the MIT
license5. The implementation is production-ready and fully tested with
100% code coverage.

At the time of writing we obtain the median gas price of 6.9 gwei and
the price of Ethereum in US Dollars at $170.07. The cost of gas in USD
is calculated by the formula gas∗1.173483∗10−6 rounded to two decimal
places.

Method Gas cost Equivalent in USD
vote 50103 gas $0.06

submit-event-proof 157932 gas $0.19
claim 78267 gas $0.09

Total claim cost 262817 gas $0.28

For the end user to prove an event and claim her burn, the cost is
thus $0.28. Comparatively, for a Bitcoin transaction to be included in the
next block at the time of writing a user has to spend $0.77.

5 https://github.com/decrypto-org/burn-paper/tree/master/experiment.
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Appendix

Our Appendix is structured as follows. In Appendix A we show how our
scheme can be adopted to the practical implementation details of Bitcoin.
In Appendix B we provide the formal definitions and proofs of our claims.
Finally, in Appendix C we discuss potential future directions in relaxing
the Random Oracle assumption and propose a scheme for which we show
some desirable properties in the Common Random String model [7].

A Deployment to Bitcoin

Algorithm 8 The Bitcoin blockchain address protocol, including the
engineering details of checksums and practical hash implementation.
1: function GenAddr()
2: (pk, sk)← Gen()
3: pkh← RIPEMD160(SHA256(0x04 ‖ pk)
4: addr← 0x00 ‖ pkh . Magic byte indicating mainnet
5: checksum← SHA256(SHA256(addr))[: 4] . Keep the first 4 bytes
6: return base58(addr ‖ checksum)
7: end function

The scheme described above works for a generic P2PKH cryptocur-
rency and can be adapted to any cryptocurrency. We illustrate its suit-
ability by giving a precise construction for Bitcoin, taking into account
the engineering details that are behind the generation of a Bitcoin P2PKH
address. A comparable approach can be used to generate Ethereum ad-
dresses or others.

The way Bitcoin generates P2PKH addresses is illustrated in Algo-
rithm 8. Here, Gen generates an elliptic curve public key (of fixed key size
κ = 256). After the elliptic curve public key is generated, it is marked
by a magic number and subsequently hashed by the so-called HASH160
algorithm, which consists of evaluating RIPEMD160 on the SHA256 of the
public key. The resulting hash is additionally prefixed by a magic number
indicating that the execution is taking place on the main net (and not the
test net), and the final address, together with a checksum, are encoded
using base58 to obtain the final address.

Our burn algorithm follows the same structure for address genera-
tion, ensuring that the magic numbers and checksums validate correctly.
In this construction, the hash function which is modelled as a random
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Algorithm 9 The key perturbation algorithm which generates a provable
proof-of-burn address which validates under Bitcoin.
1: function GenBurnAddr(t)
2: th← RIPEMD160(SHA256(t))
3: th′ ← th⊕ 0x01 . Key perturbation
4: addr← 0x00 ‖ th′ . Magic byte indicating mainnet
5: checksum← SHA256(SHA256(addr))[: 4] . Keep the first 4 bytes
6: return base58(addr ‖ checksum)
7: end function

oracle is the HASH160 algorithm. The algorithm is illustrated in Algo-
rithm 9 and works as follows. Given a tag t, the user derives a 160-byte
hash th = RIPEMD160(SHA256(t)) which looks like a public key hash. The
least significant bit of th is then flipped to achieve unspendability. This
produces the 20-byte perturbated hash th′. The perturbated hash is then
prefixed with 0x00 to designate that we’re working on the Bitcoin main-
net as usual. The checksum is calculated and appended to it, and the
result is base58 encoded into a Bitcoin address which correctly validates.

B Full proofs

In this section, we give the full proofs of our claims. Appendix B.1 proves
some facts about computationally indistinguishable distributions. In Ap-
pendix B.2, we introduce unpredictable distributions and show that public
keys are unpredictable. In Appendix B.3, we prove some facts about the
statistical properties of random oracles, including Lemma 1 from which
the unspendability of our scheme follows and Lemma 3 from which the
uncensorability of our scheme follows.

B.1 Computational indistinguishability
We review the definition of computational indistinguishability between
two distributions X and Y . Define the cryptographic game illustrated
in Algorithm 10. Computational indistinguishability mandates that no
adversary can win the game, except with negligible probability.

Definition 8 (Computational indistinguishability). Two distribu-
tion ensembles {Xκ}κ∈N and {Yκ}κ∈N are computationally indistinguish-
able if for every probabilistic polynomial-time adversary A, there exists
a negligible function negl(κ) such that Pr[dist-gameA,X,Y (κ) = true] ≤
1
2 + negl(κ).

19



Algorithm 10 The challenger for computational indistinguishability.
1: function dist-gameA,D0,D1(κ)
2: b

$← {0, 1}
3: z ← Db
4: b∗ ← A(z, 1κ)
5: return (b = b∗)
6: end function

It is clear that applying an efficiently computable function to indis-
tinguishable distributions preserves indistinguishability.

Algorithm 11 The distinguisher A∗ between distributions X,Y which
makes use of a distinguisher A between X ′ and Y ′.
1: function A∗X,Y,f (z, 1κ)
2: return A(f(z))
3: end function

Lemma 4 (Indistinguishability preservation). Given two computation-
ally indistinguishable distribution ensembles {Xκ}κ∈N and {Yκ}κ∈N, let
{fκ}κ∈N be a family of efficiently computable functions. Then the distri-
bution ensembles X ′ = {fκ(Xκ)}κ∈N and Y ′ = {fκ(Yκ)}κ∈N are compu-
tationally indistinguishable.

Proof. Let A be a probabilistic polynomial-time distinguisher between X ′
and Y ′. Consider the probabilistic polynomial-time distinguisher A∗ be-
tween X and Y illustrated in Algorithm 11. Then Pr[dist-gameA∗(κ) =
true] = Pr[dist-gameA(κ) = true]. As Pr[dist-gameA∗(κ) = true] ≤
1
2 + negl(κ), therefore Pr[dist-gameA(κ) = true] ≤ 1

2 + negl(κ).

B.2 Unpredictable distributions

We call a distribution ensemble unpredictable if no polynomial-time ad-
versary can guess its output. The cryptographic predictability game is
illustrated in Algorithm 12 and the security definition is given below.

Definition 9 (Unpredictable distribution). A distribution ensemble
{Xκ}κ∈N is unpredictable if for all probabilistic polynomial-time adver-
saries A there is a negligible function negl(κ) such that

Pr[predictA,X(κ) = true] < negl(κ) .
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Algorithm 12 The challenger for the distribution predictor.
1: function predictA,X(κ)
2: x← X
3: x∗ ← A(1κ)
4: return (x = x∗)
5: end function

We observe that, if each element of a distribution appears with negli-
gible probability, then the distribution must be unpredictable.

Lemma 5 (Negligible unpredictability). Consider a distribution ensem-
ble {Xκ}κ∈N and a negligible function negl(κ). If

max
x∈[Xκ]

Pr
x∗←Xκ

[x∗ = x] ≤ negl(κ) ,

then X is unpredictable.

Proof. Consider a probabilistic polynomial-time adversary A which pre-
dicts Xκ. The adversary is not given any input beyond 1κ, hence the dis-
tribution of its output is independent from the choice of the challenger.
Therefore

Pr[predictA,X(κ) = true] =
∑
x′∈[X]

Pr
x←X

[A(κ) = x′ ∧ x = x′] =

∑
x′∈[X]

Pr[A(κ) = x′] Pr
x←X

[x = x′] ≤ negl(κ)
∑
x′∈[X]

Pr[A(κ) = x′] ≤ negl(κ) .

Finally, we observe that public keys generated from secure signature
schemes must be unpredictable.

Algorithm 13 The existential forgery A which tries to guess the secret
key through sampling.
1: function AS(1κ, pk)
2: (pk, sk)← Gen(1κ)
3: return (ε,Sig(sk, ε))
4: end function
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Lemma 2 (Public key unpredictability). Let S = (Gen,Sig,Ver) be a se-
cure signature scheme. Then the distribution ensemble Xκ = {(sk, pk)←
Gen(1κ); pk} is unpredictable.

Proof. Let p = max
p̂k∈[Xκ] Prpk←Xκ [pk = p̂k]. Consider the existential

forgery adversary A illustrated in Algorithm 13 which works as follows.
It receives pk as its input from the challenger, but ignores it and generates
a new key pair (pk′, sk′)← Gen(1κ). Since the two invocations of Gen are
independent,

Pr[pk = pk′] ≥ max
p̂k∈[Xκ]

Pr[pk = p̂k ∧ pk′ = p̂k]

= max
p̂k∈[Xκ]

Pr[pk = p̂k] Pr[pk′ = p̂k]

= max
p̂k∈[Xκ]

(
Pr[pk = p̂k]

)2
= p2 .

The adversary checks whether pk = pk′. If not, it aborts. Other-
wise, it uses sk′ to sign the message m = ε and returns the forgery
σ = Sig(sk,m). From the correctness of the signature scheme, if pk = pk′,
then Ver(pk, Sig(sk,m)) = true and the adversary is successful. Since
the signature scheme is secure, Pr[Sig-forgecmaA,S ] = negl(κ). But Pr[pk =
pk′] ≤ Pr[Sig-forgecmaA,S ] and therefore p ≤

√
Pr[pk = pk′] ≤ negl(κ). Ap-

plying Lemma 5, we deduce that the distribution ensemble Xκ is unpre-
dictable.

B.3 Random Oracle properties

In this section, we state some statistical properties of the Random Oracle,
which are useful for the proofs of our main results.

Lemma 1 (Perturbation). Let p(κ) be a polynomial and F : {0, 1}κ −→
{0, 1}κ be a permutation. Consider the process which samples p(κ) strings
s1, s2, . . . , sp(κ) uniformly at random from the set {0, 1}κ. The probability
that there exists i 6= j such that si = F (sj) is negligible in κ.

Proof. Let Match denote the event that there exist 1 ≤ i 6= j ≤ p(κ)
such that si = F (sj). Let Matchi,j denote the event that si = F (sj).
Apply a union bound to obtain Pr[

⋃
i 6=j Matchi,j ] ≤

∑
i 6=j Pr[Matchi,j ].

But Pr[Matchi,j ] = 2−p(κ) and therefore Pr[Match] ≤
∑
i 6=j 2−p(κ) ≤

p2(κ)2−p(κ).
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Algorithm 14 The predictor A∗ of the distribution X which makes use
of a distinguisher A between X and U({0, 1}κ).
1: i← 0
2: Q← ∅ . Record of all random oracle queries
3: function H ′H(x)
4: i← i+ 1
5: Q[i]← H(x)
6: return Q[i]
7: end function
8: function A∗X,A(1κ)
9: b

$← {0, 1}
10: if b = 0 then
11: z ← X
12: j

$← [r]
13: else
14: z ← U({0, 1}κ)
15: end if
16: b∗ ← AH

′
(z)

17: if b = 1 ∨ j > i then
18: return failure
19: end if
20: return Q[j]
21: end function

Lemma 3 (Random Oracle unpredictability). Let T be an unpredictable
distribution ensemble and H be a Random Oracle. The distribution en-
semble X = {t ← T ;H(t)} is indistinguishable from the uniform distri-
bution ensemble U({0, 1}κ).

Proof. Let A be an arbitrary polynomial distinguisher between X and
U({0, 1}κ). We construct an adversaryA∗ against predictT . Let r denote
the (polynomial) maximum number of random oracle queries of A. The
adversary A∗ is illustrated in Algorithm 14 and works as follows. Initially,
it chooses a random bit b $← {0, 1} and sets Z = X if b = 0, otherwise sets
Z = U({0, 1}κ). It samples z ← Z. If b = 0, then z is chosen by applying
GenAddr which involves calling the random oracle H with some input pk.
It then chooses one of A’s queries j $← [r] uniformly at random. Finally,
it outputs the input received by the random oracle during the jth query
of A.

We will consider two cases. Either A makes a random oracle query
containing pk, or it does not. We will argue that, if A makes a random
oracle query containing pk with non-negligible probability, then A∗ will
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be successful with non-negligible probability. However, we will argue that,
if A does not make the particular random oracle query, it will be unable
to distinguish X from U({0, 1}κ).

Let qry denote the event that b = 0 and A asks a random ora-
cle query with input pk. Let x denote the random variable sampled by
the challenger in the predictability game of A∗. Let exqry denote the
event that b = 0 and A asks a random oracle query with input equal
to x. Observe that, since the input to A does not depend on x, we have
that Pr[exqry] = Pr[qry]. As j is chosen independently of the exe-
cution of A, conditioned on exqry the probability that A∗ is able to
correctly guess which query caused exqry will be 1

r . Therefore we ob-
tain that Pr[predictA∗,T (κ) = true] = 1

r Pr[exqry] = 1
r Pr[qry]. As

Pr[predictA∗,T (κ) = true] ≤ negl(κ) and r is polynomial in κ, we de-
duce that Pr[qry] ≤ negl(κ).

Consider the computational indistinguishability game depicted in Al-
gorithm 10 in which the distinguisher gives a guess b∗ attempting to
identify the origin b of its input. If b = 0, then the distinguisher A re-
ceives a truly random input pkh = H(pk). If the distinguisher does not
query the random oracle with input pk, the input of the distinguisher is
truly random and therefore Pr[b∗ = 0|b = 0|¬qry] = Pr[b∗ = 0|b = 1].

Consider the case where b = 0 and apply total probability to obtain
Pr[b∗ = 0|b = 0] =
Pr[b∗ = 0|qry] Pr[qry] + Pr[b∗ = 0|b = 0|¬qry] Pr[¬qry]
≤Pr[b∗ = 0|qry] Pr[qry] + Pr[b∗ = 0|b = 0|¬qry]
≤Pr[qry] + Pr[b∗ = 0|b = 0|¬qry]

Then Pr[dist-gameA,X,U({0,1}κ) = true] = Pr[b = b∗] is the probabil-
ity of success of the distinguisher. Applying total probability we obtain

Pr[b = b∗] = Pr[b = b∗|b = 0] Pr[b = 0] + Pr[b = b∗|b = 1] Pr[b = 1]

= 1
2(Pr[b∗ = 0|b = 0] + Pr[b∗ = 1|b = 1])

≤ 1
2(Pr[qry] + Pr[b∗ = 0|b = 0|¬qry] + Pr[b∗ = 1|b = 1])

= 1
2(Pr[qry] + Pr[b∗ = 0|b = 1] + Pr[b∗ = 1|b = 1])

= 1
2(Pr[qry] + Pr[b∗ = 0|b = 1] + (1− Pr[b∗ = 0|b = 1]))

= 1
2(1 + Pr[qry]) ≤ 1

2 + negl(κ)
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C Relaxing the Random Oracle assumption

The construction presented above works for P2PKH and achieves its un-
spendability and uncensorability in the Random Oracle model. In this
section, we discuss alternative constructions which work without requir-
ing the Random Oracle model.

The simplest blockchain address protocol is the Pay to Public Key
(P2PK) protocol which, in contrast to P2PKH does not hash the public
key to generate an address. Instead, the address is literally the public key
and spending verification simply checks the validity of a signature. This
protocol is illustrated in Algorithm 15.

Algorithm 15 The blockchain address P2PK algorithm, parameterized
by a signature scheme S = (Gen, Sig,Ver).
1: function GenAddrS(1κ)
2: (pk, sk)← Gen(1κ)
3: return (pk, sk)
4: end function
5: function SpendVerifyS(m,σ, pk)
6: return Ver(m,σ′, pk)
7: end function

Without the Random Oracle model, our construction must be tai-
lored to the signature scheme in order to ensure uncensorability, as our
addresses must look similar to public keys generated by the scheme. We
describe a burn scheme which can work for (EC)DSA signatures, as used
in most cryptocurrencies today. Our scheme is unconditionally correct
and binding in the standard model. We provide evidence of uncensorabil-
ity in the Common Random String model, assuming the DLOG problem
is hard and a collision resistant hash function exists. Additionally, we pro-
vide evidence that our scheme is unspendable in the Common Random
String model and that no generic unspendable construction is possible in
the standard model.

Initially, a κ-order multiplicative group G of order q and a generator
g are selected and let the Common Random String be a random group
element h = gy for some y ∈ [q]. Due to the self-reducibility of the DLOG
problem, if DLOG is difficult in the group, an adversary will not be able to
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Algorithm 16 Our proof-of-burn protocol for P2PK using a Common
Random String h representing a group element in which DLOG is difficult
and parameterized by a collision resistant hash function H.
1: function GenBurnAddrH(1κ, t)
2: return hgH(t)

3: end function
4: function BurnVerifyH(1κ, t, th)
5: return (GenBurnAddr(1κ, t) = th)
6: end function

Algorithm 17 The random discrete log solver A∗ which makes use of an
adversary A which recovers the spending key corresponding to hgH(t).
1: function A∗A,H(h)
2: (t, z)← A(h)
3: return z −H(t)
4: end function

find the logarithm y of the random group element, except with negligible
probability.

Our scheme is illustrated in Algorithm 16. GenBurnAddr hashes the
tag t and treats H(t) as the exponent, calculates the public key gH(t) and
blinds it using the factor h. As before, BurnVerify regenerates the burn
address from t and ensures it has been calculated correctly.

Correctness holds unconditionally.

Theorem 5 (Correctness). The proof-of-burn protocol Π of Algorithm 16
is correct.

Proof. Based on Algorithm 16, BurnVerify(1κ, t,GenBurnAddr(1κ, t)) =
true if and only if GenBurnAddr(1κ, t) = GenBurnAddr(1κ, t), which al-
ways holds as GenBurnAddr is deterministic.

As evidence towards unspendability, we now remark that it is difficult
for an adversary to obtain the secret key corresponding to the public key
hgH(t) needed to produce signatures. We therefore conjecture that our
scheme is unspendable.

Lemma 6 (Logarithm ignorance). If h is a Common Random String
and assuming the DLOG problem is hard, no probabilistic polynomial-time

26



Algorithm 18 The collision adversary A∗ against H using a proof-of-
burn bind-attack adversary A.
1: function A∗A(1κ)
2: (t, t′,_)← A(1κ)
3: return (t, t’)
4: end function

adversary can produce (t, z) such that gz = hgH(t), except with negligible
probability in κ.

Proof. Suppose A is a probabilistic polynomial-time adversary which pro-
duces (t, z) with probability of success p = Pr[gz = hgH(t)]. We construct
the adversary A∗ which invokes A illustrated in Algorithm 17 and finds
the logarithm of h. Conditioned on the event that A is successful, we
have that gz = hgH(t) ⇒ gz = gy+H(t) ⇒ y ≡ z − H(t) (mod q), so
A∗ is successful. Therefore Pr[A∗(h) = y] = p. But Pr[A∗(h) = y] is
negligible.

This observation illustrates the useful fact that, if a single group ele-
ment with unknown logarithm is provided, an arbitrary number of such
group elements can be found and logarithm ignorance can be proven.
Proofs-of-ignorance. There are other constructions which can give sim-
ilar results. In fact, recent work on proofs-of-ignorance [14] has shown
that any NP language can support proofs-of-ignorance, which are a pre-
requisite for our need of unspendability (as inability to produce signa-
tures mandates ignorance of the private key). Therefore, we conjecture
that such constructions are possible using any secure signature scheme
in which the secret key constitutes a witness for the fact that the public
key is an element of an NP language. Additionally, they argue that such
constructions are not possible in the standard model given non-uniform
probabilistic polynomial-time adversaries, supporting our construction in
the Common Random String model. Whether burn constructions in the
Standard Model exist against uniform probabilistic polynomial-time ad-
versaries remains a question for future work.

Theorem 6 (Binding). If the hash function H is collision resistant and
its range lies in [q] where q denotes the group order of G, then the proof-
of-burn protocol Π of Algorithm 16 is binding.

Proof. LetA be a probabilistic polynomial-time binding adversary against
the protocol Π. We construct the probabilistic polynomial-time collision
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Algorithm 19 The collision adversary A against H which samples from
an unpredictable distribution T .
1: function AH,T (1κ)
2: t1 ← T
3: t2 ← T
4: return (t1, t2)
5: end function

adversary A∗ against the hash function H. The adversary A∗ is illus-
trated in Algorithm 18 and works as follows. It invokes A which returns a
triplet (t, t′, burnAddr), then returns the collision (t, t′). Let p denote the
probability that A is successful.

Conditioned on the event that A is successful, it holds that hgH(t) =
hgH(t′) and t 6= t′. This implies that gH(t) = gH(t′), which in turns yields
H(t) ≡ H(t′) (mod q). Since the range of H lies in [q], this constitutes a
collision and A∗ is successful.

We thus conclude that A∗ is successful in the collision game if and
only if A is successful in the bind-attack game.

Pr[bind-attackA,Π = true] = Pr[collisionA∗,H = true]

From the collision resistance of H it follows that Pr[collisionA∗,H =
1] < negl(κ). Therefore, Pr[bind-attackA,Π = true] < negl(κ), so the
protocol Π is binding.

We now give some evidence towards the uncensorability of our scheme.
The following lemma expands on the results of Lemma 3 without making
use of the Random Oracle model.

Lemma 7 (Collision resistant unpredictability). Let H be a collision
resistant hash function and {T }κ∈N be an efficiently samplable unpre-
dictable distribution ensemble. Then the distribution ensemble Xκ = {t←
T ;H(t)} is unpredictable.

Proof. Consider the collision adversary A against the hash function H
illustrated in Algorithm 19 which samples t1 and t2 independently from
Tκ and hopes for a collision. Let Collh∗ denote the event that H(t1) =
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H(t2) = h∗. Applying total probability

max
h∗∈[Xκ]

Pr[Collh∗ ]

= max
h∗∈[Xκ]

(Pr[Collh∗ |t1 = t2] Pr[t1 = t2] + Pr[Collh∗ |t1 6= t2] Pr[t1 6= t2])

≤ max
h∗∈[Xκ]

Pr[Collh∗ |t1 = t2] Pr[t1 = t2]

+ max
h∗∈[Xκ]

Pr[Collh∗ |t1 6= t2] Pr[t1 6= t2]

≤ max
h∗∈[Xκ]

Pr[t1 = t2] + max
h∗∈[Xκ]

Pr[Collh∗ |t1 6= t2] Pr[t1 6= t2]

= Pr[t1 = t2] + max
h∗∈[Xκ]

Pr[Collh∗ ∧ t1 6= t2] .

Therefore maxh∗∈[Xκ] Pr[Collh∗ ∧ t1 6= t2] ≥ maxh∗∈[Xκ] Pr[Collh∗ ] −
Pr[t1 = t2]. We have that

Pr[collisionA(κ) = true] =
∑

h∗∈[Xκ]
Pr[Collh∗ ∧ t1 6= t2]

≥ max
h∗∈[Xκ]

Pr[Collh∗ ∧ t1 6= t2] ≥ max
h∗∈[Xκ]

Pr[Collh∗ ]− Pr[t1 = t2] .

Since Pr[collisionA(κ) = true] ≤ negl(κ) and Pr[t1 = t2] ≤ negl(κ),
therefore maxh∗∈[Xκ] Pr[Collh∗ ] ≤ negl(κ). Because H(t1) and H(t2) are
chosen independently,

max
h∗∈[Xκ]

Pr
x←Xκ

[x = h∗] =
√

max
h∗∈[Xκ]

Pr[Collh∗ ] ≤ negl(κ) .

Applying Lemma 5, we deduce that the distribution ensemble Xκ is un-
predictable.

Unfortunately, a merely unpredictable distribution on the exponent
does not allow us to prove uncensorability. However, we can prove un-
censorability if we assume the hash function maps the tag distribution
to the uniform distribution U([q]) of the exponents of G, which is an as-
sumption closely related to the Random Oracle. We leave the relaxation
of this additional assumption for future work.

Theorem 7 (Uncensorability). Let T be an efficiently samplable un-
predictable tag distribution and H be a hash function such that {t ←
Tκ;H(t)} ≈c U([q]) where q denotes the order of the group G. Then the
proof-of-burn protocol Π of Algorithm 16 is uncensorable with respect to
blockchain address protocol Πα of Algorithm 15.
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Proof. Apply Lemma 4 to the computationally indistinguishable distri-
bution ensembles X = {t ← Tκ;H(t)} and Y = U([q]) mapped through
the function f(x) = gx. The resulting distributions, gX and gY are indis-
tinguishable. The distribution gY is the distribution of public keys gen-
erated by GenAddr. As multiplication by h constitutes a permutation of
the group, the distribution gY is identical to the distribution hgY . Hence
gX and hgY are indistinguishable.

Trusted setup. We remark here that we do not require a trusted setup.
In particular, for the selection of the protocol parameters, we do not
generate a Common Reference String gy by selecting a random y and
computing gy, as this would require ensuring y is destroyed. Instead, we
select a random group element h directly, which is possible in many finite
groups. As an example of such a construction in practice, a point can be
selected on the secp256k1 elliptic curve by starting with an X coordinate
corresponding to a well-known number such as X = SHA256(“Whereof
one cannot speak, thereof one must be silent”) and incremented until a
solution of the elliptic curve equation exists for Y , then taking the positive
such Y and using the point h = (X,Y ).
Perturbation of group element labels. Yet another scheme that can
potentially realize the above properties is the burn address generation
by evaluating (gH(t)) + 1, where the +1 does not pertain to the group
operation, but operates on the label of the group element. For example,
in the primed order group Z∗p, the +1 operation can be taken to be lit-
erally the next integer. Such a scheme is clearly correct and binding. Its
uncensorability is comparable to our above scheme. Lastly, its unspend-
ability, given appropriate restrictions (t 6= 0) seems to intuitively hold:
It is hard to know the logarithm of both a group element and its next.
Whether this is provable in the Generic Group Model or using appropriate
hardness assumptions is left for future work.
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