
A Flexible and Easy-to-Use Library
for the Rapid Development of Graph

Tools in Java

H. J. Sander Bruggink1, Barbara König2 , Marleen Matjeka2,
Dennis Nolte2 , and Lara Stoltenow2(B)

1 GEBIT Solutions, Düsseldorf, Germany
2 Abteilung für Informatik und Angewandte Kognitionswissenschaft,

Universität Duisburg-Essen, Duisburg, Germany
{barbara koenig,lara.stoltenow}@uni-due.de

Abstract. We present a programming library for the rapid development
of graph tools, with applications in graph transformation and related
fields. Features include working with graphs, graph morphisms, basic
categorical constructions such as computing pushouts and pushout com-
plements or enumerating all morphisms with certain properties, but also
applications such as executing graph transformation steps. Additionally,
we offer graphical user interface widgets for visualization and manipula-
tion of graphs, morphisms and categorical diagrams.

Our objective is to allow users to quickly develop graph tools for both
simple and complex problems, to allow easy embedding into existing
software, and to have comprehensible code especially for the main algo-
rithms. Existing tools that demonstrate the versatility and ease of use
of the library include: DPOdactic (a didactic tool for teaching double-
pushout graph transformation), DrAGoM (a tool to handle multiply
annotated type graphs for abstract graph rewriting), and Grez (termi-
nation analysis of graph transformation systems).

Keywords: Graph transformation · Rapid development · Graph tools

1 Introduction

The graph transformation community has always been strong in the develop-
ment of tools, for support of generic graph rewriting, for supporting software
development and for verification and analysis (see for instance [2,6,8,15,16] for
a non-exhaustive enumeration).

However, to our knowledge there is no publicly available, easily accessible and
flexible library that provides a backbone and toolbox for the rapid development
of graph tools, including both the support of various constructions and visual-
ization of graphs. We have developed such a library and are still in the process
of extending it. Since we believe that there may be a wider interest, we will here
present it as a community service and describe existing tools that are already
c© Springer Nature Switzerland AG 2020
F. Gadducci and T. Kehrer (Eds.): ICGT 2020, LNCS 12150, pp. 297–306, 2020.
https://doi.org/10.1007/978-3-030-51372-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51372-6_17&domain=pdf
http://orcid.org/0000-0002-4193-2889
http://orcid.org/0000-0002-6170-6600
https://doi.org/10.1007/978-3-030-51372-6_17

298 H. J. S. Bruggink et al.

based on such a library. It does not contain groundbreaking new functionality,
but in our opinion we present a nice, comprehensive package.

Our design principles while developing this library are as follows:

– It is designed to have a low learning curve, which we have tested by its suc-
cessful use in several student projects. It has been integrated both into tools
that have been implemented from scratch, and the continued development of
existing tools.

– Simple tasks should be easy to implement quickly. We will illustrate this with
two suggestive examples:

• If you need to compute the composition of two given graph cospans, it
should – after becoming acquainted with the library – take you as much
time to do it by hand on paper, as it does to just write a small prototype
program.

• Assume you develop a nice theory about commuting hexagons of graph
morphisms and you want beautiful renderings of them. Using generic
utility functions, you can convert the abstract representation into a dis-
playable graph using no more than 50 well-formatted lines of code.

– We aim for readability and favor clear and understandable code over raw
speed. It should e.g. be possible to learn how to compute pushouts of graph
morphisms just by reading the code.

– We provide automatic visualization of entities such as graph morphisms, com-
muting squares, etc., which are typically not supported by general purpose
graph display libraries.

– We aim for easy integration of the library into your own application.

The library can be downloaded from https://www.uni-due.de/theoinf/
research/tools javagraph.php.

Related Work. We have evaluated some of the tools that are commonly used
in the context of graph transformation and offer similar functionality, in partic-
ular, Progres [16], GraJ [6], ENFORCe [2], AGG [15], and a tool for graph
transformation by computational category theory [13].

Progres is a suite of tools that focuses on the specific application of graph
grammars and graph rewriting systems. It is, however, not designed as a generic
library. Together with the fact that no source code is available (but only non-
portable binaries), it is probably hard to embed it into other applications.

GraJ is a tool for the execution of graph programs. It features a modular
design that facilitates embedding into custom tools. ENFORCe builds on GraJ
to prove correctness not only for graph programs, but also other weak adhesive
HLR categories. Notably, it also supports graph conditions and constraints. Both
tools are, however, currently unmaintained and not publicly available for down-
load. Thus we could not evaluate its suitability for e.g. prototyping purposes.

AGG also focuses on graph grammars and graph transformation. It too has
support for graph conditions, and has an extensible architecture. However, it
appears to be designed as a standalone tool. While it is a very powerful tool and

https://www.uni-due.de/theoinf/research/tools_javagraph.php
https://www.uni-due.de/theoinf/research/tools_javagraph.php

A Flexible and Easy-to-Use Library for Graph Tools 299

the components that do the actual computations feature useful algorithms, the
programming interface does not appear to be specifically designed for use as a
library.

In [13], a library for carrying out graph transformation in an abstract cate-
gorical setting is proposed. In this way, it is similar to the CatLib component of
our work. The full code was not available for evaluation, but their focus is less on
graphs and more on the categorical side, which makes it potentially more diffi-
cult to work with the library. In addition the library does not offer a ready-to-use
visualization component.

Our justification for the development of a new library is not just to avoid
these particular problems, but to also focus on additional aspects (ease of use,
prioritize clear and understandable code over efficient implementations, make it
easy to embed into your own tools) as detailed above. In this regard, it is similar
in spirit to the SiTra library [1] which focuses not on practical applications, but
to “aid a programmer in learning the concept of writing transformation rules”.

Outline of the Paper. The article is structured as follows: In Sect. 2, we
describe the architecture and the features of our library. In Sect. 3, we give a
detailed overview of existing tools that are using the library. We conclude in
Sect. 4 with an outline of future work.

2 Components and Features

2.1 Components Overview

In this section, we give a detailed overview of the components that together
make up the library and the features that are available. The components can be
used together or independently of each other as needed.

The Java-Graph component provides the computational foundations. It pro-
vides abstract representations of graphs, graph morphisms, graph conditions and
related objects; categorical constructions such as pushout complements; enumer-
ation of morphisms with certain properties; graph transformation; loading and
saving of objects to files in a plaintext format that is easy to read and write. We
give a more detailed description of this component in Sect. 2.2.

Java-Graph by itself provides no graphical user interface and can therefore
be used for batch processing tasks, or as part of tools that already build on
different frameworks. Graphical output is provided by a separate component.

The VisiGraph component is responsible for displaying graphs to the user,
and provides a similar feature set as other graph display libraries. It automati-
cally layouts graphs that can then be shown to the user. Currently, it provides
display and editor widgets for Swing-based graphical user interfaces (however, it
does not have a strong dependency on Swing and can be quickly ported to work
with other GUI toolkits). It is also possible to export the graph to image files.

As a companion component, VisiGraphJS is a reimplementation in Javascript
and can be used to provide the same type of visualizations in web applications.

300 H. J. S. Bruggink et al.

It is also possible to do the layouting process in Java using VisiGraph and then
only display the result in a web browser.

The VxToolbox component serves as a bridge between Java-Graph and Visi-
Graph. It is responsible for creating useful visualizations not just for ordinary
graphs, but for the various objects that are supported by Java-Graph. As an
example, the visualization of a pushout square should put the four graphs at
the four corners of an appropriately-sized square, and to make the output more
easily graspable, common elements (e.g. nodes that are in both the domain and
codomain of some morphism) should be positioned in a consistent way. VxTool-
box provides not only visualization routines for the objects supported by Java-
Graph, but also basic building blocks to make it easy to generate visualizations of
custom objects (as a rule of thumb, visualizing e.g. commuting hexagons should
require no more than 50 lines of code).

Finally, CatLib is a generalization of Java-Graph to arbitrary categories.
CatLib can be used independently of, or together with, Java-Graph. Prototype
tools can thus be implemented in a generic way, doing computations on arbitrary
categories, where Java-Graph is used to showcase the generically implemented
tool for a specific example category. Currently, CatLib implements the categories
Set and, using Java-Graph, the category of finite (hyper)graphs Graphfin.

2.2 Detailed Description of the Java-Graph Component

At the core, we have the de.uni due.inf.ti.graph package (prefix abbreviated
hereinafter as ...ti.graph), with classes for the basic entities. Graphs are repre-
sented with the Graph class, containing collections of Nodes and (hyper-)Edges
with Labels. We provide the usual methods for construction and manipula-
tion of graphs such as graph.addEdge(new Label("A"), n0, n1, n2) to add
a ternary hyperedge or graph.getNodes() to obtain a (read-only) List of
the nodes in a Graph. Although edges are generally hyperedges, we provide
additional methods as simplifications for the common case of directed edges
(e.g. edge.getTarget() as an alternative to edge.getNodes().get(1)).

Using the ...ti.graph.io package, all supported objects (graphs, conditions
etc.) can be read and written in a custom text-based file format named SGF.
The textual representation of SGF resembles the way a graph would be writ-
ten on paper. The SGF code graph { n0 --A-> n1 --A-> n2 --A-> n0; };
describes a graph with three nodes (n0 to n2) that are connected by directed a-
labeled edges in a circle. Objects can be loaded from files or from strings. In our
example below, we use the latter, in conjunction with the Java 13 Text Blocks
feature, to obtain very concise prototype code.

Graph morphisms map elements of one graph to compatible elements of
another one, where the map can be either total or partial. A Morphism has a Map-
like interface (mor.get(node0), mor.getPreimage(edgeA) and the like) with
additional functionality; for instance, mor.put(domEdge, codomEdge) maps not
only the edge, but also creates mappings for all nodes that are incident to the
given edge (unless this mapping would conflict with the node mapping of the
graph, in which case an exception is thrown). Morphisms can be created easily

A Flexible and Easy-to-Use Library for Graph Tools 301

by explicitly giving the node and edge mappings, either using the put method
in Java, or using => in SGF (see the example at the end of this section).

Graph conditions can be used to specify additional properties of graphs such
as the existence or absence of certain elements. They come in two flavours: the
nested conditions (roughly, first-order formulas on graphs) as introduced in [9]
for weak adhesive HLR categories; and cospan conditions, which use a slightly
different tree-based structure, as introduced in [3] for adhesive categories. As an
example for the former, the condition ∃(m1, true) ∨ ∃(m2, true), where m1,m2

are morphisms describing the elements that should exist at some point, can be
written in SGF as follows: c = or [exists(m1,true), exists(m2,true)];

We provide various fundamental categorical constructions (...ti.graph.ext).
Given a span, a cospan, or a pair of composable morphisms, it is pos-
sible to compute the pushout, pullback, or pushout complement, respec-
tively. It is possible to enumerate all morphisms between two graphs with
certain properties (examples include enumeration of all total injective mor-
phisms; all partial morphisms; all isomorphisms; all morphisms that extend a
given base morphism). Furthermore, given a span, it is possible to enumer-
ate all jointly epi squares. Enumerator implements Iterable, and hence can
be used in loops (e.g. for (Morphism i : Morphism.getIsomorphisms(g1,
g2)) { ... } to executesome code for all isomorphisms between two graphs
g1, g2), or as Streams (Morphism.getIsomorphisms(g1, g2).stream().map(i
-> ...)). All of these enumerators compute their results lazily and so also work
when the total number of possible morphisms is very large.

The following example code creates objects for a pair of graph morphisms
gL

mTL←−−− gT
mTR−−−→ gR, where gT =

1 2 3
(three isolated nodes), gL =

1 2 3A ,

gR =
1 2 3B , and morphisms mTL, mTR merge nodes 2, 3 and 1, 2 respectively.

Then their pushout is computed and the result is printed to standard output:

String sgfContent = """

gT = graph { node n1; node n2; node n3; };

gL = graph { n1 --ea:A-> n23; };

gR = graph { n12 --eb:B-> n3; };

mTL = morphism from gT to gL { n1 => n1; n2 => n23; n3 => n23; };

mTR = morphism from gT to gR { n1 => n12; n2 => n12; n3 => n3; };

""";

Map<String, Object> sgfMap = SgfParser.parseSgfString(sgfContent);

Morphism mTL = (Morphism) sgfMap.get("mTL");

Morphism mTR = (Morphism) sgfMap.get("mTR");

Square po = Pushout.compute(mTL, mTR);

System.out.println(po);

As an application of the fundamental constructions, graph transformation
systems using the single-pushout and double-pushout approaches can be directly
described and processed by the library (...ti.graph.transformation). So far
we restrict to injective match and rule morphisms. In SGF, if a rule morphism

302 H. J. S. Bruggink et al.

is not explicitly specified, then elements on the left and right hand sides are
automatically related if they have the same name. For instance, in the rule r =
rule { { n1 --A-> n2 --B-> n3 } => { n1 --C-> n3 } }, nodes n1, n3 are
mapped to their counterparts on the right hand side, the c-edge is created, and
node n2 and the two edges are deleted at rule application. To enumerate all
possible results of rewriting a Graph g using Rule r:

for (Morphism match : r.getMatches(g)) {
Transition t = r.applyToMatch(match);
Graph rewrittenGraph = t.getTarget();
// process rewrittenGraph somehow

}

3 Existing Tools Using the Library

In this section, we describe some of the existing tools that are currently using the
library. Notably, we present: DPOdactic (a didactic tool for graph transforma-
tion), DrAGoM (multiply annotated type graphs for abstract graph rewriting),
and Grez (termination analysis). Additionally, we give a quick overview of tools
that are currently under development. These tools demonstrate that the library
can be used in a variety of different application areas.

3.1 DPOdactic

DPOdactic [12] is a tool that walks the user through the process of applying
double-pushout (DPO) graph transformation rules. In this setting, a rule states
that the occurence of some subgraph L is to be replaced by another graph R.
The relationship between L and R is established via an interface graph I and
two injective morphisms that map I to L,R respectively. A rule is applied by
locating a match of L – where DPOdactic also allows non-injective matches –
removing parts of L, but keeping I, and then adding the missing parts of R.

In the tool (Fig. 1), the user is presented with a rule and a graph G that the
rule should be applied to. First, they select one of (possibly) multiple occurences
of L in G. Then, they input the context graph, followed by the morphisms that
relate it to the other graphs. Finally, they input the result of the transformation
step and the related morphisms. The tool checks all intermediate results for
inputs and provides direct feedback to the user, including hints on where to look
for mistakes. Optionally, the tool can also simply compute the result of each step.

A Flexible and Easy-to-Use Library for Graph Tools 303

Fig. 1. Main window of DPOdactic after the user has provided the correct context
graph, with the result graph yet to be computed (by the user or by the tool).

3.2 DrAGoM

DrAGoM [14] is a prototype tool to handle and manipulate so-called multiply
annotated type graphs. The main application of DrAGoM is to automatically
compute strongest postconditions in order to check invariants of graph transfor-
mation systems, in the framework of abstract graph rewriting.

DrAGoM uses a materialization construction to extract concrete instances
of a left-hand side graph out of an abstract graph. Then, it can be used to
automatically compute the strongest postcondition of the materialization, i.e.
an annotated type graph, specifying exactly the language of all graphs which
are reachable in one rewriting step.

3.3 Grez

Grez [5] is a tool to automatically produce proofs of uniform (non-)termination
of graph transformation systems, i.e. whether it is possible to obtain an infinite
sequence of rule applications from some start graph or not. Grez uses various
approaches for analysis: some are simple (e.g. if all rules reduce the number
of nodes, then rewriting must terminate at some point), while others are more
complicated (e.g. termination arguments based on weighted type graphs [4]).

Typically, algorithms classify rules as decreasing, non-increasing, or possibly-
increasing with respect to some order. Grez can then combine the results of mul-
tiple algorithms using a relative termination argument: if one algorithm can only
prove a subset of the rules as decreasing (thus terminating) and the remaining
rules as non-increasing, then termination of the remaining rules (for which a
different algorithm can be used) implies termination of the original system.

304 H. J. S. Bruggink et al.

3.4 Further Tools

Numerous other, smaller tools that are currently in alpha stage are being devel-
oped using the library, with areas of application being the analysis of (condi-
tional) graph transformation systems, satisfiability checking of graph conditions,
and tools that automate various basic tasks.

As an example for the automation of basic tasks, we have implemented a tool
(Podmineny) that, given a pair of cospans (typically corresponding to the left-
hand side of a rule and a graph with interfaces), computes all borrowed context
diagrams [7]; a task that is tedious and error-prone when done by hand.

As a case study, we have partially re-implemented the tableau resolution algo-
rithm for graph properties as described in [11]. While this tool only implements
part of the functionality, it encouraged us to start work on another prototype
tool, RSsat, for both model finding and unsatisfiability proofs in the more generic
setting of reactive systems.

Table 1. Overview of tools that are currently using the library. The columns indi-
cate which components (Java-Graph, VisiGraph, VisiGraphJS, VxToolbox, CatLib)
are currently used (•), will (◦) or could (◦) be used in future versions.

Tool Description Jg Vx Js Tb Cl

Grez Termination analysis for graph transformation
systems [5]

• • ◦ ◦

DrAGoM Manipulation of multiply annotated typegraphs [14] • • ◦
DPOdactic A didactic tool for double-pushout graph

transformation systems [12]
• •

Podmineny Enumeration of all borrowed context diagrams, given
two graph cospans

• • ◦ ◦ ◦

RSsat Prototype tool for model finding and unsatisfiability
proofs for conditions in reactive systems

• • • • •

TGC A partial implementation of tableau resolution [11] for
graph properties

• • ◦

Your tool here :-) ? ? ? ? ?

Table 1 gives a quick overview of current and future tools.

4 Future Work

In addition to the existing documentation for classes and methods, we plan
to provide an introductory user guide for getting started with the library. As
supporting material, we will implement several smaller tools that can serve as
examples or templates for the development of other tools.

Naturally, we also plan to lift the restrictions on the injectivity of match and
rule morphisms and to extend the functionality in general.

Our library currently supports SGF as a custom text-based data interchange
format. We feel that the simple syntax of SGF goes well with the design goal of
facilitating the development of prototype tools. Future versions of the library will

A Flexible and Easy-to-Use Library for Graph Tools 305

additionally support the Graph eXchange Language (GXL) [10], an XML-based
interchange format that is used by other tools. Note that GXL is not primarily
designed to be hand-written by users (as SGF is), but to be generated by tools.

While the VisiGraph library has no strong dependency on Swing and support
for other toolkits can be easily added if needed, we plan to provide interfaces
to additional common GUI toolkits directly in our library. For the generation
of mechanical proofs (e.g. (non-)termination proofs for graph transformation
systems in Grez) we will also add direct generation of LATEX code.

Furthermore, we plan to use the library to develop further tools to demon-
strate applicability of our own future research, such as the analysis of reactive
systems conditions.

References

1. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier,
K.D.: SiTra: Simple transformations in Java. In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) Model Driven Engineering Languages and Systems, pp. 351–
364. Springer, Heidelberg (2006). https://doi.org/10.1007/11880240 25

2. Azab, K., Habel, A., Pennemann, K.H., Zuckschwerdt, C.: ENFORCe: A System
for ensuring formal correctness of high-level programs. In: Proceedings 3rd Inter-
national Workshop on Graph Based Tools (GraBaTs 2006). vol. 1, pp. 82–93.
Electronic Communications of the EASST (2007)

3. Bruggink, H.J.S., Cauderlier, R., Hülsbusch, M., König, B.: Conditional reactive
systems. In: Proceedings of FSTTCS 2011. LIPIcs, vol. 13. Schloss Dagstuhl -
Leibniz Center for Informatics (2011)

4. Bruggink, H.J.S., König, B., Nolte, D., Zantema, H.: Proving termination of graph
transformation systems using weighted type graphs over semirings. In: Parisi-
Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 52–68.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9 4

5. Bruggink, H.J.S., König, B., Zantema, H.: Termination analysis for graph trans-
formation systems. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 179–194. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 15

6. Busatto, G.: GraJ: A System for executing graph programs in Java. Berichte aus
dem Fachbereich Informatik 3/04, Universität Oldenburg (2004)

7. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting with borrowed contexts. Math. Struct. Comput. Sci. 16(6), 1133–
1163 (2006)

8. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. Int. J. Softw. Tools Technol. Transfer 14(1), 15–40
(2012)

9. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

10. Holt, R.C., Schürr, A., Sim, S.E., Winter, A.: GXL: A Graph-based standard
exchange format for reengineering. Sci. Comput. Program. 60(2), 149–170 (2006)

11. Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Giese,
H., König, B. (eds.) Graph Transformation, pp. 17–32. Springer, Cham (2014)

12. Matjeka, M.: Ein didaktisches Tool zur Anwendung von Graphtransformation.
Bachelor’s thesis, Universität Duisburg-Essen, June 2019

https://doi.org/10.1007/11880240_25
https://doi.org/10.1007/978-3-319-21145-9_4
https://doi.org/10.1007/978-3-662-44602-7_15
https://doi.org/10.1007/978-3-662-44602-7_15

306 H. J. S. Bruggink et al.

13. Minas, M., Schneider, H.J.: Graph transformation by computational category the-
ory. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.)
Graph Transformations and Model-Driven Engineering: Essays Dedicated to Man-
fred Nagl on the Occasion of his 65th Birthday, pp. 33–58. Springer, Heidelberg
(2010)

14. Nolte, D.: Analysis and abstraction of graph transformation systems via type
graphs. Ph.D. thesis, Universität Duisburg-Essen, August 2019

15. Runge, O., Ermel, C., Taentzer, G.: AGG 2.0 - new features for specifying and
analyzing algebraic graph transformations. In: Schurr, A., Varro, D., Varro, G.
(eds) Proceedings of AGTIVE 2011, vol. 7233, pp. 81–88. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34176-2 8

16. Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach: Language and
environment. In: Handbook of Graph Grammars and Computing by Graph Trans-
formation, vol. 2: Applications, Languages and Tools, pp. 487–550. World Scientific
(1999)

https://doi.org/10.1007/978-3-642-34176-2_8

	A Flexible and Easy-to-Use Library for the Rapid Development of Graph Tools in Java
	1 Introduction
	2 Components and Features
	2.1 Components Overview
	2.2 Detailed Description of the Java-Graph Component

	3 Existing Tools Using the Library
	3.1 DPOdactic
	3.2 DrAGoM
	3.3 Grez
	3.4 Further Tools

	4 Future Work
	References

