
Prawf: An Interactive Proof System
for Program Extraction

Ulrich Berger1(B), Olga Petrovska1, and Hideki Tsuiki2

1 Swansea University, Swansea, UK
{u.berger,olga.petrovska}@swansea.ac.uk

2 Kyoto University, Kyoto, Japan
tsuiki.hideki.8e@kyoto-u.ac.jp

Abstract. We present an interactive proof system dedicated to program
extraction from proofs. In a previous paper [5] the underlying theory
IFP (Intuitionistic Fixed Point Logic) was presented and its soundness
proven. The present contribution describes a prototype implementation
and explains its use through several case studies. The system benefits
from an improvement of the theory which makes it possible to extract
programs from proofs using unrestricted strictly positive inductive and
coinductive definitions, thus removing the previous admissibility restric-
tions.

1 Introduction

One of the salient features of constructive proofs is the fact that they carry
computational content which can be extracted by a simple automatic proce-
dure. Examples of formal systems providing constructive proofs are intuitionis-
tic (Heyting) arithmetic or (varieties of) constructive type theory. There exist
several computer implementations of these systems, which support program
extraction based on Curry-Howard correspondence (e.g. Minlog [4], Nuprl [8,10],
Coq [7,9], Isabelle [1], Agda [2]). However, none of them has program extraction
as their main raison d’être.

In [5] the system IFP (Intuitionistic Fixed Point Logic) was introduced whose
primary goal is program extraction. IFP is first-order logic extended with least
and greatest fixed points of strictly positive predicate transformers. Program
extraction in IFP is based on a refined realizability interpretation that permits
arbitrary classically true disjunction-free formulas as axioms and ignores the
(trivial) computational content of proofs of Harrop formulas thus leading to pro-
grams without formal garbage. The main purpose of [5] was to show soundness
of this realizability interpretation, that is, the correctness of extracted programs.

In the present paper we present Prawf1, the first prototype of an implemen-
tation of IFP as an interactive proof system with program extraction feature.
Prawf is based on a (compared with [5]) simplified notion of program and

1 ‘Prawf’ (pronounced /prau
“
v/) is Welsh for ‘Proof’.

c© Springer Nature Switzerland AG 2020
M. Anselmo et al. (Eds.): CiE 2020, LNCS 12098, pp. 137–148, 2020.
https://doi.org/10.1007/978-3-030-51466-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51466-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-51466-2_12

138 U. Berger et al.

an improved Soundness Theorem that admits least and greatest fixed points
of arbitrary strictly positive predicate transformers, removing the admissibility
restriction in [5].

The paper is structured as follows: In Sect. 2 we briefly recap IFP and pro-
gram extraction in IFP, explaining in some detail the above mentioned changes
and improvements. In Sect. 3 we describe Prawf and its basic use through
some simple examples involving real and natural numbers. Section 4 contains an
advanced case study about exact real number representations: The well-known
signed digit representation and infinite Gray-code [12] are represented by coin-
ductive predicates and inclusion between the predicates is proven in Prawf thus
enabling the extraction of a program transforming the signed digit representa-
tion into infinite Gray-code. In the conclusion we reflect on what we achieved
and compare our work with related approaches.

2 Program Extraction in IFP

We briefly summarize the system IFP and its associated program extraction
procedure. For full details we refer to [5].

assumption

Pair proj proj

Lt Rt

case

cl cocl

ind
rec

coind
rec

Fig. 1. Proofs and their extracted programs

IFP Syntax and Proofs. The syntax of IFP has terms, formulas, predicates
and operators, the latter describing strictly positive (s.p.) and hence monotone

Prawf: An Interactive Proof System for Program Extraction 139

predicate transformers. For every s.p. operator Φ there are predicates μΦ and
νΦ denoting the predicates defined inductively resp. coinductively from Φ:

Terms � r, s, t ::= x (variables) | f (t1, . . . , tn) (f function constant)
Formulas � A, B ::= P(�t) (P not an abstraction, �t arity(P)-many terms)

| A ∧ B | A ∨ B | A → B | ∀x A | ∃x A

Predicates � P,Q ::= X (predicate variables) | P (predicate constants)
| λ �x A | μΦ | νΦ
(arity(λ �x A) = | �x |, arity(μΦ) = arity(νΦ) = arity(Φ))

Operators � Φ,Ψ ::= λX P (P s.p. in X, arity(λX P) = arity(X) = arity(P))

where P is s.p. in X if every free occurrence of X in P is at a s.p. position, i.e.
not in the premise of an implication.

The proof rules of IFP are the usual rules of intuitionistic first-order logic
with equality (regarding equality as binary predicate constant) augmented by
rules stating that μΦ and νΦ are the least and greatest fixed points of Φ (see
Fig. 1, ignoring for the moment the expressions to the left of the colon).

Programs. The programs extracted from proofs are terms in an untyped λ-
calculus enriched by constructors for pattern matching and recursion.

Programs � p, q ::= a, b (program variables)
| Nil | Lt(p) | Rt(p) | Pair(p, q)

| case p of {Cl1; . . . ;Cln}
| λa p

| p q

| rec p

where in the case-construct each Cli is a clause of the form C(a1, . . . , ak) → q
in which C is a constructor, i.e. one of Nil,Lt,Rt,Pair, and the ai are pairwise
different program variables binding the free occurrences of the ai in q. rec p
computes the (least) fixed point of p, hence p rec(p) = rec(p). It is well-known
that an essentially equivalent calculus can be defined within the pure untyped
λ-calculus, however, the enriched version is more convenient to work with. For
the sake of readability we slightly simplify our notion of program compared to
the one in [5] by no longer distinguishing between programs and functions.

Program Extraction. In its raw form the extracted program of a proof is simply
obtained by replacing the proof rules by corresponding program constructs fol-
lowing the Curry-Howard correspondence. This is summarized in Fig. 1 where
p : A means that p is the program extracted from a proof of A. In the assump-
tion rule and the rule →

+, ‘a : A �’indicates that the assumption A in the proof
has been assigned the program variable a. In the rule ∧

−

L, projL(p) stands for
the program case p of {Pair(a, b) → a}. Similarly for ∧

−

R. The rules ∀+ and ∃−

140 U. Berger et al.

are subject to the usual provisos. In the rules ind and coind the program mΦ

realizes (in a sense explained below) the monotonicity of Φ, that is the formula
X ⊆ Y →Φ(X) ⊆ Φ(Y) (with fresh predicate variables X,Y).

The correctness of programs is expressed through a realizability relation p r A
between programs p and formulas A which is defined by recursion on formulas
(see [5]). Formally, realizability is defined as a family of unary predicates R(A)
on a Scott domain D of ‘potential realizers’. p r A means that the denotation
of p in D satisfies the predicate R(A). The Soundness Theorem [5] shows that
if p is extracted from a proof of A, then p realizes A. The Soundness Theorem
is formalised in a theory RIFP that extends IFP by a sort of realizers and
axioms that describe the behaviour of programs. The denotational semantics
of programs is linked to the operational one through the Adequacy Theorem,
stating that programs with non-⊥ value terminate and reduce to that value [6].

Refinements. Program extraction in its raw form (as sketched above) produces
correct programs which, however, contain a lot of garbage and are therefore prac-
tically useless. This is due to programs extracted from sub proofs of Harrop for-
mulas, that is, formulas which do not contain a disjunction at a strictly positive
position. These programs contain no useful information and should therefore be
contracted to a trivial program, say Nil. In a refined realizability interpretation,
which was presented in [5] and which is implemented in Prawf, this contrac-
tion is carried out. It is based on a refined notion of realizability and a refined
program extraction procedure. The proof of the soundness theorem becomes con-
siderably more complicated and could only be accomplished in [5] by subjecting
induction and coinduction to a certain admissibility condition. In [6] a sound-
ness proof without this restriction is given. It uses an intermediate system IFP′

whose induction and coinduction rules require as additional premise a proof of
the monotonicity of Φ, e.g.,

p :Φ(P) ⊆ P m : X ⊆ Y →Φ(X) ⊆ Φ(Y)
ind ′

rec(λ f (p ◦ m f)) : μ(Φ) ⊆ P

Soundness is then proven for IFP′ and transferred to IFP via an embedding
of IFP into IFP′. Minlog [4] has a similar refined realizability interpretation
but treats disjunction-free formulas and Harrop formulas in the same way. This
simplifies program extraction but seems to restrict the validity of the Soundness
Theorem to a constructive framework (see also the remarks in Sect. 5).

Axioms. For a proof with assumptions the soundness theorem states that the
extracted program computes a realizer of the proven formula from realizers of
the assumptions. If the assumptions contain no disjunctions at all - we call such
assumptions non-computational (nc) - then they are Harrop formulas and hence
their realizers are trivial but, even more, they are equivalent to their realizability
interpretations. This fact is extremely useful since it implies that a program
extracted from a proof that uses nc-assumptions (regarded as axioms specifying
a class of structures) will not depend on realizers of these axioms and will be
correct in any model of the axioms. For example, in a proof about real numbers

Prawf: An Interactive Proof System for Program Extraction 141

(see Sect. 3) the arithmetic operations may be given abstractly and specified by
nc-axioms (e.g. ∀x (x + 0 = x) and ∀x (x � 0 → ∃y (x ∗ y = 1))).

Computation vs. Equational Reasoning. In the systems Nuprl, Coq, Agda, and
Minlog computation is built into the notion of proof by considering terms, for-
mulas or types up to normal form with respect to certain rewrite rules. As a con-
sequence, each of these systems has various (decidable or undecidable) notions
of equality, which may make proof checking (deciding the correctness of a proof)
algorithmically hard if not undecidable. The motivations for interweaving logic
and computation are partly philosophical and partly practical since in this way a
fair amount of (otherwise laborious) equational reasoning can be automatized. In
contrast, the system IFP strictly separates computation from reasoning. Its proof
calculus is free of computation and there is only one notion of equality obeying
the usual rules of equational logic. This makes proof checking a nearly trivial task.
Equational reasoning can be to a large extent (or even completely) externalised
by stating the required equations (which are nc-formulas) as axioms which can
be proven elsewhere (or believed). Computation is confined to programs and is
given through rewrite rules which enjoy an Adequacy Theorem stating that the
operational and the denotational semantics of programs match [3,6].

3 Prawf

Prawf [11] is a prototype implementation in Haskell, which allows users to write
IFP proofs and extract executable programs from them. It follows pretty closely
the theory of IFP sketched in the previous section but extends it in several
respects:

– the logical language of Prawf is many-sorted;
– names for predicates and operators can be introduced through declarations;
– induction and coinduction come in three variations, the original ones

presented in Sect. 2, and two strengthenings (half-strong and strong
(co)induction) which are explained and motivated below.

The software has two modes: a prover mode and an execution mode. The prover
mode enables users to create a proof environment, consisting of a language, a
context, declarations and axioms.

The proof rules in Prawf correspond to those of IFP and include the usual
natural deduction rules for predicate logic, rules for (co)induction, half-strong
(co)induction and strong (co)induction, as well as the equality rules such as
symmetry, reflexivity and congruence.

A theorem can be proven by applying these rules step by step or by using a
tactic. A tactic consists of a sequence of proof commands that allows users to
re-run a proof either partially or fully. Once proven, a theorem can be saved in
a theory and used as a part of another proof.

The execution mode allows running extracted programs. In this mode a user
can take advantage of the standard Prelude commands as well as special func-
tions for running and showing programs.

142 U. Berger et al.

An Introductory Example: Natural Numbers and Addition. We explain the work-
ing of Prawf by means of a simple example based on the language of real
numbers with the constants 0 and 1 and the operations + and − for addition
and subtraction. We first give the idea in ordinary mathematical language and
then show how to do it in Prawf. We define the natural numbers as the least
subset (predicate) of the reals that contains 0 and that contains x whenever it
contains x − 1:

N
Def
= μ(Φ), where Φ Def

= λXλx(x = 0 ∨ X(x − 1))

We prove that N is closed under addition:

∀x(N(x) → ∀y(N(y) → N(x + y)))

Hence assume N(x). We have to show ∀y(N(y) → N(x + y)), that is N ⊆ P where
P

Def
= λyN(x + y). By the induction rule it suffices to show Φ(P) ⊆ P, that is,

∀y ((y = 0 ∨N(x + (y − 1)) → N(x + y))

If y = 0 then N(x + y) holds since x + 0 = x (using an axiom) and N(x) holds by
assumption. If N(x + (y − 1)), then N((x + y) − 1) since x + (y − 1) = x + (y − 1)
(using an axiom) and hence N(x + y) by the closure rule.

In order to carry out this example in Prawf one first needs to define the
language. This can be done by creating in the directory batches a subdirectory
real (the name can be freely chosen), and in that directory the text file lang.txt
(the name is prescribed) with the contents

<sorts>
R
<end sorts>

<constants>
0,1:R
<end constants>

<functions>
+ : (R,R) -> R;
- : (R,R) -> R;
<end functions>

<predicates>
= : (R,R);
<end predicates>

Note that we do not need to give definitions of + and -. For the proofs it is
sufficient to know their properties that are expressed through axioms.

In the same subdirectory one creates the file decls.txt (name prescribed)
containing the definition of N:

Prawf: An Interactive Proof System for Program Extraction 143

Phi:(R) = lambda Y:(R) lambda (z:R) (z=0 v Y(z-1))
N:(R) = Mu(Phi)

Finally, one creates (again in the directory real) the file axi.txt (name pre-
scribed) containing the axioms one wishes to use. The axioms must be nc-
formulas that is, not contain any disjunctions (for example the predicate N
must not occur since its definition contains ∨ as part of the definition of Φ).

ax1 . all x:R x+0 = x
ax2 . all x:R all y:R (x+y)-1 = x+(y-1)

Now we are set to start our proof. We load the Haskell file Mode.hs, execute
main, load our batch by typing real (after which the contents of the files we
created will be displayed) and type at the prompt our goal formula

Enter goal formula> all x:R (N(x) -> all y:R (N(y) -> N(x+y)))

Proving in Prawf proceeds in the usual goal-directed backwards reasoning
style. In our example the first two steps are easy: alli (for ∀-introduction back-
wards), then impi v1 (for →-introduction backwards creating the assumption
v1 : N(x)). After these two steps one arrives at

Assumptions:
v1 : N(x)

Context of the goal:
variables: x: R

Current goal:
|- ?2 : all (y:R) (N(y) -> N(x+y))

at which point we use induction by typing ind. This brings us to the premise of
induction

Assumptions:
v1 : N(x)

Context of the goal:
variables: x: R

Current goal:
|- ?3 : all (y:R) (Phi(lambda (y:R) N(x+y))(y) -> N(x+y))

The command unfold Phi yields

Assumptions:
v1 : N(x)

Context of the goal:
variables: x: R

Current goal:
|- ?3 : all (y:R) ((y=0 v N(x+(y-1))) -> N(x+y))

which easily follows from our axioms and some equality reasoning. The necessary
steps in Prawf (and much more) can be found in a tutorial on the Prawf
website.

144 U. Berger et al.

Program Extraction. After completing the proof above one can extract a program
by typing extract addition (addition is a name we chose). This will write
the extracted program into the file progs.txt:

addition . ProgAbst "v1" (ProgRec (ProgAbst "f_mu"
(ProgAbst "a_comp" (ProgCase (ProgVar "a_comp")
[(Lt,["a_ore"],ProgVar "v1"),(Rt,["b_ore"],ProgCon
Rt [ProgApp (ProgVar "f_mu") (ProgVar "b_ore")])]))))

The program transforms realizers of N(x) and N(y) into a realizer of N(x + y).
By the inductive definition of the predicate N its elements are realized in unary
notation where Lt() plays the role of 0 and Rt plays the role of the successor
function. The extracted program can be rewritten in more readable form as
follows (using Haskell notation):

addition v1 a_comp = case a_comp of
{

Lt _ -> v1 ;
Rt b_ore -> Rt (addition v1 b_ore)

}

which clearly is the usual algorithm for addition of unary natural numbers. How
to run this program is described in detail in the tutorial.

Half-Strong and Strong Induction. The premise of the induction rule for the
predicate N is logically equivalent to the conjunction of the induction base, P(0),
and the induction step, ∀x (P(x − 1) → P(x)). The induction step slightly differs
from the usual induction step since it lacks the additional assumption N(x).
This discrepancy disappears in the following rule of half-strong induction and
its associated extracted program

p : μ(Φ) ∩Φ(P) ⊆ P

hsind
rec(λ f (p ◦ 〈id,mΦ f 〉) : μ(Φ) ⊆ P

where 〈 f , g〉
Def
= λaPair(f a, g a) and id

Def
= λa a. In the following example, half-

strong induction appears to be needed to extract a good program. We aim to
prove that the distance of two natural numbers is a natural number

∀x(N(x) → ∀y(N(y) → N(x − y) ∨N(y − x)))

It is possible to prove this by (ordinary) induction on N(x), however, the proof is
complicated and the extracted program contrived and inefficient. On the other
hand, with half-strong induction (command hsind) the goal reduces to proving
∀y(N(y) → N(x− y)∨N(y− x)) from the assumptions N(x) and x = 0∨∀y(N(y) →

N((x − 1) − y) ∨ N(y − (x − 1))) which, because of the extra assumption N(x), is
relatively straightforward. Moreover, the extracted program is the expected one
which removes successors from (realizers of) x and y until one of the two becomes
0 after which what remains of the other one is returned as result. The interested
reader is invited to try this example on their own.

Prawf: An Interactive Proof System for Program Extraction 145

Strong induction is similar to half-strong induction, however, the intersection
with μ(Φ) is taken ‘inside’ Φ:

p :Φ(μ(Φ) ∩ P) ⊆ P

sind
rec(λ f (p ◦ mΦ 〈id, f 〉) : μ(Φ) ⊆ P

For the case of the natural numbers its effect is that the step becomes logically
equivalent to ∀x (N(x) ∧ P(x) → P(x + 1)), that is, precisely the step in Peano
induction. The extracted program corresponds exactly to primitive recursion.

Half-strong and strong coinduction will be discussed in Sect. 4.

4 Case Study: Exact Real Number Representations

As a rather large example, we formalize the existence of various exact represen-
tations of real numbers and prove the existence of conversions between them in
Prawf.

We continue to work in the theory of real numbers implemented in Prawf
through the batch real introduced in the previous section, but extend language,
declarations and axioms as needed.

The structure of real numbers represented by the sort R and various constants
and functions does not support any kind of computation on real numbers. For
computation, we need representations. These can be provided in IFP through
suitable predicates and their realizability interpretation, in a similar style as
we represented unary natural numbers through the predicate N. In general, a
representation is provided by defining a predicate P such that a realizer of P(x)
is a representation of x.

Exact representations of real numbers are typically infinite sequences or
streams which are naturally expressed through coinductively defined predicates.
For example, the predicate S(x) meaning the existence of the signed digit rep-
resentation of x, which is one of the standard representations of real numbers
for computation, is expressed as follows. To give an impression how this looks
in Prawf we use in the following machine notation where v stands for ∨, ex for
∃, m is a constant for −1, * is multiplication, and <= means ‘less or equal’.

SD:(R) = lambda (x:R) ((x = m v x = 1) v x = 0)
PhiS:(R) = lambda X:(R) lambda (x:R) ex (d:R)

(SD(d) and (abs(2*x-d)<= 1) and X(2*x-d))
S:(R) = Nu(PhiS)

This defines S as the largest predicate on the reals satisfying S = PhiS(S). A
realizer of S(x) is an infinite stream of signed digits where a digit is a realizer
of a formula of the form SD(y) that is either Lt(Lt(Nil)) or Lt(Rt(Nil)) or
R(Nil) (representing −1, 0, 1). Streams are given as infinitely nested pairs, e.g.
(writing a:b for Pair(a,b)) Lt(Lt(Nil)) : Rt(Nil) : Rt(Nil) : ... (that
is, −1 : 0 : 0 : . . .) which represents the real number −0.5.

Another representation, called infinite Gray-code [12], is defined through a
coinductive predicate G(x) defined in Prawf by

146 U. Berger et al.

B:(R) = lambda (x:R) (x <= 0 v 0 <= x)
D:(R) = lambda (x:R) (not (x = 0)) -> B(x)
PhiG:(R) = lambda X:(R) lambda (x:R)

(m <= x and x <= 1) and (D(x) and X(t(x)))
G:(R) = Nu(PhiG)

Here, t:(R)->R is the tent function defined as t(x)=1-2*abs(x). An interesting
and challenging aspects of the infinite Gray-code is the fact that it is partial, more
precisely, a realizer of G(x) is a stream that may have one undefined element.
This is due to the premise not (x = 0) in the definition of D which, if false
(that is, x=0), will admit as realizer a program whose value is undefined (e.g. a
program that loops infinitely).

Following [6], we proved in Prawf

Theorem . all (x:R) (S(x) -> G(x))

The proof is rather involved in that it consists of two coinductions, half-strong
coinduction, and Archimedean induction, which is a special form of induction
suitable for proving predicates with a premise x � 0 like D (see below). Due to
space restrictions we can only highlight the most interesting aspects of the proof.
The main parts of the proof are

Claim1 . all x:R (S(x) -> D(x))
Claim2 . all x:R (S(x) -> S(t(x)))

which immediately implies the Theorem by coinduction.
The proof of Claim1 uses the inductive predicate Accp defined by

PhiAccp:(R) = lambda X:(R) lambda (x:R) (all y:R y << x -> X(y))
Accp:(R) = Mu(PhiAccp)

where x << y is defined as 2*abs(x) <= 1 and y = 2*x. Accp is the accessible
or wellfounded part of the relation <<. Using Brouwer’s Thesis, which states that
induction on a well-founded relation is valid, and the Archimedean property of
the reals (see [6]) one can show that Accp(x) holds for all nonzero x. Therefore,
induction on Accp(x) turns into an induction principle for nonzero real numbers
which in [6] is dubbed Archimedean induction. It is logically equivalent to the
rule

∀x � 0 ((|x | ≤ 1/2 → P(2x)) → P(x))
AI∀x � 0P(x)

Archimedean induction is used to prove all x:R (S(x) -> B(x)) which is the
essential step in the proof of Claim1.

The proof of Claim2 uses half-strong coinduction which is the rule

p : P ⊆ ν(Φ) ∪Φ(P)

hscoind
rec(λ f ([id + mΦ f] ◦ p)) : P ⊆ ν(Φ)

where [f + g]
Def
= λa case a of {Lt(b) → f b; Rt(c) → g c}. Similarly, strong coin-

duction is the rule

Prawf: An Interactive Proof System for Program Extraction 147

p : P ⊆ Φ(ν(Φ) ∪ P)

scoind
rec(λ f (mΦ [id + f] ◦ p)) : P ⊆ ν(Φ)

This rule can be used to give a short proof of G(-x) -> G(x) and extract a
simple program which negates the head of the input stream and leaves its tail
untouched (instead of recursively reproducing the tail, which would happen with
ordinary coinduction).

5 Conclusion

We presented Prawf, a first prototype implementation of the logical system
IFP and its associated program extraction procedure. The successful formaliza-
tion in Prawf of exact real number representations and formal proofs of their
relationships guarantee the correctness of the proofs in [6]. This advanced case
study also gives us evidence that our approach scales to substantial nontrivial
problems.

The examples also demonstrate the enormous advantage gained from the pos-
sibility of describing different data representation in an abstract setting using
only first-order logic, and postulating arbitrary true nc-axioms. In the formaliza-
tion of infinite Gray-code it was also essential that our method is able to produce
partial extracted programs.

We would like to point out that the Soundness Theorem, that is, the correct-
ness proof for extracted programs, though constructive, is valid with respect to a
classical semantics. This is in line with the attitude in constructive mathematics
to produce only results that are constructively and classically valid, which is not
necessary the case in other approaches to program extraction.

Despite its successful maiden voyage Prawf has some loose ends that need
to be tied up. The most urgent one is an implementation of the soundness proof,
that is, the enhancement of program extraction so that not only extracted pro-
grams but also their correctness proofs are created automatically. Currently,
correctness relies on soundness as a meta theorem that has not been formal-
ized yet. Other necessary improvements concern support for schematic theorems
(Π 1

1 -theorems, essentially), advanced proof tactics and interpretations between
different languages.

We also plan to extend Prawf by sequent calculus rules and rules that per-
mit the extraction of concurrent programs. The latter will be needed to prove,
conversely, that G (infinite Gray-code) is included in S (signed digit represen-
tation). We know from [12] that the extracted translation program has to be
concurrent and nondeterministic.

Acknowledgements. This work was supported by the International Research
Staff Exchange Scheme (IRSES) No. 612638 CORCON and
No. 294962 COMPUTAL of the European Commission, the
JSPS Core-to-Core Program, A. Advanced research Net-
works and JSPS KAKENHI Grant Number 15K00015 as
well as the European Union’s Horizon 2020 research and
innovation programme under the Marie Sk�lodowska-Curie
grant agreement No. 731143.

148 U. Berger et al.

References

1. Isabelle. https://isabelle.in.tum.de/
2. Agda official website. http://wiki.portal.chalmers.se/agda/
3. Berger, U.: Realisability for induction and coinduction with applications to con-

structive analysis. J. Univ. Comput. Sci. 16(18), 2535–2555 (2010)
4. Berger, U., Miyamoto, K., Schwichtenberg, H., Seisenberger, M.: Minlog - a tool

for program extraction supporting algebras and coalgebras. In: Corradini, A., Klin,
B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 393–399. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-22944-2 29

5. Berger, U., Petrovska, O.: Optimized program extraction for induction and coinduc-
tion. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936,
pp. 70–80. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94418-0 7

6. Berger, U., Tsuiki, H.: Intuitionistic fixed point logic (2019). Unpublished
manuscript available on ArXiv

7. Bertot, Y., Castéran, P.: Interactive theorem proving and program development
(2004)

8. Constable, R.: Implementing Mathematics with the Nuprl Proof Development Sys-
tem. Prentice-Hall, Upper Saddle River (1986)

9. The Coq Proof Assistant. https://coq.inria.fr
10. Lockwood, J.: Nuprl: an open logical programming environment: a practical frame-

work for sharing formal models and tools. Program extraction (1998). http://www.
nuprl.org

11. Prawf official website. https://prawftree.wordpress.com/
12. Tsuiki, H.: Real number computation through gray code embedding. Theor. Com-

put. Sci. 284(2), 467–485 (2002)

https://isabelle.in.tum.de/
http://wiki.portal.chalmers.se/agda/
https://doi.org/10.1007/978-3-642-22944-2_29
https://doi.org/10.1007/978-3-319-94418-0_7
https://coq.inria.fr
http://www.nuprl.org
http://www.nuprl.org
https://prawftree.wordpress.com/

	Prawf: An Interactive Proof System for Program Extraction
	1 Introduction
	2 Program Extraction in IFP
	3 Prawf
	4 Case Study: Exact Real Number Representations
	5 Conclusion
	References

