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Abstract. This paper shows the preliminary results of an initial effort
to analyse whether explanations associated with a semantic parser help
users to generalise the system’s mechanisms regardless of their techni-
cal background. With the support of a user-centred experiment with 66
participants, we evaluated the user’s mental model by associating the
linguistic features from a set of explanations to the system’s behaviour.
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1 Introduction

Archetypal natural language understanding (NLU) systems, such as question
answering, natural language interfaces and semantic parsers, typically require
the complex coordination of multiple natural language processing components,
where each component can explore a large spectrum of resources and learning
methods [3]. Offering end-user explanations for intelligent systems has becoming
a strong requirement either to comply with legal requirements [5] or to increase
the user confidence [11]. However, while delivering a human-interpretable expla-
nation for a single component is challenging, the problem is aggravated in the
context of multi-component systems [3,11].

Although the literature shows explanation models evaluated from an user-
centred perspective, none of them targeted an NLU system [9,13,19,21]. As
natural language gives vast possibilities of expression, explanations of NLU sys-
tems can allow the users to adapt their writing styles to favour the system
comprehension according to the underline model.

This work analyses different types of explanations instantiated in a multi-
component semantic parsing system for an end-user natural language program-
ming task to analyse to what extent users, irrespective of their technical back-
ground, are able to improve their mental models by associating the linguistic
features from the explanations to the system’s behaviour.
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2 Related Work

Lipton [11] defined a comprehensive taxonomy of explanations in the context
of AI, highlighting various criteria of classification such as motivation (trust,
causality, transferability, informativeness and fairness € ethics) and property
(transparency and post-hoc interpretability).

Trust is by far the most common motivation presented in the literature, like
Pazzani [13], and Biran & Cotton [2] whose results showed users demonstrate
higher confidence when using a system they understand how it works. Fair-
ness € ethics is also a strong driver as the well-known European General Data
Protection Regulation [5] guarantees both rights “for meaningful information
about the logic involved” and “to non-discrimination” to prevent bias and unfair
behaviour.

Diversely, post-hoc explanations make use of interpretations to deliver mean-
ingful information about the Al model. Instead of showing how the model works,
it presents evidences of its rationale by making use of (i) textual descriptions
[18], (ii) visualisations able to highlight image parts from which the decision
was made [17], (9ii) 2D-representation of high-dimensional spaces [12], or (iv)
explanation by similarity [4].

3 Semantic Parsing of Natural Language Commands

The Problem The problem of semantic parsing of natural language commands
consists of mapping a natural language command to a formal representation,
called function signature, from a knowledge base (KB) of APIs.

We formalise the target problem as follows. Let F' be a KB composed of a
set of k function signatures (f1, f2, ..., fx). Let f; = (n4,1l;, P;) be an element of
F', where n; is the function’s name, l; is the function’s provider, and P; is the set
of function’s parameters. Let f] be a call of f;, which also holds values for their
parameters, totally or partially. Let c; be a natural language command which
semantically represents a target function call fj’ The parser aims at building a
ranking model which, given a set of function signatures F' and a natural language
command ¢, returns a list B of ordered function calls, satisfying the command
intent.

The Semantic Parser Our end-user study is focused on an explanation model
for a multi-component semantic parser proposed by Sales et al. [14], which is
composed of a chain of components. Given the space restriction, the semantic
parser is briefly summarised in this section.

The first component performs a semantic role labelling (SRL) classification of
the command tokens, segmenting and identifying the (i) function descriptor and
(ii) the set of command objects. The function descriptor is the minimal subset
of tokens present in the command that allows identifying the target function
signature in the function KB. A command object represents a potential descriptor
or value of a parameter. It is implemented based on an explicit grammar defined
by dependency relations and POS-tags.
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The second component is the Type Inferencer which plays the role of a named
entity recogniser. The Inferencer’s implementation combines heuristics with a
gazetteer.

Based on the function descriptor and the list of command objects, the model
generates potential function calls by combining the set of command object and
the list of function signatures. For each function call, the Relevance Classifier
generates a classification as (i) wrong frame (score 0); (i) right frame with
wrong parameters (score 1); (#47) right frame with partial right parameters (score
2); (iv) right frame with right parameters (score 3). The classification phase is
implemented as a Random Forest model [6], which take as input the semantic
relatedness scores and densities (described below) to identify jointly the most
relevant function signature and the best configuration of parameters values.

Originally, the proposed semantic parser [14] defined an extra component
responsible for reducing the search space. As the explanation model is eval-
uated in a setting with a restricted data set, we simplified the architecture by
removing this component. Thus, the inference process can be described by Eq. 1,
which defines the ranking score of a given function call for a natural language
command, where §(x) is a type inferencer that, given an expression in natural
language x, it return its semantic type. For example, §(“dollar”) = CURRENCY
and 0(“john@domain.com”) = EMAIL; x is a vector representation of z in a
word embedding model; cos(x,y) is a semantic similarity function, which score

how similar the vectors & and y are in the space. We use the cosine similarity
n,k
for this purpose; (© (z;;) is a combinatorial optimiser that finds a maximum
i=1,j=1
weight matching j to i. We use the Hungarian algorithm [8] for this purpose; and
den(p;) is the set of the densities of the function parameters, which represents

the inverse term-frequency in the function signatures vocabulary set.

n,k
cos(n,d) + r;lgf(cos(l, 0j)) + Z | @ (cos(p;,0(0;))) +1000« 7 (1)

The equation defines the sum of (i) the semantic relatedness of the func-
tion descriptor from the command and the function name, (i7) the maximum
semantic relatedness of the command objects and the function provider, (éi7)
the combinatorial optimisation of the command objects’ types and the func-
tion’s parameters, and (i) the function signature class 7 multiplied by a large
weight.

4 Explanation of a Multi-component Semantic Parser

As heterogenity is an intrinsic characteristic of a multi-component AI system,
demanding different explanation methods to different parts of the application, we
organised the explanation in a hierarchical fashion motivating the construction of
a model that is suitable for users with different levels of knowledge in machine
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Command

Exchange 1000 Chilean Pesos to Euro .

Function Call

Currency converter (from amount: 1000, from: Chilean Pesos, to: Euro)

How was the match?

Exchange and Currency converter has a semantic absolute relateness of 1.00.
1000 is an instance of number, matching with from amount.

Chilean Pesos matches with from.

Euro is an instance of currency , matching with to.

Fig. 1. Explanations of the Semantic Role Labeler and the Type Inferencer.

learning and linguistics. The explanation model, then, explores a hierarchical
representation in an increasing degree of technical depth. In this context, it
presents transparency-oriented explanations in the higher levels, going gradually
to explanation that demand technical knowledge, and to the post-hoc ones.

The model presents seven explanations grouped by three layers focused on
the components’ behaviour and their input features. As expected in a heteroge-
neous architecture, each component operates under a different method and have
different types of inputs.

SRL Rules and Syntactic Tree Layers. The first level describes the Seman-
tic Role Labeler and the Type Inferencer. The explanations show the rules acti-
vated (i) to identify the command objects, (ii) to generated multi-word objects,
and (4i) to identify the semantic types, highlighting the tokens and features
involved in the process as shown in Fig. 1. The second level depicts the features
on which the rules operate, namely the syntactic tree and the part of speech
(POS) of each token. Figure 2 shows a natural language command and both the
set of POS-tags and the dependency tree associated with its tokens. These layers
aim at showing the connection between the linguistic features and main concepts
of the parsing system, whose interpretability is dependent on the understanding
of the role of linguistic features in the classification.

Word Embedding Layer. The matching process relies on the semantic relat-
edness scores, which represent the degree of semantic similarity the function
descriptor and command objects have in relation to the function signature [16].
The semantic relatedness is calculated from a word embedding model, which rep-
resent terms as vectors in a high-dimensional space. The explanation provides
a cluster-based visualisation using t-SNE [12], where it plots the semantic ele-
ments that plays a role in the matching process from both the command and the
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function signature as shown in Fig. 3. The cosine between the points represents
the degree of semantic relatedness in a typical post-hoc explanation fashion.

The Ranking and Classification Layer. The lower level is devoted to
the most technical explanations which shows the mathematical expression that
defines the final ranking score of the function signature along with the features
used in both the expression itself and in the function relevance classifier. To sim-
plify the model to non-technical users, we reduced Eq.1 to > (z;) + 1000 * T,
where all elements in the expression is represented by z, the vector of all features.
Additionally, this level also presents the trained random forest classifier, show-
ing the relevance of each feature in the final classification using the visualisation
proposed by Welling et al. [20], called Random Floor.

5 Evaluation

We asked the participants to simulate the use of a semantic parser, in which
the user inputs the natural language commands, and the system suggests a list
of function calls as depicted in Fig.4. We showed twelve pre-configured natural
language commands and their corresponding list of 3 to 5 potential function
calls as a result of the execution of the parser. The pre-configured commands as
well as the function signatures came from the data set defined in the Task 11 of
the SemEval 2017 [15], which presents a broader set of functions and describes
commands closer to the daily routine of end users.

Mental Models. A mental model is a cognitive representation of the external
world to support the human reasoning process [7]. In our task, the “external
world” is represented by the semantic parsing system, and we evaluate the user’s
mental model by assessing whether the presented explanations help the user
to generalise the system’s mechanisms. So, we designed a set of questions to
measure whether the user realised the correct influence of linguistic features in
the overall performance of the parser in both SRL and classification phases.
Given a contextual command, the participants were asked to judge affirmative
sentences in a Likert 7-point scale [10]. We evaluated three aspects of the SRL:
(i) the role of proper nouns, (ii) the importance of the correct spelling and use
of grammar and (#ii) the verb mood (indicative vs. imperative).

Proper nouns are generally written in capitalised letter in English. As proper
nouns define a command object, we want to identify to what extend users iden-
tify the impact of this feature in the system’s performance. After given a contex-
tual command, we asked the participants to judge the veracity of sentences like
“Writing ‘Swiss Francs’ with capital letter increases the system comprehension”.

Incomplete sentences might introduce errors in the POS-tagger and grammar
tree parser, which on the other hand leads to wrong interpretation about the
objects. In this task, we present grammatically incomplete commands (keyword-
search style) to support users in the identification of the importance of gram-
matically correct sentences instead of keywords, such as traditional information
retrieval systems. we asked the participants to judge the veracity of sentences
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punct

Plotting the Word Embeddings Vector of each Content
Red points represent the terms present in the
Function Signature.

Exch 1000 chil P to El : i i
xchange €an Pesos to Euro v Clvegﬁhcaonréveener Elue pomtds represent terms derived from the
v8 @ NP NNP N [NNP ommand.
@ number
T The point's size is proportional to its density,

1000 is an instance of number. ® i which (epresents the inverse term-frequency in
Chilean Pesos is a multi-word proper noun, "'“"agiﬁ%"‘ the action frames vocabulary set
singular (NNP) and is a dobj of the main verb. The higher the cosine between two points, the
Euro is an instance of currency. higher their semantic relatedness.
Fig. 2. Grammar tree. Fig. 3. Plot of the elements from the

command and function signature in

which the cosine between the points

represents the semantic relatedness.
Command 5 out of 12:  Exchange 1000 Chilean Pesos to Euro .

Which function represents the command?

#1 Currency converter (from amount: 1000, from: Chilean Pesos, to: Euro) See Explanation Compare This is the Best Candidate
#2 ! make a payment (invoice: 1000, method: Euro) See Explanation Compare This is the Best Candidate
#3 @ Convert text file to pdf (source file: 1000, Document Author: Euro, Output Format: Chilean Pesos , ) See Explanation Compare This is the Best Candidate

Fig. 4. A natural language command and a list of potential function signatures repre-
senting its intent.

like “Writing a set of keywords for the command has the same result as gram-
matically correct sentences”.

Regarding verb moods, we presented to the participants commands written

as questions and in the indicative form. After given a contextual command, we
asked the participants to judge the veracity of sentences like “Starting by ‘I
would like’ increases the system comprehension”.
Participants. We recruited 66 adult participants from the authors’ professional
networks whose unique requirement was to be fluent in English. The set of
participants is composed of 26 females and 40 males, whose age vary from 20
to 49. They reported their level of knowledge in machine learning (ML) and
English grammar (EG) according to the same scale suggested by Azaria et al.
[1], to which we attributed a score from 1 to 6 respectively none; very little;
some background from high school; some background from university; significant
knowledge, but mostly from other sources; bachelor with a major or minor in the
related topic.

The participants were divided randomly into the control group composed of
34 participants, which have access to the system without the explanation, and
the treatment group, composed of 32 participants, with access to the explanation.
The random division longed for balancing the number of participants with and
without ML knowledge in each group.
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We introduced the experiment to the participants by exposing its main goals
and the expected procedures in the task. We highlighted that the idea behind
the parser is to allow a user to find suitable functions and their parameters
from her/his commands expressed in natural language, regardless of her/his
technical knowledge. We asked them to select the correct function call for each
pre-configured command, while examining the tool to infer how it works. For
the users that participated in the treatment group, we encouraged them to see
the explanations, which shows how the system maps commands to the function
calls.

Table 1. The results regarding the mental model assessment.

Metrics Treatment group | Control group
Average 1.13 0.73
r (ML) 0.54 0.45
r (EG) 0.45 0.46

Acquainted | Non- | Acquainted | Non-
Avg. (ML) | 1.62 0.63 | 1.07 0.54
Avg. (EG) | 1.42 0.62 | 1.11 0.34

6 Results and Discussion

We associated the answer in the Likert 7-point scale to the interval —3 to 3, where
0 is the neutral answer and 3 represents strongly agree when the question reflects
a true statement, and strongly disagree when it represents a false statement. We
also analysed the statistical significance of the results using the ¢-test, which is
represented by p.

Table 1 presents the results of the mental model assessment. On average, par-
ticipants in the treatment group give scores 55% higher than those in the control
group (1.13 ws. 0.73, p < 0.05). The results also demonstrate that knowledge
in machine learning and English grammar have significant positive relationship
with the mental model scores in both treatment group (r = 0.46 for ML, r = 0.40
for EG) and control group (r = 0.45 for ML, r = 0.41 for EG). The invariance
of the correlation coefficients among the groups and the mental model scores
strongly suggest the explanation model helps users to build better mental mod-
els. To explicitly present this conclusion, we divided both treatment and control
groups into four subgroups according to their knowledge in ML. We considered
acquainted with ML those users that declared having significant knowledge, but
mostly from other sources or a bachelor with a major or minor in the topic. In
average, the score of the users acquainted with ML in the target group is 1.62,
while 1.07 in the control group (p < 0.05). Although not being the focus of our
study, the results concerning EG knowledge present a similar tendency as shown
in Table 1.
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Conclusion

Our experiments showed evidences explanations are an effective method to build
mental models, regardless of the users’ technical background. The experiment
also suggests technical knowledge is boosted when accompanied by explanations,
given its high correlations with mental model scores.
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