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Abstract. An enumeration operator maps each set A of natural num-
bers to a set E(A) C N, in such a way that F(A) can be enumerated
uniformly from every enumeration of A. The maximum possible Turing
degree of E(A) is therefore the degree of the jump A’. It is impossible
to have E(A) =r A’ for all A, but possible to achieve this for all A
outside a meager set of Lebesgue measure 0. We consider the properties
of two specific enumeration operators: the HTP operator, mapping a set
W of prime numbers to the set of polynomials realizing Hilbert’s Tenth
Problem in the ring Z[Wﬁl]; and the root operator, mapping the atomic
diagram of an algebraic field F' of characteristic 0 to the set of polyno-
mials in Z[X] with roots in F. These lead to new open questions about
enumeration operators in general.
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1 Introduction

Consider enumeration operators. These are functions F mapping Cantor space
2 into itself, in an effective way defined by a computably enumerable set £ of
axioms of the form (D;, ), all with ¢,j € w. The intended meaning of such an
axiom is that, if A € 2% is the input to E and the finite set D; is a subset of A,
then j must lie in E(A). (Here D; is defined to be the unique finite subset of w
with ¢ = 3 p 2", as in [13, Defn. 11.2.4].) Thus E(A) = {j : (3i) [(Ds,]) €
E & D; C A}, and so E(A) may be enumerated effectively using any enumeration
(computable or not) of A.

There is a natural analogy to Turing operators 7', which allow one to decide
membership of numbers in T'(A) when given a decision procedure (effective or
not) for A. Enumeration operators use only positive information about A, and
produce only positive information about E(A); whereas Turing operators use and
produce both positive and negative information. Turing operators have been
the focus of more intense study by computability theorists, but enumeration
operators need make no apology for their presence. Indeed, the fundamental
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operator used by Kurt Godel for his Incompleteness Theorems is an enumeration
operator: the deducibility operator D, which (using a fixed Godel coding of first-
order formulas in a fixed signature) lists the elements of the set D(A) of code
numbers of those formulas provable from the formulas with code numbers in A.
Thus A is viewed as an axiom set, and D(A) is the set of consequences of A.

Here we focus not on D, but rather on two other enumeration operators. In
Sect. 2, we will examine the Hilbert’s- Tenth-Problem operator HTP, as defined in
[3] and [11]. The results there will continue a program connecting the properties
of Hilbert’s Tenth Problem for the field Q itself with the corresponding properties
for subrings of Q. Then, in Sect. 3, we will consider the root operator for algebraic
fields, finding it to have some very pleasing properties, but also noting that
it is not a true enumeration operator, according to the definition above. Our
final section raises and describes the open question of whether an enumeration
operator, strictly as defined above, can realize the properties that make the root
operator distinctive. We view this question as being of sufficient interest that
posing it, rather than proving the results in Sects.2 and 3, may be the most
consequential act of this article.

A set B is e-reducible to A if B = E(A) for some enumeration operator E.
Therefore it is largely trivial to compare A and E(A), or their jumps, under e-
reducibility; the more interesting comparisons involve Turing reducibility. Much
of this article concerns the property of essential lowness, which we now define.

Definition 1. An enumeration operator E is essentially low for Lebesgue mea-
sure if
W{ACw: (B(A)Y <r A} = 1.

Likewise E is essentially low for Baire category if this same set {A C w :
(E(A)) <p A’} is comeager, in the sense of Baire.

Thus essential lowness says that, for almost all inputs A, the output F(A) is low
relative to A. It is important to specify the context of “almost all,” as an operator
can be essentially low for Baire category without being so for Lebesgue measure,
or vice versa. This definition can apply equally well to Turing operators.

We use standard notation from [13]. For an introduction to computable fields,
[5] and [7] are both helpful.

2 Hilbert’s Tenth Problem on Subrings of Q

For a subset W of the set P of all prime numbers, we set Ry, = Z[W ~!] to be the
subring of the rational numbers QQ generated by the reciprocals of the primes in
W. The map W +— Ry is a bijection from the power set of P onto the space of all
subrings of Q. Moreover, if subrings of Q are considered in a signature with +, -,
and a predicate I for invertibility (with I(x) defined by 3y(z-y = 1)), and 2F has
the usual Cantor topology, then this bijection is a computable homeomorphism
of topological spaces, in the sense of [10]. Fix a computable list gg, g1, ... of the

polynomials in Z[X]| = Z[X1, Xo,...] and define the enumeration operator HTP
as follows. (We usually write HTP(Ry ) instead of HTP(W).)

W — HTP(Rw) ={n € w:3I(x1,...,2x) € (Rw)~Y gn(z1,...,21) = 0}.
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We recall the definition of the boundary set of subrings of Q. For any single

—

polynomial f € Z[X], the boundary set is
B(f) ={W CP: f¢HTP(Rw) but (V finite Sy C W) f € HTP(R(p_s,))}.

This says that, although f = 0 has no solution in Ry, there is no finitary
reason for it to lack a solution: no finite set Sy of primes omitted from W has
the property that every solution requires the inversion of some prime from Sy.
Examples and explanation appear in [3,8]. Topologically B(f) is the boundary
of the (open) set A(f) of subrings in which f = 0 has a solution. More generally,
the boundary set of subrings of Q is the union of these:

B= U 8.

FEZ[X0,X1,...]

In Baire category, it is known that B is meager, i.e., small in the sense given by
Baire; see [8]. In Lebesgue measure, on the other hand, it remains open whether
this same class B is small, i.e. of measure 0, or not. This distinction leads us to
state Theorems 1 and 2 separately, for these two notions of smallness, as it is
essential for the boundary set to be small. Theorem 1 arises very naturally as a
kind of extension of [8, Corollary 1], which stated that an arbitrary set C satisfies
C <7 HTP(Rw) for a non-meager class of sets W if and only if C' <r HTP(Q).
Here lowness (relative to W) replaces the property of computing C.

Theorem 1. The set HTP(Q) has low Turing degree if and only if the operator
HTP is essentially low for Baire category.

If HTP is not essentially low, then by this theorem HTP(Q) must be unde-
cidable. Essential lowness of HTP would not yield any consequences about the
decidability of HTP(Q) (as the degree 0 of the computable sets is considered to
be low, along with every other degree d satisfying d’ = 0'), but it would imply a
different important result: the existential undefinability of Z within the field Q.

Proof. One direction is readily seen. Essential lowness of HTP means that all
W in a co-meager subclass of 2% satisfy (HTP(Ry))’ <7 W’. The intersection
of this subclass with the co-meager class {W : W' <r () @ W} is also co-meager.
By [1, Cor. 5.2], all W have HTP(Q) <y HTP(Rw ), so these comeager-many
W all also satisfy

(HTP(Q))" <r (HTP(Rw)) <7 W' <7 0’ ® W.

But this implies (HTP(Q))’ <p @', by a standard result (see [8, Lemma 2].)
For the forwards direction, recall that HTP(Rw) <r (W & HTP(Q)) uni-

formly for all HTP-generic W. The procedure is as follows. For each f, HTP-
genericity means, by definition, that W € A(f) UC(f), where

A(f)={W CP: f e HTP(Rw)}.
C(f) = {W - P: (3 finite So)[So NnNwW = @ & f % HTP(R([PLSO))]}
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So, to decide whether f € HTP(Ry ), we simply search for either a solution
to f = 0 in Ry (using the W-oracle to enumerate Ry ), or a finite subset
So C (P—W) such that f ¢ HTP(Rp_g, ). (The latter is decidable from HTP(Q),
uniformly in Sp; see [1, Prop. 5.4] or [8, Prop. 1].) Therefore, for HTP-generic
sets W, we have (HTP(Rw ))' <r (W @ HTP(Q))’ (indeed via a 1-reduction, by
the Jump Theorem [13, II1.2.3]). But with HTP(Q) assumed low, the class of W
for which

(W @ HTP(Q)) <7 W' ® (HTP(Q)) =r W' & 0 =¢ W’

is comeager, as is the class of HTP-generic sets W, so we have shown that
{W: (HTP(Rw)) <p W'} is comeager. O

Theorem 2. If the operator HTP is essentially low in the sense of Lebesque
measure, then the set HTP(Q) has low Turing degree. As a partial converse, If
HTP(Q) has low Turing degree and the set B of all boundary rings has Lebesgue
measure 0, then HTP is essentially low for Lebesgue measure.

Proof. The forward direction has much the same proof as in Theorem 1:
measure-1-many sets W satisfy

(HTP(Q))" <r (HTP(Rw)) <r W' <r 0" ® W.

Consequently (HTP(Q))" <r ('; see Lemmas 2.1 and 2.3 of [9] for details.

The reverse direction requires more care. Notice that with an HTP(Q)-oracle,
we can enumerate the finite binary strings ¢ such that a given f does not lie in
HTP(Rp_o-1(0)))- (Again this follows from [1, Prop. 5.4] or [8, Prop. 1].) This in
turn allows us to approximate, from below, the measure of the set C(f). On the
other hand, with no oracle at all, we can approximate from below the measure
of the set A(f). By assumption pu(A(f)) + w(C(f)) = 1, since the rings lying
in neither A(f) nor C(f) are by definition boundary rings of f. Therefore, we
can approximate p(A(f)) =1 — u(C(f)) from above as well, using the HTP(Q)-
oracle.

Given any € > 0, and any f; in an enumeration fy, f1,... of Z[X], the
HTP(Q)-oracle now allows us to approximate the measure u(A(f;)) to arbitrary
precision. Suppose this approximation places p(A(f;)) within an open interval
(as,b;) of length < 55+. We then enumerate solutions to f; = 0 in Q until we
have found finitely many solutions such that the total measure of the set of sub-
rings containing any of those solutions is > a;. Among the subrings R that do
not contain any of those finitely many solutions, the set of those that do contain
some solution to f; = 0 has measure < 55r. Therefore, for any n and any n € 27,
we can produce a finite set S, . of binary strings ¢ such that, among subsets
W C P, the equivalence

n CHTP(Rw) <= (o € S,)o CW

holds for all W outside a set of measure < Y7 | 557 < €.
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Our other hypothesis, for the reverse direction, is that HTP(Q) is low, mean-
ing that (HTP(Q))’ <p @'. It follows that

(W @ HTP(Q)) <7 W' ® (HTP(Q)) <7 W' & 0/ =¢ W’

uniformly for all W outside a set of measure < 5. Using this, we can now give
a procedure that (uniformly in the given ¢), computes (HTP(Ry))" from W’
correctly on a set of measure > 1 — ¢. Given a number e, we wish to determine
whether e € HTP(Ryw ), which is to say, whether @ETP(RW)(e) halts. The oracle
(W @ HTP(Q))’ will decide whether

(3s)(Fn e 2°¥)(Fo € S, —=_) [0 CW & D?(e) halts in < s steps],

2ef2

since the quantifier-free subformula is decidable from (W @& HTP(Q)), as seen
above. Thus, outside a set of measure < 55, the (W @ HTP(Q))’-oracle has
decided correctly whether

(3s)(In € 2<¥) [n C HTP(Rw) & P! (e) halts in < s steps],
which is to say, whether PP Bw) (e) halts. Outside a set of measure <
Y . 5erz = 5, this computation will be correct for every e, and since the com-
putation of (W & HTP(Q))’ from W’ was also correct outside a set of measure

< §, we have proven the theorem. a

3 Algebraic Fields and the Root Operator

Let A(F) be the atomic diagram — viewed as a subset of w, using Godel coding
—of a field F of characteristic 0, in the pure language of rings. Given A(F'), the
root operator @ enumerates the subset Wr C w called the index of F':

Wp={i€w: (JxeF) fi(x) =0},

using a fixed computable enumeration fo, f1,... of Z[X]. (Here all polynomials
have just one variable X, as opposed to Sect.2.) It is clear that Wg can be
enumerated uniformly this way if one has an oracle for the atomic diagram,
but of course we mean @ to be given only an (arbitrary) enumeration of that
atomic diagram. Fortunately, these are equivalent. To decide whether a + b = ¢
in the field F, just enumerate A(F) until a formula of the form a + b = d (for
some d) appears, and check whether this d is the element ¢ or not; similarly for
multiplication. So, given any enumeration of the atomic diagram A(F) of any
presentation of a field F' of characteristic 0, @ will indeed enumerate Wg. Our
specific interest is in algebraic fields, i.e., algebraic extensions of Q.

Algebraic fields of characteristic 0 may be viewed in much the same context as
subrings of Q. In both cases, the collection of all isomorphism types belonging to
the class forms a topological space computably homeomorphic to Cantor space.
Also, in both cases, one natural definable predicate must be adjoined to the
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signature in order for the homeomorphism to exist. In both cases, the original
signature is that of rings, with addition and multiplication symbols. For subrings
of @, in the preceding section, we required an invertibility predicate I in the
signature, defined by I(z) <= (Jy) = -y = 1: with this predicate it becomes
possible to compute the index W = {p € P: % € R} of an arbitrary subring R
of Q uniformly from the atomic diagram of each presentation of R.

For our algebraic fields — which, since we restrict to characteristic 0, may
be viewed as precisely the class of all subfields of the algebraic closure Q —
we likewise require some additional information to compute the index of an
arbitrary member of the class. The usual strategy is to adjoin root predicates:
either a single finitary predicate R, or else a d-ary predicate Ry for each d > 1.
These are defined by

Ry(ag,...,a4-1) <= (3x) 2+ ag_ 12+ -+ a4 ag = 0.

(If a single R is used, it is simply the union of all these R4.) Given the atomic
diagram of a subfield F' of Q, in the signature with these predicates, one can
readily compute the index Wyg of F' as defined above. Clearly Wy = Wg when-
ever £ 2 F| and the converse also holds (cf. [12, Cor. 3.9], with Q as the ground
field). That is, the subfields of Q may be classified up to isomorphism by their
indices. On the other hand, it should be noted that not every subset of w is the
index of an algebraic field under this definition: if (X* — 2) has a root in F, for
example, then (X2 — 2) cannot fail to have one. Nevertheless, the indices used
here do yield a computable homeomorphism from the space of all subfields of
Q onto Cantor space. It is decidable uniformly for each o € 2<% whether there
exists an algebraic field F' for which o is an initial segment of Wy, and the col-
lection of ¢ for which such a field does exist is thus a computable subtree T' of
2% with no terminal nodes and no isolated paths. The desired homeomorphism
then maps the class of isomorphism types of algebraic fields bijectively onto the
space of all paths through 7', which in turn is computably homeomorphic to 2“.

One should note that this homeomorphism is not canonical: it depends heav-
ily on the choice of the computable enumeration of Z[X] used to define the indices
Wr. Using Lebesgue measure on this space is possible but not recommended:
different enumerations of Z[X] will give distinct measures on the space of (iso-
morphism types of ) subfields of Q. A better option is to use the Haar-compatible
measure p defined in [10], which has the property that, for every normal field
extension K O Q with finite vector-space dimension [K : Q],

1
(K- Q
independently of the enumeration of Z[X]. (In [10] the index is chosen differently,
but this property remains true in both cases.) In fact, though, the sets of Haar-
compatible measure 0 are soon seen to be the same sets that have Lebesgue
measure 0 for some computable enumeration of Z[X| — indeed, for all reasonable
ones. So it is unnecessary to fuss over the exact choice of the measure to be used.

With this background, we can proceed to consider the root operator @, map-
ping A(F) to Wg. There do exist (isomorphism types of) fields such that every

W{F CQ:K CF}) =
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presentation F' of the field satisfies Wrp <p A(F). The most obvious exam-
ples are fields for which W itself is computable, but other examples exist. For
instance, if F' = Q[\/p, : n ¢ ('], then W is co-c.e., and so every presentation
of F' can compute W, by enumerating Wy and simultaneously enumerating the
c.e. set that is the complement of Wr. (Even more generally, this holds whenever
the complement W is enumeration-reducible to the X;-theory of F.)

However, the isomorphism types F of fields such that all presentations of F'
compute Wy are rare: they form a meager set of Haar-compatible measure 0
within the class of all subfields of Q. To see this, notice first that the ability to
enumerate Wy is equivalent to the ability to compute (or enumerate) a presen-
tation of the field F': whenever a polynomial in Z[X] is found to have a root in
F, we first check whether we have already put such a root into our presentation,
then consider the possible ways that such a root (if not already present) could
sit over the finitely-generated subfield we have built so far, and enumerate Wg
further until the minimal polynomial of a primitive generator of one of these
possibilities appears in Wg, at which point it is safe to extend our field to be
isomorphic to that possibility. All of this is effective, by Kronecker’s Theorem
(see [6, Thm. 2.2]), allowing us to state our next theorem.

Theorem 3. Let L be the set of indices W such that, for some presentation F
of the field with W = W, the set W = 02U) js not A(F)-computable. Then
L has measure 1 as a subset of 2%, under the Haar-compatible measure, and is
also co-meager in 2*. (By analogy to Definition 1, we say that © is essentially
noncomputable. )

Proof. By results of Jockusch [2] and Kurtz [4], there is a co-meager, measure-1
class of sets W € 2“ each having the property that there exists some V € 2¢
for which W is V-computably enumerable but not V-computable. Whenever W
has this property, we can find a presentation of the field F' with W = W that
is computable from such a set V. For this presentation, A(F') fails to compute
Wr = 04(F) although it can enumerate it. a

We note that, for each index W in the measure-1 co-meager set described by
the theorem, the presentations F' that do have Wr <r A(F) are (of course) those
in the upper cone above W; whereas every set that computes V' can compute a
presentation of this field. Thus the presentations of F' that succeed in computing
Wr may be viewed as a small subset of the set of all presentations of F', as every
upper cone that is a proper subset of another upper cone has measure 0 within
the larger upper cone. Hence Theorem 3 may be viewed as saying that for almost
all isomorphism types of algebraic fields, almost all presentations of that field
fail to compute the index of the isomorphism type.

Nevertheless, the indices are almost never too far away from the presentation.
Of course, since A(F') can enumerate W, it is immediate that we always have
Wr <1 (A(F))'. In certain cases the two are Turing-equivalent — e.g., when F
is a computable presentation of the field Q[\/p, : n € (], whose Wy has degree
0’. However, our next two theorems say that in almost all cases, this fails, and
indeed W is almost always low relative to A(F') — by which we mean that their
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jumps satisfy (Wg)" <p (A(F))’. (From here on we will mostly write F' and F’
when we actually mean A(F) and (A(F))'.)

Theorem 4. Let L be the set of indices W such that, for every presentation F' of
the field with index W, W is low relative to the presentation F, i.e., W' <p F'.
Then L is comeager as a subset of 2%, and there is a uniform procedure that, for

comeager-many W € 2% (in particular, for all 1-generic W), computes W' from
F' for all F with Wp =W.

Proof. We describe the uniform procedure. Let F' be a field with Wrp = W.
Our procedure is given an F’-oracle, from which it can compute both W and
(", uniformly. To decide whether e € W, it begins running ! (e), and if this
computation ever halts, then it outputs 1, knowing this to be correct. Simulta-
neously, it tests each initial segment ¢ C W, using @)’ to decide whether

VT 2oVt &F (e)T .

If the procedure ever finds a ¢ C W for which this holds, then it outputs 0, since
no extension of this o (including W itself) can ever cause @, to halt on input e.

Now if W is 1-generic, then for every e there must exist some finite initial
segment o C W for which either &7 (e) | or else no 7 2D o ever gives convergence.
The procedure eventually discovers such a ¢ and outputs the correct answer
about whether e € W’. (It is clear that it nevers gives an answer except when it
has found such a ¢.) Thus W’ <p F’, uniformly in F, for all 1-generic W. The

theorem now follows from the co-meagerness of the 1-generic sets in 2. a
The situation for Lebesgue measure is similar but not quite as nice. It remains

true that W is almost always low relative to all presentations of the field with
index W: in particular, this holds outside a set of measure 0. However, no single
uniform procedure can establish this for all W outside a set of measure 0. Instead,
we must argue up to sets of arbitrarily small measure. (Notice that in Baire
category, there is no natural analogue of “up to arbitrarily small measure”: the
only divisions are meager-or-not and comeager-or-not. It is fortunate that we
had a uniform procedure there!)

Theorem 5. For each € > 0, there is a uniform procedure that, for all W in a
set of Haar-compatible measure > 1 — &, computes W' from F' for all fields F
with Wgp = W. Hence, for all W outside a set of measure 0, every presentation
F of that field satisfies W' <r F’.

Proof. We fix a rational € > 0 and give a uniform procedure that computes W’
from F’ on a set of measure > 1 — €. For each W in this set, each presentation
F of the field with index W, and each e, the procedure will determine whether
@% (e) halts.

The procedure goes through each pair (r,n) with r € [0, 1] rational and with
n € w in turn, asking its F” oracle whether both of the following hold:

(3k, s) (HTO, ..., Tk € 2"0f total measure > r — ij) (Vi < k)l (e)l

=(3k, 5)(370, ..., Tk € 2"0f total measure > r)(Vi < k)P (e) |
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Here “total measure” means the Haar-compatible measure of the set {A € 2¢ :
(Fi < k)1; € A}, which is readily computed (making sure to avoid doublecount-
ing overlaps!). The first sentence is considered to hold vacuously if r < 5.
Also, with 7; € 2", we interpret “convergence” of @gg;ﬁF (e) to mean that the
procedure halts without ever asking whether any number > n lies in 7;. These
sentences are existential, hence decidable from the F’-oracle.

Eventually our procedure must find a pair (r,n) for which both answers from
F’ are positive. It then stops asking such questions, and searches until it finds
the promised 7o, ..., 7, € 2" of total measure > r — 55¢ for which all @7 (e) |.
As soon as it has found such strings, it checks whether any of the (finitely many)
7; it has found is an initial segment of W. (Here is where the full F’-oracle is
needed: it can compute W. For the first step, a (’-oracle would have sufficed.) If
so, then it outputs that ®% (e) |, knowing this answer to be correct. If not, then
it outputs that @ (e) 1. The latter answer is not guaranteed to be correct, of
course, but it can fail only for those W within a set of measure < 55, and so
the set of W for which our procedure fails to compute W’ correctly has measure
< D e 5erT = €, as required. O

4 Non-coding Enumeration Operators

A careful reading of Sect.3 will reveal that we avoided ever actually calling the
root operator © an enumeration operator. Indeed, it was intended specifically to
operate on (enumerations of) atomic diagrams of algebraic fields, rather than on
(enumerations of) arbitrary subsets of w. One could run it with an enumeration
of an arbitrary A C w, but with high probability the result would be that every
f € Z[X] would be deemed to have a root, as the configuration describing this
would appear sooner or later. Even worse, the output would not be independent
of the enumeration of A, since for most A the ternary relations + and - described
by A would not be functions: a+b would be deemed to equal the first ¢ for which
the code number of the statement “a + b = ¢’ appeared in A. So this © does
not satisfy the definition given in Sect. 1: it functions as such an operator only
on a specific domain within 2¢, and that domain is meager with measure 0.

The basic question, therefore, asks whether the pleasing results about @ can
hold of a true enumeration operator. When FE satisfies the full definition, can
E be essentially low and essentially noncomputable, as © was on its domain?
The answer to this first question is immediate and positive. To find an essentially
noncomputable enumeration operator, one need look no further than the map
A (A® '), whose output is Turing-equivalent to A’ for a comeager measure-1
collection of sets A. To add essential lowness for Lebesgue measure, we adjust
the operator to map A to (A @ L), where L is a fixed c.e. set of low (nonzero)
Turing degree. It is known that, for such an L,

p{ACw: (A L) =r ApL'}) =1,

and since L' =7 (', this implies that (A @ L) is low relative to A for almost all
sets A. Moreover, every A that is 1-generic relative to L lies in this set, so the set
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is comeager. On the other hand, A computes (A @ L) only if A > L, and since
L is noncomputable, the upper cone of sets > L has measure 0 and is meager.
(All measure-theoretic results used here were proven by Stillwell in [14].)

In brief, one can accomplish the same goals achieved by @, simply by coding
an appropriate c.e. set into the output of the enumeration operator. However, ©
accomplished the goal by different means: it produced an output ©4U) > A(F)
(in almost all cases) simply because the problem of determining existence of roots
of polynomials in a field seems to be inherently noncomputable. The following
lemma makes this more specific.

Lemma 1. Fiz a noncomputable subset C C w, and let L be the set of indices
W such that, for every F with Wp = W, C £7 O2F) . Then L is comeager of
measure 1.

Proof. ©4W) is just Wy itself, and since C' is noncomputable, only a comeager

measure-0 collection of sets W satisfy C' <p W. O
The simplicity of the proof exposes the overstatement of this lemma, which

really just says that upper cones above noncomputable sets are meager of mea-
sure 0, as has been long known. Part of the difficulty of working with @ is that,
since its domain is only a small subset of 2“, we used different means to measure
what it did. In particular, for a subset S of the domain, we measured the image
of § under the operator, rather than measuring S itself. Since the image of ©
(on its intended domain: atomic diagrams of algebraic fields) is all of 2¢, this
was reasonable, but it makes Lemma 1 trivial.

Nevertheless, Lemma 1 was stated this way for a reason: it introduces the
notion of a non-coding operator.

Definition 2. An enumeration operator E is non-coding for Lebesgue measure
if, for every noncomputable C C w,

p({ACw:C <p E(A)}) = 0.

Likewise, E is non-coding for Baire category if this set is meager whenever
C>r 0.

Thus this is the same idea we noted above for ©, but now defined using measure
and category on the domain 2“ of F, rather than on the image of a specific
smaller domain.

All operators of the form A — A ® C (with C noncomputable) clearly fail
this definition. Indeed, any enumeration operator E for which A’ < F(A) holds
on a set of positive measure must fail the definition, as ' <r A’ always holds.
So a noncoding operator must avoid producing the jump of its input, at least in
almost all cases. This brings us to our main open questions, which can be seen
as a sort of uniform version of Post’s Problem for enumeration operators.

Question 1. Does there exist a non-coding enumeration operator E for which
p{ACw: E(A) <p A}) =07

Indeed, does there exist such an operator for which this set has measure < 17
Likewise, can this set be meager? Or at least, can it fail to be co-meager?
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We point out the following operator. Let R, S be two noncomputable c.e. sets
that form a minimal pair (as in [13, §IX.1], e.g.), and define the enumeration
operator F by the union of the following c.e. sets of enumeration axioms:

{(0,22) :x e R} U {({p},2z):zew} U {({b},2z+1):xe S}

Thus, if 5 € A, then E(A) =r w® S, while otherwise E(A) =r R® . Therefore,
in almost all cases we have E(A) £r A. However, if C' <p E(A) on a co-meager
or measure-1 collection of sets A, then C must be computable, as it would be
computed by both R and S. So it is readily possible to answer Question 1 if one
relaxes the definition of non-coding enumeration operators to require only that
{ACw:C <y E(A)} have measure < 1, or that it not be co-meager. In fact,
Definition 2 requires that these sets be small (as opposed to “not-large”).

A significant part of the difficulty in answering Question 1 is that enumeration
operators E must enumerate the same set F(A) for all enumerations of the
set A. This precludes the use of many of the techniques employed in studying
the theory of the c.e. degrees, such as the Friedberg-Muchnik method, or the
strategy for the Sacks Density Theorem. The latter, for example, starts with
two c.e. sets C' <p D, and immediately fixes computable enumerations of each.
Its strategy succeeds in enumerating a set strictly between C and D, but if
different computable enumerations were used, it would generally enumerate a
different set in that interval. Therefore that method would require significant
refinement — a kind of uniformization — to succeed in answering Question 1.

Our last proposition illustrates the importance of Question 1.

Proposition 1. Suppose that the answer to the strong form of Question 1 is
negative for Baire category. (That is, assume that for all non-coding enumeration
operators E, {A Cw : E(A) <p A} is not meager.) Then the ezistence of a co-
meager collection of subsets W C P satisfying HTP(Rw ) £r W is equivalent to
the undecidability of HTP(Q).

Likewise, if the answer to the weak form of Question 1 for Baire category is
negative, then the existence of a mon-meager collection of subsets W satisfying
HTP(Rw) £r W, is equivalent to the undecidability of HTP(Q).

Proof. First of all, every W C P satisfies HTP(Q) <7 HTP(Rw ). Therefore,
every W outside the upper cone above HTP(Q) satisfies HTP(Ry ) £ W. If
HTP(Q) were undecidable, then the upper cone above it would be meager, so
the backwards direction in each paragraph of the proposition holds even without
knowing any answers to Question 1.

The forwards direction is where Question1 comes into play. In each para-
graph, the hypotheses imply that the HTP-operator cannot be non-coding for
Baire category. Therefore there is some non-meager subset S C 2 on which it
codes some noncomputable information: some C' > () satisfies

(YW € S) C <y HTP(Ry).

But then it follows from Corollary 1 in [8] that C' <p HTP(Q). ]
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A negative answer to one of the two alternative forms of Question 1 essentially

says that if HTP(Rw ) €7 W holds for a non-meager (alternatively, co-meager)
class of sets W, then there must be some specific non-computable information
that HTP is coding into those sets. The result [8, Corollary 1] then shows that
this specific information can be derived from just HTP(Q). Similar statements
would hold for Lebesgue measure if the boundary set B defined earlier has mea-
sure 0, but this remains an open question.
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