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2 Universitat Politècnica de Catalunya, Barcelona, Spain
orejas@lsi.upc.edu

Abstract. We extend the theory of initial conflicts in the framework of
M-adhesive categories to transformation rules with ACs. We first show
that for rules with ACs, conflicts are in general neither inherited from
a bigger context any more, nor is it possible to find a finite and com-
plete subset of finite conflicts as illustrated for the category of graphs.
We define initial conflicts to be special so-called symbolic transforma-
tion pairs, and show that they are minimally complete (and in the case
of graphs also finite) in this symbolic way. We show that initial conflicts
represent a proper subset of critical pairs again. We moreover demon-
strate that (analogous to the case of rules without ACs) for each conflict
a unique initial conflict exists representing it. We conclude with present-
ing a sufficient condition illustrating important special cases for rules
with ACs, where we do not only have initial conflicts being complete in
a symbolic way, but also find complete (and in the case of graphs also
finite) subsets of conflicts in the classical sense.
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1 Introduction

Detecting and analyzing conflicts is an important issue in software analysis and
design, which has been addressed successfully using powerful techniques from
graph transformation (see, e.g., [12,15,17,24]), most of them based on critical
pair analysis. The power of critical pairs is a consequence of the fact that: a)
they are complete, in the sense that they represent all conflicts; b) there is
a finite number of them; and c) they can be computed statically. The main
problem is that their computation has exponential complexity in the size of the
preconditions of the rules. For this reason, some significantly smaller subsets of
critical pairs that are still complete have been defined [1,19,21], clearing the way
for a more efficient computation. In particular, recently, in [19], a new approach
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Table 1. Critical pairs versus initial conflicts

Plain rules Rules with NACs Rules with ACs

Critical pairs
(CPs)

Subset of conflicts,
complete [27]

Subset of conflicts,
complete [17,20]

Symbolic,
complete [6,9]

Initial
conflicts

Subset of conflicts,
min. complete,
proper subset of
CPs [1,19]

Symbolic (Definition 10),
min. complete, regular
(Theorem 6) &
conservative extension of
CPs (Theorem 7)

Symbolic
(Definition 10),
min. complete,
proper subset of
CPs (Theorem 3)

for conflict detection was introduced based on a different intuition. Instead of
considering conflicts in a minimal context, as for critical pairs, we used the
notion of initiality to characterize a complete set of minimal conflicts, showing
that initial conflicts form a strict subset of critical pairs. In particular, we have
that every conflict is represented by a unique initial conflict, as opposed to the
fact that each conflict may be represented by many critical pairs.

Most of the work on critical pairs only applies to plain graph transformation
systems, i.e. transformation systems with unconditional rules. Nevertheless, in
practice, we often need to limit the application of rules, defining some kind of
application conditions (ACs). In this sense, in [17,20] we defined critical pairs for
rules with negative application conditions (NACs), and in [6,9] for the general
case of ACs, where conditions are as expressive as arbitrary first-order formulas
on graphs. However, to our knowledge, no work has addressed up to now the
problem of finding significantly smaller subsets of critical pairs for this kind of
rules. In this paper we generalize the theory of initial conflicts to rules with ACs
in the framework of M-adhesive transformation systems. In particular, the main
contributions of this paper (as summarized in Table 1) are:

– The definition of the notion of initial conflict for rules with ACs, based on a
notion of symbolic transformation pair, showing that the set of initial conflicts
is a proper subset of the set of critical pairs and that it is minimally complete1,
in the sense that, no smaller set of symbolic transformation pairs exists that
is also complete. In particular, the cardinality of the set of initial conflicts is,
at most, the cardinality of the set of initial conflicts for the plain case, when
disregarding the ACs, plus one. Moreover, as in the plain case, every conflict
is an instance of a unique initial conflict.

– The identification of a class of regular initial conflicts that demonstrate a
certain kind of regularity in their application conditions. This allows us to
unfold them into a complete (and in the case of graphs also finite) subset
of conflicts. In particular, we show that, in the case of rules with NACs,
initial conflicts are regular, implying that our initial conflicts represent a
conservative extension of the critical pair theory for rules with NACs.

The paper is organized as follows. We describe related work in Sect. 2 and, in
Sect. 3, we present some preliminary material, where we also include some new
1 Provided that the considered category has initial conflicts for the plain case.
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results. More precisely, in Subsect. 3.1 and Subsect. 3.2 we briefly reintroduce
the framework of M-adhesive categories and of rules with ACs; in Subsect. 3.3
we reintroduce critical pairs for rules with ACs following [6,9]; in Subsect. 3.4
we reintroduce initial conflicts for plain rules, and in Sect. 4 we introduce initial
parallel independent transformation pairs. This result is used in Sect. 4, where
we present the main results of the paper about initial conflicts for rules with
ACs. Then, in Sect. 5 we show our results on unfolding initial conflicts. Finally,
we conclude in Sect. 6 discussing some future work. Detailed proofs can be found
in the full version of the paper [23].

2 Related Work

Most work on checking confluence for rule-based rewriting systems is based on
the seminal paper from Knuth and Bendix [14], who reduced the problem of
checking local confluence to checking the joinability of a finite set of critical
pairs. This technique has been extensively studied in the area of term rewriting
systems (see, e.g., [25]), and it was introduced in the area of graph transformation
by Plump [27] in the context of term-graph and hypergraph rewriting. Moreover,
he also proved that (local) confluence of graph transformation systems is unde-
cidable, even for terminating systems, as opposed to what happens in the area
of term rewriting systems. However, recently, in [2] it is shown that confluence
of terminating DPO transformation of graphs with interfaces is decidable. The
authors explain that the reason is that interfaces play the same role as vari-
ables in term rewriting systems, where confluence is undecidable for terminating
ground (i.e., without variables) systems, but decidable for non-ground ones.

Computing critical pairs in graph transformation, as introduced by Plump
[27], is exponential in the size of the preconditions of the rules. For this reason,
different proper subsets of critical pairs with a considerably reduced size were
studied that are still complete [1,19,21], clearing the way for a more efficient
computation. The notion of essential critical pair [21] for graph transformation
systems already allowed for a significant reduction, and, the notion of initial
conflict [19], introduced for the more general M-adhesive systems, allowed for
an even larger reduction. However, not all M-adhesive categories have initial
conflicts. In [19] it is shown that typed graphs do have them and [1] extended
that result proving that arbitrary M-adhesive categories satisfying some given
conditions also have initial conflicts.

A recent line of work concentrates on the development of multi-granular
conflict detection techniques [3,18,24]. An extensive literature survey shows [24]
that conflict detection is used at different levels of granularity depending on its
application field. The overview shows that conflict detection can be used for the
analysis and design phase of software systems (e.g. for finding inconsistencies in
requirement specifications), for model-driven engineering (e.g. supporting model
version management), for testing (e.g. generation of interesting test cases), or for
optimizing rule-based computations (e.g. avoiding backtracking). These multi-
granular techniques are presented for rules without application conditions (ACs).
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Our work builds further foundations for providing multi-granular techniques also
in the case of rules with ACs in the future.

The use of (negative) application conditions, to limit the application of graph
transformation rules, was introduced in [8,10], while the more general approach,
using nested conditions, was introduced by Habel and Penneman [11]. Check-
ing confluence for graph transformation systems with application conditions
(ACs) has been studied in [17,20] for the case of negative application condi-
tions (NACs), and in [6,9] for the more general case of ACs. However, it is an
open issue to find proper subsets of critical pairs of considerably reduced size in
the general case.

3 Preliminaries

We start with a brief introduction of M-adhesive categories, rules with nested
application conditions (ACs) (cf. Subsect. 3.2), and the main parts of critical
pair theory for this type of rules [6,9] (cf. Subsect. 3.3). Thereafter, we reintro-
duce the notion of initial conflicts [19] for plain rules, i.e. rules without ACs
(cf. Subsect. 3.4). We also introduce the notion of initial parallel independent
transformation pairs as a counterpart (cf. Subsect. 3.5), since it will play a par-
ticular role when defining initial conflicts for rules with ACs in Subsect. 3.4. We
assume that the reader is acquainted with the basic theory of DPO graph trans-
formation and, in particular, the standard definitions of typed graphs and typed
graph morphisms (see, e.g., [5]) and its associated category, GraphsTG.

3.1 Graphs and High-Level Structures

Our results do not only apply to a specific class of graph transformation sys-
tems, like standard (typed) graph transformation systems, but to systems over
any M-adhesive category [5]. The idea behind considering M-adhesive categories
is to avoid similar investigations for different instantiations like e.g. Petri nets
or hypergraphs. An M-adhesive category is a category C with a distinguished
morphism class M of monomorphisms satisfying certain properties. The most
important one is the van Kampen (VK) property stating a certain kind of com-
patibility of pushouts and pullbacks along M-morphisms. Moreover, additional
properties are needed in our context: initial pushouts, describing the existence of
a special “smallest” pushout over a morphism, E ′-M pair factorizations, extend-
ing the classical epi-mono factorization to a pair of morphisms with the same
codomain. The definitions of these properties can be found in [6,7].
Assumption 1. We assume that 〈C,M〉 is an M-adhesive category with a
unique E ′-M pair factorization (needed for Lemma 1, Definition 5, Theorem3,
Corollary 1) and binary coproducts (needed for Lemma 3, Definition 8,
Theorem1). For the Local Confluence Theorem for initial conflicts of rules with
ACs we in addition need initial pushouts (cf. Subsect. 4.4).

Remark 1. Most categories of structures used for specification are M-adhesive
and satisfy these additional properties [5], including the category 〈GraphsTG,M〉
with M being the class of all injective typed graph morphisms.
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3.2 Rules with Application Conditions and Parallel Independence

Nested application conditions [11] (in short, application conditions, or just ACs)
generalize the corresponding notions in [4,10,15], where a negative (positive)
application condition, short NAC (PAC), over a graph P , denoted ¬∃a (∃a) is
defined in terms of a morphism a : P → C. Informally, a morphism m : P → G
satisfies ¬∃a (∃a) if there does not exist a morphism q : C → G extending a to m
(if there exists q extending a to m). Then, an AC is either the special condition
true or a pair of the form ∃(a, acC) or ¬∃(a, acC), where acC is an additional AC
on C. Intuitively, a morphism m : P → G satisfies ∃(a, acC) if m satisfies a and
the corresponding extension q satisfies acC . Moreover, ACs may be combined
with the usual logical connectors. For a concrete definition of ACs we address
the reader to [11] or [6].

ACs are used to restrict the application of rules to a given object. The idea
is to equip the precondition (or left hand side) of rules with an application con-
dition. Then we can only apply a given rule to an object G if the corresponding
match morphism satisfies the AC of the rule. However, for technical reasons, we
also introduce the application of rules disregarding the associated ACs.

Definition 1 (rules and transformations). A rule ρ = 〈p, acL〉 consists of
a plain rule p = 〈L ←↩ I → R〉 with I ↪→ L and I ↪→ R morphisms in M and
an application condition acL over L.

L I R

DG H

m m∗(1) (2)

acL =|

A direct transformation t : G ⇒ρ,m,m∗ H consists of two pushouts (1) and (2),
called DPO, with match m and comatch m∗ such that m |= acL. G ←↩ D ↪→
H is called the derived span of t. An AC-disregarding direct transformation
G ⇒ρ,m,m∗ H consists of DPO (1) and (2), where m does not necessarily need
to satisfy acL. Given a set of rules R for 〈C,M〉, the triple 〈C,M,R〉 is an
M-adhesive system.

Remark 2. In the rest of the paper we assume that each rule (resp. transforma-
tion or M-adhesive system) comes with ACs. Otherwise, we state that we have
a plain rule (resp. transformation or M-adhesive system), which can be seen as
a special case, in the sense that the ACs are (equivalent to) true.

ACs can be shifted over morphisms and rules as shown in the following lemma
(for constructions see [7]2 and [7,11], respectively).

2 Since this construction entails the enumeration of jointly epimorphic morphism pairs,
its computation has exponential complexity in the size of the precondition of the rule
and the size of the AC.
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Lemma 1 (shift ACs over morphisms [7]). There is a transformation Shift
from morphisms and ACs to ACs such that for each AC, acP , and each morphism
b : P → P ′, Shift transforms acP via b into an AC Shift(b, acP ) over P ′ such that
for each morphism n : P ′ → H it holds that n ◦ b |= acP ⇔ n |= Shift(b, acP ).

Lemma 2 (shift ACs over rules [7,11]). There is a transformation L from
rules and ACs to ACs such that for every rule ρ : L ←↩ I ↪→ R and every AC on
R, acR, L transforms acR via ρ into the AC L(ρ, acR) on L, such that for every
direct transformation G ⇒ρ,m,m∗ H, m |= L(ρ, acR) ⇔ m∗ |= acR.

For parallel independence, when working with rules with ACs, we need not
only that each rule does not delete any element which is part of the match of
the other rule, but also that the resulting transformation defined by each rule
application still satisfies the ACs of the other rule application.

Definition 2 (transformation pairs and parallel independence). A tran-
sformation pair H1 ⇐ρ1,o1 G ⇒ρ2,o2 H2 is parallel independent if there exists a
morphism d12 : L1 → D2 such that k2 ◦ d12 = o1 and c2 ◦ d12 |= acL1 and there
exists a morphism d21 : L2 → D1 such that k1 ◦ d21 = o2 and c1 ◦ d21 |= acL2 .

GD1H1

R1 I1 L1

D2 H2

R2I2L2

k1c1

o1

k2 c2

o2
d21 d12

acL1 acL2

A transformation pair is in conflict or conflicting if it is parallel dependent.
We distinguish different conflict types, generalizing straightforwardly the conflict
characterization introduced for rules with NACs [20]. The transformation pair
H1 ⇐ρ1,o1 G ⇒ρ2,o2 H2 is a use-delete (resp. delete-use) conflict if in Definition 2
the commuting morphism d12 (resp. d21) does not exist, i.e. the second (resp.
first) rule deletes something used by the first (resp. second) one. Moreover, it
is an AC-produce (resp. produce-AC ) conflict if in Definition 2 the commuting
morphism d12 (resp. d21) exists, but an extended match is produced by the
second (resp. first) rule that does not satisfy the rule AC of the first (resp.
second) rule. If a transformation pair is an AC-produce or produce-AC conflict,
then we also say that it is an AC conflict or AC conflicting.

Remark 3 (use-delete XOR AC-produce). A use-delete (resp. delete-use) con-
flict cannot occur simultaneously to an AC-produce (resp. produce-AC) con-
flict, since the AC of the first (resp. second) rule can only be violated iff there
exists an extended match for the first (resp. second) rule. However, a use-delete
(resp. delete-use) conflict may occur simultaneously to a produce-AC (resp. AC-
produce) conflict.

For grasping the notion of completeness of transformation pairs w.r.t. a prop-
erty like parallel (in-)dependence, it is first important to understand how a given
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transformation can be extended to another transformation. In particular, an
extension diagram describes how a transformation t : G0 ⇒∗ Gn can be extended
to a transformation t′ : G′

0 ⇒∗ G′
n via the same rules and an extension morphism

k0 : G0 → G′
0 that maps G0 to G′

0 as shown in the following diagram on the left.
For each rule application and transformation step, we have two double pushout
diagrams as shown on the right, where the rule ρi+1 is applied to Gi and G′

i.

G0 Gn

G′
0 G′

n

Li+1 Ii+1 Ri+1

Gi Di Gi+1

G′
i D′

i G′
i+1

k0 kn

∗

∗
(1)

We introduce two notions of completeness, distinguishing M-completeness
from regular completeness, depending on the membership of the extension mor-
phism in M. It is known that critical pairs (resp. initial conflicts) for plain
rules are M-complete (resp. complete) w.r.t. parallel dependence [5,19]. In
Subsect. 3.3, we reintroduce the fact that critical pairs for rules with ACs are
M-complete w.r.t. parallel dependence, but as symbolic transformation pairs.
We learn in Sect. 4 that initial conflicts for rules with ACs are also complete in
this symbolic way.

Definition 3 ((M-)completeness of transformation pairs). A set of
transformation pairs S for a pair of rules 〈ρ1, ρ2〉 is complete (resp. M-
complete) w.r.t. parallel (in-)dependence if there is a pair P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2

from S and an extension diagram via extension morphism m (resp. m ∈ M) for
each parallel (in-)dependent direct transformation pair H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2.

KP1 P2

GH1 H2

m

ρ1, o1 ρ2, o2

ρ1, m1 ρ2, m2

Fig. 1. (M-)completeness of transformation pairs

3.3 Critical Pairs

Critical pairs for plain rules are just transformation pairs, where morphisms o1
and o2 are in E ′ (i.e., roughly, K is an overlapping of L1 and L2). In the category
of Graphs they lead to finite and complete subsets of finite conflicts [4] (assumed
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that the rule graphs are also finite). However, when rules include ACs, we cannot
use the same notion of critical pair since, as we show in Theorem 2, in general,
for any two rules with ACs, there is no complete set of transformation pairs that
is finite. To avoid this problem, our critical pairs for rules with ACs also include
ACs, as in [6,9], where they are proved to be M-complete, and they are also
finite in the category of Graphs (assumed again that the rules are finite).

In particular, critical pairs are based on the notion of symbolic transformation
pairs, which are pairs of AC-disregarding transformations on some object K
with two special ACs on K. These two ACs, acK (extension AC ) and ac∗

K

(conflict-inducing AC ), are used to characterize which embeddings of this pair,
via some morphism m : K → G, give rise to a transformation pair that is parallel
dependent. If m |= acK , then m ◦ o1 : L1 → G and m ◦ o2 : L2 → G are two
morphisms, satisfying the associated ACs of ρ1 and ρ2, respectively. Moreover, if
m |= ac∗

K , then the two transformations H1 ⇐ρ1,m◦o1 G ⇒ρ2,m◦o2 H2 are parallel
dependent. Symbolic transformation pairs allow us to present critical pairs as
well as initial conflicts (cf. Subsect. 3.4) in a compact and unified way, since
they both are instances of symbolic transformation pairs. Finally, note that each
symbolic transformation pair stpK : 〈tpK , acK , ac∗

K〉 is by definition uniquely
determined (up to isomorphism and equivalence of the extension AC and conflict-
inducing AC) by its underlying AC-disregarding transformation pair.

Definition 4 (symbolic transformation pair). Given rules ρ1 = 〈p1, acL1〉
and ρ2 = 〈p2, acL2〉, a symbolic transformation pair stpK : 〈tpK , acK , ac∗

K〉 for
〈ρ1, ρ2〉 consists of a pair tpK : P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 of AC-disregarding
transformations together with ACs acK and ac∗

K on K given by:

acK = Shift(o1, acL1) ∧ Shift(o2, acL2), called extension AC, and
ac∗

K = ¬(ac∗
K,d12

∧ ac∗
K,d21

), called conflict-inducing AC

with ac∗
K,d12

and ac∗
K,d21

given as follows:

if (∃ d12 with k2◦d12=o1) then ac∗
K,d12

= L(p∗
2,Shift(c2◦d12, acL1))

else ac∗
K,d12

= false

if (∃ d21 with k1◦d21=o2) then ac∗
K,d21

= L(p∗
1,Shift(c1◦d21, acL2))

else ac∗
K,d21

= false

where p∗
1 = 〈K k1←↩ D1

c1
↪→ P1〉 and p∗

2 = 〈K k2←↩D2
c2
↪→P2〉 are defined by the corre-

sponding double pushouts.

KD1P1p∗
1 :

R1p1 : I1 L1

D2 P2 : p∗
2

R2 : p2I2L2

k1c1

o1

k2 c2

o2
d21 d12

acL1 acL2

A critical pair is now a symbolic transformation pair in a minimal context
such that there exists at least one extension to a pair of transformations being
parallel dependent.
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Definition 5 (critical pair). Given rules ρ1 = 〈p1, acL1〉 and ρ2 = 〈p2,
acL2〉, a critical pair for 〈ρ1, ρ2〉 is a symbolic transformation pair stpK : 〈tpK ,
acK , ac∗

K〉, where the match pair (o1, o2) of tpK is in E ′, and there exists a mor-
phism m : K → G ∈ M such that m |= acK ∧ ac∗

K and mi = m ◦ oi, for i = 1, 2,
satisfy the gluing conditions, i.e. mi has a pushout complement w.r.t. pi.

Definition 6 ((M-)completeness of symbolic transformation pairs). A
set of symbolic transformation pairs S for a pair of rules 〈ρ1, ρ2〉 is complete
(resp. M-complete) w.r.t. parallel dependence if there is a symbolic transfor-
mation pair stpK : 〈tpK : P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2, acK , ac∗

K〉 from S and an
extension diagram as depicted in Fig. 1 with m : K → G (resp. m : K →
G ∈ M) and m |= acK ∧ ac∗

K for each parallel dependent direct transformation
H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2.

In [6,9] it is shown that the set of critical pairs for a pair of rules is M-
complete w.r.t. parallel dependence.

3.4 Initial Conflicts for Plain Rules

Initial conflicts for plain rules follow an alternative approach to the original
idea of critical pairs. Instead of considering all conflicting transformations in a
minimal context (materialized by a pair of jointly epimorphic matches), initial
conflicts use the notion of initiality of transformation pairs to obtain a more
declarative view on the minimal context of critical pairs. Each initial conflict
is a critical pair but not the other way round. Moreover, all initial conflicts
for plain rules are complete w.r.t. parallel dependence and they still satisfy the
Local Confluence Theorem for plain rules. Consequently, initial conflicts for plain
rules represent an important, proper subset of critical pairs for performing static
conflict detection as well as local confluence analysis.

Definition 7 (initial transformation pair and initial conflict). Given a
pair of plain direct transformations tp : H1 ⇐p1,m1 G ⇒p2,m2 H2, then tpI :
HI

1 ⇐p1,mI
1

GI ⇒p2,mI
2

HI
2 is an initial transformation pair for tp if it can be

embedded into tp via extension diagrams (1) and (2) and extension morphism
f I , as in the left diagram below, such that for each transformation pair tp′ :
H ′

1 ⇐p1,m′
1

G′ ⇒p2,m′
2

H ′
2 that can be embedded into tp via extension diagrams

(3) and (4) and extension morphism f , as in the left diagram below, it holds
that tpI can be embedded into tp′ via unique extension diagrams (5) and (6) and
unique vertical morphism f ′I s.t. f ◦ f ′I = f I .

Given a plain M-adhesive system with initial transformation pairs for con-
flicts, an initial conflict is a conflict tp isomorphic to tpI .
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The idea of representing all conflicts by a (finite) set of initial conflicts is
based on the requirement of the existence of initial transformation pairs for
parallel dependent or conflicting plain transformation pairs. This requirement
holds for the category of typed graphs [19] and for any arbitrary M-adhesive
category fulfilling some extra conditions [1].

For plain M-adhesive systems, initial conflicts are critical pairs [19]. More-
over, they are complete and minimal as transformation pairs w.r.t. parallel
dependence, whereas critical pairs for plain rules are M-complete [4].

3.5 Initial Parallel Independent Transformation Pairs for Plain
Rules

In this section, we show the existence of initial transformation pairs for parallel
independent transformation pairs (Fig. 2), allowing us to define a complete sub-
set also w.r.t. parallel independence. The proof requires that binary coproducts
exist.

Lemma 3 (existence of initial transformation pair for parallel inde-
pendent transformation pair). Given a pair of parallel independent plain
direct transformations tp : H1 ⇐p1,m1 G ⇒p2,m2 H2, then tpL1+L2 : R1 +
L2 ⇐p1,i1 L1+L2 ⇒p2,i2 L1+R2, where i1 : L1 → L1+L2 and i2 : L2 → L1+L2

are the coproduct morphisms, is initial for tp.

L1 + L2I1 + L2R1 + L2p∗
1 :

R1p1 : I1 L1

L1 + I2 L1 + R2 : p∗
2

R2 : p2I2L2

GD1H1 D2 H2

m

k1
c1

i1

k2
c2

i2

d21 d12

acL1 acL2

Fig. 2. Initial parallel independent transformation pair tpL1+L2
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Uniqueness of initial transformation pairs up to isomorphism implies that
for each pair of plain rules 〈p1, p2〉 there is a unique initial parallel independent
transformation pair tpL1+L2 : R1 + L2 ⇐p1,i1 L1 + L2 ⇒p2,i2 L1 + R2.

Definition 8 (initial parallel independent transformation pair). A pair
of parallel independent plain transformations tp : H1 ⇐p1,m1 G ⇒p2,m2 H2 is
an initial parallel independent transformation pair if it is isomorphic to the
transformation pair tpL1+L2 : R1 + L2 ⇐p1,i1 L1 + L2 ⇒p2,i2 L1 + R2.

The one-element set consisting of the initial parallel independent transfor-
mation pair for a given pair of rules is complete w.r.t. parallel independence.

Theorem 1 (completeness of initial parallel independent transforma-
tion pairs). The set consisting of the initial parallel independent transformation
pair tpL1+L2 : R1 + L2 ⇐p1,i1 L1 + L2 ⇒p2,i2 L1 + R2 for a pair of plain rules
〈p1, p2〉 is complete w.r.t. parallel independence.

4 Initial Conflicts

We start with showing why it is not possible to straightforwardly generalize the
idea of initial conflicts from plain rules to rules with ACs. On the one hand,
conflict inheritance, which was the basis for showing completeness of initial con-
flicts for plain rules, does not hold any more. Moreover, it is impossible in gen-
eral to find a finite and complete subset of finite conflicts for rules with ACs
(cf. Subsect. 4.2). This motivates again the need for having symbolic transfor-
mation pairs as introduced in Definition 4, allowing us to define initial conflicts
(cf. Subsect. 4.3) as a set of specific symbolic transformation pairs, being com-
plete w.r.t. parallel dependence indeed (as shown in Subsect. 4.4).

4.1 Conflict Inheritance

Conflicts are in general not inherited (as opposed to the case of plain rules [19]),
i.e., not each (initial) transformation pair that can be embedded into a conflicting
one will be conflicting again. This may happen in particular for AC conflicts.
Use-delete (resp. delete-use) conflicts for rules with ACs are still inherited.

Lemma 4 (Use-delete (delete-use) conflict inheritance). Given a pair
of direct transformations tp in use-delete (resp. delete-use) conflict and another
pair of direct transformations tp′ that can be embedded into tp via extension
morphism f and corresponding extension diagrams, then tp′ is also in use-delete
(resp. delete-use) conflict.

Example 1 (No inheritance for AC conflicts). Consider rules p1 : ← →
(with AC true), producing an outgoing edge with a node, and p2 : ←

→ with NAC ¬∃n : → , producing a node only if two other nodes
do not exist already. Consider graph G = , holding two nodes. Applying both
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rules to G (with the matches sharing one node in G) we obtain a produce-AC
conflict since the first rule creates a third node, forbidden by the second rule.
Now both rules can be applied similarly to the shared node in the subgraph
G′ = of G obtaining parallel independent transformations, illustrating that
AC-conflicts are not inherited.

4.2 Complete Subset of Conflicts

We show that in M-adhesive categories, in particular in the category of graphs,
it is in general impossible to find a finite and complete subset of conflicts for finite
rules with ACs. If it would always exist, we could derive that each first-order
formula is equivalent to a finite disjunction of atomic formulas.

Theorem 2. Given finite rules ρ1 = 〈p1, acL1〉 and ρ2 = 〈p2, acL2〉 for the
M-adhesive category Graphs, in general, there is no finite set of finite trans-
formation pairs S for ρ1 and ρ2 that is complete w.r.t. parallel dependence.

4.3 Initial Conflicts

We generalize the notion of initial conflicts for plain rules to rules with ACs. In
particular, we introduce them as special symbolic transformation pairs. They are
conflict-inducing meaning that there needs to exist an unfolding of the symbolic
transformation pair into a concrete conflicting transformation pair. Moreover,
their AC-disregarding transformation pair needs to be an initial conflict or initial
parallel independent transformation pair. We also show the relationship between
initial conflicts and critical pairs as reintroduced in Subsect. 3.3, demonstrating
that initial conflicts represent a proper subset of critical pairs.

Definition 9 (unfolding of symbolic transformation pair). Given a sym-
bolic transformation pair stpK : 〈tpK , acK , ac∗

K〉 for rule pair 〈ρ1, ρ2〉, then its
unfolding U(stpK) consists of all transformation pairs H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2

representing the lower row of the extension diagrams via some extension mor-
phism m : K → G as shown in Fig. 1 (with AC-disregarding transformation pair
tpK in the upper row). Moreover, we say that stpK is conflict-inducing if its
unfolding includes a conflicting transformation pair.

Definition 10 (initial conflict). Consider an M-adhesive system with initial
transformation pairs for conflicts along plain rules. An initial conflict for rules
ρ1 = 〈p1, acL1〉 and ρ2 = 〈p2, acL2〉 is a conflict-inducing symbolic transforma-
tion pair stpK : 〈tpK , acK , ac∗

K〉 with the AC-disregarding transformation pair
tpK being initial, i.e. either tpK is an initial conflict for rules p1 and p2 (in this
case stpK is called a use-delete/delete-use initial conflict) or it is the initial par-
allel independent transformation pair tpL1+L2 for rules p1 and p2 (in this case
stpK = stpL1+L2 = 〈tpL1+L2 , acL1+L2 , ac∗

L1+L2
〉 is called the AC initial conflict).
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Note that the unfolding of a conflict-inducing symbolic transformation pair
(and in particular of an AC initial conflict) may also include parallel independent
transformation pairs. All conflicts in the unfolding of an AC initial conflict are
AC conflicts, and never use-delete/delete-use conflicts (because otherwise we
would get a contradiction using Lemma 4).

Example 2 (initial conflict). Consider again the rules from Example 1. Applying
both rules to L1 + L2 = (with disjoint matches) we obtain the AC initial
conflict stpK = stpL1+L2 = 〈tpL1+L2 , acL1+L2 , ac∗

L1+L2
〉. Thereby acL1+L2 is

equivalent to ¬∃(
1 2

→
1 2

) ∧ ¬∃(
1 2

→
1,2

), expressing that when
during extension both nodes are merged, no two additional nodes, otherwise
not one additional node should be given. Moreover, ac∗

L1+L2
is equivalent to

∃(
1 2

→
1,2

) ∨ ∃(
1 2

→
1 2

), expressing that either both nodes are not
merged during extension, otherwise one additional node should be present for a
conflict to arise. Both transformation pairs (the conflicting one from G =
as well as the parallel independent one from its subgraph G′ = , sharing the
merged node in their matches) described in Example 1 belong to its unfolding.

Each initial conflict is in particular also a critical pair.

Theorem 3 (initial conflict is critical pair). Consider an M-adhesive sys-
tem with initial transformation pairs for conflicts along plain rules. Each initial
conflict stpK : 〈tpK , acK , ac∗

K〉 is a critical pair.

The reverse direction of Theorem 3 does not hold. In general, critical pairs
stpK : 〈tpK , acK , ac∗

K〉 where tpK represents a use-delete/delete-use conflict (but
is not initial yet) are represented by the initial conflict stpI : 〈tpI , acI , ac∗

I〉
with tpI the unique initial conflict for tpK as plain transformation pair. More-
over, critical pairs stpK : 〈tpK , acK , ac∗

K〉 where tpK is parallel independent
as plain transformation pair are represented by one initial conflict stpL1+L2 :
〈tpL1+L2 , acL1+L2 , ac∗

L1+L2
〉 with tpL1+L2 the initial parallel independent trans-

formation pair.

Example 3 (initial conflicts: proper subset of critical pairs). Consider again the
rules from Example 1 and their application to G′ = . The symbolic transfor-
mation pair stpG′ : 〈tpG′ , acG′ , ac∗

G′〉 is a critical pair, but not an initial conflict.

4.4 Completeness

We show that initial conflicts are complete (not M-complete as in the case of
critical pairs) w.r.t. parallel dependence as symbolic transformation pairs.

Theorem 4 (completeness of initial conflicts). Consider an M-adhesive
system with initial transformation pairs for conflicts along plain rules. The set of
initial conflicts for a pair of rules 〈ρ1, ρ2〉 is complete w.r.t. parallel dependence.
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Remark 4 (uniqueness of initial conflicts). For each conflict a unique (up-to-
isomorphism) initial conflict exists representing it, since this property is inherited
from the one for plain rules [19] and the fact that the initial parallel independent
pair of transformations is unique w.r.t. a given rule pair.

Initial conflicts are also minimally complete, i.e. we are able to generalize the
corresponding result for plain rules to rules with ACs.

5 Unfoldings of Initial Conflicts

We show a sufficient condition for being able to unfold initial conflicts into
a complete set of conflicts that is finite if the set of initial conflicts is finite
(cf. Subsect. 5.1). We demonstrate moreover that this sufficient condition is ful-
filled for the special case of having merely NACs as rule application conditions
(cf. Subsect. 5.2). Finally, we show that in this case we obtain in particular
specific critical pairs for rules with negative application conditions (NACs) as
introduced in [20] again. In this sense we show explicitly that initial conflicts as
introduced in this paper represent a conservative extension of the critical pair
theory for rules with NACs.

5.1 Finite and Complete Unfolding

We introduce regular initial conflicts leading to M-complete subsets of con-
flicts by unfolding them in some particular way (cf. disjunctive unfolding in
Definition 11). The idea is that the extension and conflict-inducing AC (acK

and ac∗
K , respectively) of such a conflict stpK : 〈tpK , acK , ac∗

K〉 have a spe-
cific form that is amenable to finding M-complete unfoldings. We expect the
condition acK ∧ ac∗

K to consist of a disjunction of positive literals (conditions
of the form ∃(ai : K → Ci, ci)) with a negative remainder (i.e. a condition
ci = ∧j∈J¬∃(bj : Ci → Cj , dj)). Intuitively, this means that there is a finite
number of possibilities to unfold the symbolic conflict into a concrete conflict
by adding some specific positive context (expressed by the morphism ai). The
negative remainder ci ensures that by adding this positive context to the con-
text K of the symbolic transformation pair within the initial conflict, we indeed
find a concrete conflict when not extending further at all. Moreover, it expresses
under which condition the corresponding concrete representative conflict leads
to further conflicts by extension. Finally, the subsets of M-complete conflicts
built using the disjunctive unfolding are finite if the set of initial conflicts it is
derived from is finite.

Definition 11 (regular initial conflict, disjunctive unfolding). Consider
an M-adhesive system with initial transformation pairs for conflicts along plain
rules. Given an initial conflict stpK : 〈tpK , acK , ac∗

K〉 for rules 〈ρ1, ρ2〉, then
we say that it is regular if acK ∧ ac∗

K is equivalent to a condition ∨i∈I∃(ai :
K → Ci, ci) with ci = ∧j∈J¬∃(bj : Ci → Cj , dj) a condition on Ci, bj
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non-isomorphic and I some non-empty index set. Given a regular initial con-
flict stpK : 〈tpK , acK , ac∗

K〉, then UD(stpK) = ∪i∈I{tpCi
: D1,i ⇐ρ1,ai◦o1

Ci ⇒ρ2,ai◦o2 D2,i} is the disjunctive unfolding of stpK .

Remark 5 (disjunctive unfolding). The disjunctive unfolding of a regular conflict
is non-empty, but might consist of less elements than literals in the disjunction
∨i∈I∃(ai : K → Ci, ci): if a morphism ai does not satisfy the gluing condition
of the derived spans, then also every extension morphism starting from there
will not satisfy the gluing condition, and we can safely ignore that case from the
disjunctive unfolding.

Theorem 5 (finite and complete unfolding). Consider an M-adhesive
system with initial transformation pairs for conflicts along plain rules. Given a
rule pair 〈ρ1, ρ2〉 with set S of initial conflicts such that each initial conflict stp
in S is regular, then ∪stp∈SUD(stp) is M-complete w.r.t. parallel dependence.
Moreover, ∪stp∈S UD(stp) is finite if S is finite.

It is possible to automatically check if some initial conflict is regular by
using dedicated automated reasoning [22] as well as symbolic model generation
for ACs [28] as follows. The reasoning mechanism [22] is shown to be refutation-
ally complete ensuring that if the condition acK ∧ ac∗

K of some initial conflict
is unsatisfiable, this will be detected eventually. Moreover, the related symbolic
model generation mechanism [28] is able to automatically transform each condi-
tion acK ∧ ac∗

K into some disjunction ∨i∈I∃(ai : K → Ci, ci) with ci a negative
remainder if such an equivalence holds.

5.2 Unfolding for Rules with NACs

We show that for rules with NACs initial conflicts are regular. This means that
in this special case there exists a complete subset of conflicts that is finite (in the
case of graphs and assuming finite rules). This conforms to the findings in [17,20],
where an M-complete set of critical pairs – as specific subset of conflicts – for
graph transformation rules with NACs was introduced [20] (and generalized to
M-adhesive transformation systems [17]).

Theorem 6 (regular initial conflicts for rules with NACs). Consider an
M-adhesive system with initial transformation pairs for conflicts along plain
rules. Given some initial conflict stpK : 〈tpK , acK , ac∗

K〉 for a pair of rules
〈ρ1, ρ2〉 with acLi

= ∧j∈J¬∃nj : Li → Nj for i = 1, 2 and J some finite index
set, then it is regular. In particular, acK ∧ ac∗

K is equivalent to a condition
∨i∈I∃(ai : K → Ci, ci) with ci = ∧q∈Q¬∃nq a condition on Ci and I some
non-empty index set.

The negative remainder ci of each literal in ∨i∈I∃(ai : K → Ci, ci) of a regular
initial conflict for rules with NACs thus consists of a set of NACs. Intuitively this
means that we obtain for each initial conflict an M-complete subset of concrete
conflicts by adding the context described by ai. As long as no NAC from ci is
violated we can extend such a concrete conflict to further ones.
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Corollary 1 (complete unfolding: rules with NACs). Consider an M-
adhesive system, with initial transformation pairs for conflicts along plain rules.
Given a rule pair 〈ρ1, ρ2〉 with acLi

= ∧j∈J¬∃nj : Li → Nj for i = 1, 2, then
∪stp∈SUD(stp) is M-complete w.r.t. parallel dependence.

We show moreover that the initial conflict definition is a conservative exten-
sion of the critical pair definition for rules with NACs as given in [17,20], i.e.,
we show that each conflict in the disjunctive unfolding of an initial conflict as
chosen in the proof of Theorem6 is a critical pair for rules with NACs.

Theorem 7 (conservative unfolding). In an M-adhesive system with initial
transformation pairs for conflicts along plain rules, if stpK : 〈tpK , acK , ac∗

K〉 is
an initial conflict for rules 〈ρ1, ρ2〉 with acLi

= ∧j∈J¬∃nj : Li → Nj for i = 1, 2
and J some finite index set, then each conflict as chosen in the proof of Theorem6
in UD(stp) is in particular a critical pair for 〈ρ1, ρ2〉 as given in [17,20].

Example 4 (conservative unfolding). Consider again the rules from Example 1
(having only NACs as ACs) and their application to the graph G = . The
corresponding transformation pair tpG is a critical pair for rules with NACs as
given in [17,20]. This is because it is in particular a conflicting pair of transforma-
tions, and the morphism violating the NAC (since finding the three nodes) and
therefore causing the conflict after applying the first rule to G = obtaining
some graph H1 = is jointly surjective together with the corresponding
co-match. As argued already in Example 2 this critical pair for rules with NACs
belongs to the unfolding (and in particular to the disjunctive unfolding) of the
unique AC initial conflict stpL1+L2 : 〈tpL1+L2 , acL1+L2 , ac∗

L1+L2
〉.

6 Conclusion and Outlook

In this paper we have generalized the theory of initial conflicts (from plain rules,
i.e. rules without application conditions) to rules with application conditions
(ACs) in the framework of M-adhesive transformation systems. We build on
the notion of symbolic transformation pairs, since it turns out that it is not
possible to find a complete subset of concrete conflicting transformation pairs in
the case of rules with ACs. We have shown that initial conflicts are (minimally)
complete w.r.t. parallel dependence as symbolic transformation pairs. Moreover,
initial conflicts represent (analogous to the case of plain rules) proper subsets of
critical pairs in the sense that for each critical pair (or also for each conflict),
there exists a unique initial conflict representing it. We concluded the paper by
showing sufficient conditions for finding unfoldings of initial conflicts that lead
to (finite and) complete subsets of conflicts (as in the case of rules with NACs).
Thereby we have shown that initial conflicts for rules with ACs represent a
conservative extension of the critical pair theory for rules with NACs.

As future work we aim at finding further interesting classes allowing finite
and (minimally) complete unfoldings into subsets of conflicts. This will serve as
a guideline to be able to develop and implement efficient conflict detection tech-
niques for rules with (specific) ACs, which has been an open challenge until today.
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We are moreover planning to develop (semi-)automated detection of unfoldings
of initial conflicts of rules with arbitrary ACs using dedicated automated reason-
ing and model finding for graph conditions [22,26,28]. It would be interesting
to investigate in which use cases initial conflicts (or critical pairs) are useful
already as symbolic transformation pairs, and in which use cases we rather need
to consider unfoldings indeed. This is in line with the research on multi-granular
conflict detection [3,18,24] investigating different levels of granularity that can
be interesting from the point of view of applying conflict detection to different
use cases. Finally, we plan to investigate conflict detection in the light of initial
conflict theory for attributed graph transformation [5,13,16], and in particular
the case of rules with so-called attribute conditions more specifically. It would
also be interesting to further investigate initial conflicts for transformation rules
(with ACs) not following the DPO approach.

Acknowledgement. We thank Jens Kosiol for pointing out that the set of initial
conflicts for plain rules is not only complete, but also minimally complete. We were
able to transfer this result to rules with ACs in this paper. Many thanks also to the
reviewers for their detailed and constructive comments helping to finalize the paper.
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Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 330–345. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15928-2 22

10. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3/4), 287–313 (1996). https://doi.org/10.3233/
FI-1996-263404

11. Habel, A., Pennemann, K.: Correctness of high-level transformation systems rel-
ative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009).
https://doi.org/10.1017/S0960129508007202

12. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional
requirements in a use case-driven approach: a static analysis technique based on
graph transformation. In: Tracz, W., Young, M., Magee, J. (eds.) Proceedings of
the 24th International Conference on Software Engineering, ICSE 2002, pp. 105–
115. ACM (2002). https://doi.org/10.1145/581339.581355

13. Hristakiev, I., Plump, D.: Attributed graph transformation via rule schemata:
Church-Rosser theorem. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016.
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19. Lambers, L., Born, K., Orejas, F., Strüber, D., Taentzer, G.: Initial conflicts and
dependencies: critical pairs revisited. In: Heckel, R., Taentzer, G. (eds.) Graph
Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 105–123. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75396-6 6

20. Lambers, L., Ehrig, H., Orejas, F.: Conflict detection for graph transformation
with negative application conditions. In: Corradini, A., Ehrig, H., Montanari, U.,
Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 61–76. Springer,
Heidelberg (2006). https://doi.org/10.1007/11841883 6

21. Lambers, L., Ehrig, H., Orejas, F.: Efficient conflict detection in graph transfor-
mation systems by essential critical pairs. Electr. Notes Theor. Comput. Sci. 211,
17–26 (2008)

22. Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Giese,
H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 17–32. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09108-2 2

https://doi.org/10.1007/978-3-642-15928-2_22
https://doi.org/10.3233/FI-1996-263404
https://doi.org/10.3233/FI-1996-263404
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1145/581339.581355
https://doi.org/10.1007/978-3-319-50230-4_11
https://doi.org/10.1007/978-3-319-50230-4_11
https://doi.org/10.1016/j.jcss.2004.11.002
https://doi.org/10.1016/j.jcss.2004.11.002
https://doi.org/10.4204/EPTCS.181.7
http://opus.kobv.de/tuberlin/volltexte/2010/2522/
http://opus.kobv.de/tuberlin/volltexte/2010/2522/
https://doi.org/10.1016/j.jlamp.2018.11.004
https://doi.org/10.1016/j.jlamp.2018.11.004
https://doi.org/10.1007/978-3-319-75396-6_6
https://doi.org/10.1007/11841883_6
https://doi.org/10.1007/978-3-319-09108-2_2


Initial Conflicts for Transformation Rules with ACs 127

23. Lambers, L., Orejas, F.: Initial conflicts for transformation rules with nested appli-
cation conditions (2020). arXiv:2005.05901 [cs.LO]
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