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Abstract. In along term exploitation environment, a Question Answer-
ing (QA) system should maintain or even improve its performance over
time, trying to overcome the lacks made evident through the interactions
with users. We claim that, in order to make progress in the QA over
Knowledge Bases (KBs) research field, we must deal with two problems
at the same time: the translation of Natural Language (NL) questions
into formal queries, and the detection of missing knowledge that impact
the way a question is answered. The research on these two challenges has
not been addressed jointly until now, what motivates the main goals of
this work: (i) the definition of the problem and (ii) the development of
a methodology to create the evaluation resources needed to address this
challenge.
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1 Introduction

Since every human domain is dynamic and evolves over time, in the mid-long
term, any Knowledge Base (KB) will become incomplete or, at least, it won’t we
able to satisfy user demands of information. In a long term exploitation environ-
ment, QA systems must deal with the challenge of maintaining their performance
over time and try to overcome the lacks made evident through the interactions
with the users. In other words, we need to provide QA systems with Lifelong
Learning mechanisms. The first step is the detection of such situations. QA sys-
tems must distinguish the reason why the system cannot answer a question:
either the problem is in the translation of the Natural Language (NL) question
into a formal query, or the problem is a lack of knowledge that prevent the sys-
tem from giving an answer. If the reason is the latter, the system must trigger a
learning process to overcome this limitation and update its previous knowledge.
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Unfortunately, most of the current research in QA over KBs works with
datasets of questions that can always be answered by the KB [4,7]. That is
to say, the research focus is on the problem of how to translate a NL question
into a formal query. However, working under the assumption that there exists an
answer to the question according to the KB leads researchers to a set of solutions
that will not work in a real scenario.

We claim that, in order to make progress in the QA research field, we must
deal with both problems at the same time: the translation of NL into formal
queries, and the detection of lacks of knowledge that impact the way questions
are answered. To the best of our knowledge, the effort done in this direction
has not been significant. Therefore, the main goals of this work are (i) the def-
inition of the problem and (ii) the development of a methodology to create the
evaluation resources needed to address this challenge.

For a better understanding of the problem, we chose the context of a real user
demand, constructing an imperfect (by definition) Knowledge Graph (KG), and
asking real users to pose questions that the QA system has to answer. Then,
a set of annotators have tried to translate the real NL questions into formal
queries, identifying when the questions can be translated and when they cannot,
annotating the reasons why. Examples of annotations can be found in Fig. 1.

The form of the Knowledge Base is a Graph (i.e. RDF triples style) for several
reasons. First, the updating of the KG with new classes (or types), property
names (or relations), instances (or objects), etc. is straightforward and does not
affect the previous version. It only requires the addition of new triples. Secondly,
working with a graph makes the use of different formalisms and different retrieval
engines possible, from using SPARQL over database managers (like Virtuoso) to
the use of simple Prolog. That is, in a Lifelong scenario where the systems must
evolve over time and continuously update their knowledge, KGs seem to be the
most appropriate formalism.

In the following sections, we describe the whole process in detail, together
with our learnings and conclusions. The contributions of this work are:

— The definition of the problem;

— A methodology for studying it and creating the evaluation resources;

A publicly available Knowledge Graph (in cooking domain)!;

— A first version of a set of answerable and unanswerable questions over this KG,
for benchmarking system self-diagnostic about the reasons why the question
cannot be answered by the KGZ2.

2 Previous Work

2.1 Question Answering with Unanswerable Questions

We are interested in QA systems with the ability to recognize unanswerable
questions. This problem has been addressed lately under the free text assumption

! http://nlp.uned.es/lihlith-project /cook//.
2 https:/ /perso.limsi.fr /rosset /resources /cooking_LL_QA.zip.
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and only partially. To the best of our knowledge, it has never been addressed in
QA over KBs.

Under the free text paradigm, systems must answer questions whose answer
can be found in a given text. Current research is more focused on answer extrac-
tion than in the complete QA architecture that includes the recovering or ranking
of candidate paragraphs. (as opposed to KG-based QA, where the whole process
must be carried out). SQuAD [12], TriviaQA [5] and MS Marco [11] are among
the most popular collections for QA over free text featuring empty answers. They
are all created following one or various crowdsourcing annotation processes. Cur-
rent systems competing with these datasets are usually made out of ensembles
of pre-trained language models like ALBERT [6] and XLNet [13].

However, when doing QA over KBs, a more sophisticated process is required.
In general, all systems proceed with a multi-step process, comprising a com-
bination of complex steps: Question Analysis, Named Entity Recognition and
Linking, Disambiguation and Parsing. There are some surveys detailing these
systems, we refer the reader to them [2], and [4]. Over the last years, neural sys-
tems have tremendously increased in capability, however in the specific domain
of QA over KBs, it has been argued that deep learning does not contribute that
much [10]. In particular, these systems can, for now, only answer simple ques-
tions [1,3,8]. Furthermore, to solve QA over KBs, the majority of approaches
assume that the question can be answered by the KG because the most popu-
lar collections like QALD [7] or LC-QUAD [4] do not contain empty answers.
Therefore, answering a question is a kind of graph matching against the KG.

In summary, a production system for QA over KBs requires the ability to
recognize unanswerable questions, and therefore, we identify the need to correctly
define the problem of QA over KBs, but also to develop the necessary resources
to train and evaluate systems to solve this problem.

2.2 Lifelong Learning and Question Answering

This problem has already captured the attention of some researchers such as
Mazumder and his colleagues [9] although in that work, the problem is only
addressed partially. In particular, queries to the system are just single triples,
reducing to the trivial case the problem of deciding whether the answer to a
question is in the KG or not. It simplifies also the problem of detecting the
pieces of knowledge that have to be added to the KG. The option taken for
enriching the KG is to ask the user for some missing pieces of knowledge and
try to find strategies to infer some others. However, in the general scenario of
complex NL QA over KGs these decisions are not trivial. If a system does not
get an answer to a question, it could be due to several factors, including some
errors in the process of NL interpretation (e.g. Entity Linking).

3 Cooking Knowledge Graph Construction

The KG is a set of triples <argl, property-name, arg2>, where the first argu-
ment must be always an entity and the second one can be both an entity or
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a literal (number or string). Entities (also mentioned as resources or objects)
can refer to type names (or classes, e.g. cookbook: ingredients), instances (e.g.
cookbook:milk), or category names (e.g. category:pancake recipes). Cate-
gories refer to groups of recipes according to some criteria given by the original
wiki. Thus, a recipe can belong to several categories and this will be encoded
through the corresponding triples with the property name recipeCategory.
Recipe categories use the prefix category: instead of cookbook: used for the
rest of entities. The property names (or relations) used here follow the Recipe
schema® when it has been possible. The complete set of properties is shown in
Table 1.

The KG has been derived from the English wikibook (enwikibooks-20190701-
pages-articles.xml) related to cooking (name space 102, Cookbook). We have
processed both the cookbook pages one by one, and the category links file
(enwikibooks-20190701-categorylinks.sql).

The processing of the category links file produced 480 triples among cate-
gories, 6935 triples that link recipes to recipe categories, and 4479 type relation-
ships.

With respect to the processing of the Cookbook enwikibook pages, the
method identify different sections in recipe pages. From ingredients section
it generates recipelngredient and recipeFoodstuff relations. From instructions
section it produces a triple that relates the recipe with the list of steps (recipe-
Instructions relationship). Each element in the list corresponds to the original
text describing the step. From the section of notes and variations it produces the
triple for the recipeNotes between the recipe object and the corresponding text.
Finally, we process the recipe summary according to the corresponding template
instructions. This processing produces the triples for recipeCategory, recipe Yield
(servings), totalTime and difficulty (numeric value from 1 to 5).

Table 1. Property names in the Cooking KG

Freq. |Property name Example
Generalprops 8263 |label baguette label “french bread”
5214 | url adobo url en.wikibooks.org/wiki/Cookbook:Adobo
5214 |name frosting_and_icing_recipes name “Frosting”
5156 |type baking-soda type cookbook:leavening_agents
Recipeproperties | 21077 |recipelngredient chocolate_mousse recipelngredient “200 g bitter...”
15616 |recipeCategory chocolate_mousse recipeCategory category:dessert_recipes
12343 | recipeFoodstuff chocolate_mousse recipeFoodstuff cookbook:chocolate
2419 |recipelnstructions | chocolate_mousse recipelnstructions [“Melt chocolate...”]
849 | difficulty chocolate_mousse difficulty 2
844 |totalTime chocolate_mousse totalTime “30 min”
805 |recipeYield chocolate_mousse recipeYield 4
458 |recipeNotes chocolate_mousse recipeNotes “* This recipe is not the...”

3 https://schema.org/Recipe.
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4 Methodology for Dataset Creation

This section describes the creation process of the developed dataset. The objec-
tive of this dataset is to help the research community to study the following
research issues: (i) the translation of NL into formal queries, (ii) the detection
of unanswerable questions and (iii) the identification of elements missing in the
KG which impact the way questions are answered. We first describe how we
collected the user’s queries in NL and then how we annotated them.

4.1 Collection of Queries in Natural Language

We asked collaborators from our institutions through a web form to write at
least 5 queries in natural language in English. The participants were no native
English speakers but Spanish and French people. We received 30 responses in 3
days, resulting in 169 queries. The participants needed around 5 min to read the
guidelines and write at least 5 queries. They were asked to pose any question
about the cooking domain. Thus we provided them a non exhaustive list of
items they could ask about along with some examples. The query could be
posed in any of these four possible ways: interrogative (e.g., “Which herbs go
well with mushrooms?”), imperative (e.g., “Give me a soup recipe for tonight”),
informative (“I’'m looking for the name of the utensil that is used to beat the
egg whites”), or propositional (yes/no question e.g. “Is tomato a fruit?”) and
have to fit in only one sentence.

After collecting the queries in NL, we filtered them by assessing their usability
regarding our task*. It allowed us to directly discard the queries that couldn’t
be answered either with the current KG or by adding new elements to the KG.
Each question has been annotated as usable or not by two different persons.
After filtering, 124 queries were identified as usable (around 73%).

4.2 Annotations

The annotations were made using a unique table for each annotator as presented
in Fig.1. Using the provided guidelines (see footnote 4) the annotators had
to write the associated Prolog query and to give the result of it, or if it was
not possible, to give the elements missing in the KG that made the question
unanswerable.

We decided to remove from the final dataset all the annotated user’s queries
where the annotator wrote that more than one element was missing in the KG.
The first reason is that in this case, there can be multiple ways to represent
the missing knowledge in the KG and to annotate the reasons why the query
cannot be answered. In other words, the annotation would be subjective and the
dataset would suffer from inconsistencies. Secondly, regarding machine learning
algorithms, the tasks of identifying the elements missing will be much more

* The guidelines can be found here https://perso.limsi.fr/rosset/resources/cooki
ng LL_QA zip.
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Reasons why the query cannot be answered

ID | User's query in NL Prolog query Result type of the missing e —
element g
Season_ref = entity O
. 8 r(cookbook:apple, type, Season_ref), cookbook:autumn_ingredients; [ cos e name | [
1 \s/\g;zgr';me apple’s r(Season_ref, type, Season_ref = proeey =
: cookbook:ingredients_by_seasonality). | cookbook:summer_ingredients |type name J
triple a
entity cookbook:goat_milk
2 Can | use goat milk r(cookbook:milk, replacement, none property name ingredientReplacement
instead of cow milk? cookbook:goat_milk). type name O
triple [H]
entity O
T property name | []
How long it will take to . ) . —
3 [make crepes? r(cookbook:crepes, totalTime, Time). none type name O
triple <cookbook:crepes,

totalTime, "30 min">

Fig. 1. Examples of annotated user’s queries. This annotated queries are not part of
the dataset.

complex if it has to be able to detected when multiple elements are missing for
one user’s query, as it corresponds to a multi-labelling task. However, we consider
that the annotated user’s queries that were removed from the dataset, will be
useful anyway, either for detecting when a user’s query cannot be answered, or
in the future when a system will be mature enough.

Five Annotators, including PhD students and researchers from our institu-
tions, participated in the annotation process. Each annotator had to know at
least about the basis of Prolog. We expected to remove around 10% of the anno-
tated data when multiple elements were missing, so we decided to annotate 110
user’s queries to get at the end 100 annotated queries in the final dataset. To
make it possible, each annotator had 22 user’s queries to annotate. The annota-
tion process was quite long, since the annotators had to check for each element
if they exist in the KG and under which name. Depending on the knowledge on
Prolog and on the cooking KG, the annotators needed from 5min to 20 min to
annotate one user’s question. This time take into account the corrections needed.
At the end one person was responsible of reviewing all the annotations and to
correct them in order to have consistent data.

4.3 Description of the Dataset

The original dataset is provided in the form of an Excel document. It contains
all the annotations as presented in Fig. 1 with the comments of annotators. The
characteristics of the original dataset are presented in Table 2. The final dataset
is provided in the form of a json file®. The questions where more than one element
was missing have been removed from this dataset. When a question contained
typos, we replaced the question with the corrected one in the final dataset. The
characteristics of the final dataset are presented in Table 3.

5 https://perso.limsi.fr /rosset /resources /cooking _LL_QA.json.
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Table 2. Original dataset. Proportions Table 3. Final dataset. Proportions of

of questions among some categories. questions among some categories.
#questions 110 #questions 86
Answerable 40% Typo mistakes 09%
One element missing 38% One element missing 49%
Multiple element missing |22% Type of element missing
Entity 43%
Type name 02%
Property name 24%
Triple 31%

5 Lessons Learned Through the Creation Process

We have observed that in the majority of cases, the questions that cannot be
answered initially can become answerable after populating the knowledge graph
with new entities, property names or triples. So the system can evolve over time.
However, there is one situation where the system can’t evolve easily: when it
affects the structure of the data. For example, in the current version of the
KG, the information related to a recipe ingredient is just a triple, but several
questions require it to be a tuple with additional information beyond the food-
stuff (quantity or amount, possible replacement, textual description, etc.). This
problem cannot be overcome by adding some triples, but altering the current
structure of the recipe ingredients nodes.

After completing the annotation process we re-evaluate the questions that
we annotated as not usable regarding our task. We came to the point that
we actually filtered too many questions and determined that only 10% of the
questions were not usable (against 27% previously). We also figured out that we
underestimated the proportion of questions with more that one element missing
(22% against 10% estimated). That is why the final dataset actually contains 86
annotated questions instead of 100.

6 Conclusion and Future Work

In a real exploitation environment, usual QA systems would provide an incorrect
answer when the question refers to element that are missing in the KB. Thus
we state that it is fundamental for lifelong learning QA systems to be able to
handle jointly the two following problems: the translation of Natural Language
(NL) questions into formal queries, and the detection and identification of miss-
ing knowledge that impact the way questions are answered. As no evaluation
resources are yet available to address these problems, we presented in this paper
a methodology for the creation of these resources. Moreover we publicly share
the resulting resources, namely (i) A cooking KG and (ii) the first version of a
dataset containing a set of questions over the KG with the element missing in
the KB if an answer cannot be found.
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For future work we plan to collect and annotate more questions by tak-

ing advantage of lessons learned though the creation of the first version of the
dataset.
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