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Abstract. The original Goodstein process proceeds by writing natural
numbers in nested exponential k-normal form, then successively raising
the base to k+1 and subtracting one from the end result. Such sequences
always reach zero, but this fact is unprovable in Peano arithmetic. In this
paper we instead consider notations for natural numbers based on the
Ackermann function. We define two new Goodstein processes, obtaining
new independence results for ACA′

0 and ACA+
0 , theories of second order

arithmetic related to the existence of Turing jumps.
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1 Introduction

Goodstein’s principle [6] is arguably the oldest example of a purely number-
theoretic statement known to be independent of PA, as it does not require the
coding of metamathematical notions such as Gödel’s provability predicate [4].
The proof proceeds by transfinite induction up to the ordinal ε0 [5]. PA does not
prove such transfinite induction, and indeed Kirby and Paris later showed that
Goodstein’s principle is unprovable in PA [8].

Goodstein’s original principle involves the termination of certain sequences
of numbers. Say that m is in nested (exponential) base-k normal form if it is
written in standard exponential base k, with each exponent written in turn in
base k. Thus for example, 20 would become 22

2
+22 in nested base-2 normal form.

Then, define a sequence (gk(0))m∈N by setting g0(m) = m and defining gk+1(m)
recursively by writing gk(m) in nested base-(k +2) normal form, replacing every
occurrence of k + 2 by k + 3, then subtracting one (unless gk(m) = 0, in which
case gk+1(m) = 0).

In the case that m = 20, we obtain

g0(20) = 20 = 22
2
+ 22

g1(20) = 33
3
+ 33 − 1 = 33

3
+ 32 · 2 + 3 · 2 + 2

g2(20) = 44
4
+ 42 · 2 + 4 · 2 + 2 − 1 = 44

4
+ 42 · 2 + 4 · 2 + 1,
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and so forth. At first glance, these numbers seem to grow superexponentially. It
should thus be a surprise that, as Goodstein showed, for every m there is k∗ for
which gk∗(m) = 0.

By coding finite Goodstein sequences as natural numbers in a standard way,
Goodstein’s principle can be formalized in the language of arithmetic, but this
formalized statement is unprovable in PA. Independence can be shown by proving
that the Goodstein process takes at least as long as stepping down the fundamen-
tal sequences below ε0; these are canonical sequences (ξ[n])n<ω such that ξ[n] < ξ
for all ξ and for limit ξ, ξ[n] → ξ as n → ∞. For standard fundamental sequences
below ε0, PA does not prove that the sequence ξ > ξ[1] > ξ[1][2] > ξ[1][2][3] . . .
is finite.

Exponential notation is not suitable for writing very big numbers (e.g. Gra-
ham’s number [7]), in which case it may be convenient to use systems of notation
which employ faster-growing functions. In [2], T. Arai, S. Wainer and the authors
have shown that the Ackermann function may be used to write natural numbers,
giving rise to a new Goodstein process which is independent of the theory ATR0

of arithmetical transfinite recursion; this is a theory in the language of second
order arithmetic which is much more powerful than PA. The main axiom of ATR0

states that for any set X and ordinal α, the α-Turing jump of X exists; we refer
the reader to [13] for details.

The idea is, for each k ≥ 2, to define a notion of Ackermannian normal
form for each m ∈ N. Having done this, we can define Ackermannian Goodstein
sequences analogously to Goodstein’s original version. The normal forms used in
[2] are defined using an elaborate ‘sandwiching’ procedure first introduced in [14],
approximating a number m by successive branches of the Ackermann function. In
this paper, we consider simpler, and arguably more intuitive, normal forms, also
based on the Ackermann function. We show that these give rise to two different
Goodstein-like processes, independent of ACA′

0 and ACA+
0 , respectively. As was

the case for ATR0, these are theories of second order arithmetic which state that
certain Turing jumps exist. ACA′

0 asserts that, for all n ∈ N and X ⊆ N, the n-
Turing jump of X exists, while ACA+

0 asserts that its ω-jump exists; see [13] for
details. The proof-theoretic ordinal of ACA′

0 is εω [1], and that of ACA+
0 is ϕ2(0)

[9]; we will briefly review these ordinals later in the text, but refer the reader to
standard texts such as [10,12] for a more detailed treatment of proof-theoretic
ordinals.

2 Basic Definitions

Let us fix k ≥ 2 and agree on the following version of the Ackermann function.

Definition 1. For a, b ∈ N we define Aa(k, b) by the following recursion.

1. A0(k, b) := kb,
2. Aa+1(k, 0) := Ak

a(k, ·)(0),
3. Aa+1(k, b + 1) := Ak

a(k, ·)(Aa+1(k, b)).
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Here, the notation Ak
a(k, ·) refers to the k-fold composition of the function x �→

Aa(k, x). It is well known that for every fixed a, the function b �→ Aa(k, b) is
primitive recursive and the function a �→ Aa(k, 0) is not primitive recursive. We
use the Ackermann function to define k normal forms for natural numbers. These
normal forms emerged from discussions with Toshiyasu Arai and Stan Wainer,
which finally led to the definition of a more powerful normal form defined in [14]
and used to prove termination in [2].

Lemma 1. Let k ≥ 2. For all c > 0, there exist unique a, b,m, n ∈ N such that

1. c = Aa(k, b) · m + n,
2. Aa(k, 0) ≤ c < Aa+1(k, 0),

3. Aa(k, b) ≤ c < Aa(k, b + 1), and
4. n < Aa(k, b).

We write c =nf Aa(k, b) · m + n in this case. This means that we have in
mind an underlying context fixed by k and that for the number c we have
uniquely associated the numbers a, b,m, n. Note that it could be possible that
Aa+1(k, 0) = Aa(k, b), so that we have to choose the right representation for the
context; in this case, item 2 guarantees that a is chosen to take the maximal
possible value.

By rewriting iteratively b and n in such a normal form, we arrive at the
Ackermann k-normal form of c. If we also rewrite a iteratively, we arrive at the
nested Ackermann k-normal form of c. The following properties of normal forms
are not hard to prove from the definitions.

Lemma 2. 1. A�
a(k, 0) is in k-normal form for every � such that 0 < � < k.

2. if Aa(k, b) is in k-normal form, then for every � < b, the number Aa(k, �) is
also in k-normal form.

In the sequel we work with standard notations for ordinals. We use the func-
tion ξ �→ εξ to enumerate the fixed points of ξ �→ ωξ. With α, β �→ ϕα(β) we
denote the binary Veblen function, where β �→ ϕα(β) enumerates the common
fixed points of all ϕα′ with α′ < α. We often omit parentheses and simply write
ϕαβ. Then ϕ0ξ = ωξ, ϕ1ξ = εξ, ϕ20 is the first fixed point of the function
ξ �→ ϕ1ξ, ϕω0 is the first common fixed point of the function ξ �→ ϕnξ, and Γ0

is the first ordinal closed under α, β �→ ϕαβ. In fact, not much ordinal theory is
presumed in this article; we almost exclusively work with ordinals less than ϕ20,
which can be written in terms of addition and the functions ξ �→ ωξ, ξ �→ εξ.
For more details, we refer the reader to standard texts such as [10,12].

3 Goodstein Sequences for ACA′
0

In this section we define a Goodstein process that is independent of ACA′
0. We do

so by working with unnested Ackermannian normal forms. Such normal forms
give rise to the following notion of base change.

Definition 2. Given k ≥ 2 and c ∈ N, define c[k←k + 1] by:
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1. 0[k←k + 1] := 0.
2. c[k←k+1] := Aa(k+1, b[k←k+1]) ·m+n[k←k+1] if c =nf Aa(k, b) ·m+n.

With this, we may define a new Goodstein process, based on unnested Ack-
ermannian normal forms.

Definition 3. Let � < ω. Put b0(�) := �. Assume recursively that bk(�) is defined
and bk(�) > 0. Then bk+1(�) = bk(�)[k + 2←k + 3] − 1. If bk(�) = 0, then
bk+1(�) := 0.

We will show that for every � there is i with bi(�) = 0. In order to prove this,
we first establish some natural properties of the base-change operation.

Lemma 3. Fix k ≥ 2 and let c, d ∈ N. Then:

1. c ≤ c[k←k + 1].
2. If c < d, then c[k←k + 1] < d[k←k + 1].

Proof. The first assertion is proved by induction on c. It clearly holds for c = 0.
If c =nf Aa(k, b)·m+n then the induction hypothesis yields c = Aa(k, b)·m+n ≤
Aa(k, b[k←k + 1]) · m + n[k←k + 1] = c[k←k + 1].

The second assertion is harder to prove. The proof is by induction on d with a
subsidiary induction on c. The assertion is clear if c = 0. Let c =nf Aa(k, b)·m+n
and d =nf Aa′(k, b′) · m′ + n′. We distinguish cases according to the position of
a relative to a′, the position of b relative to b′, etc.

Case 1 (a < a′). We sub-divide into two cases.
Case 1.1 (Aa+1(k, 0) < d). Then, the induction hypothesis applied to c <
Aa+1(k, 0) yields c[k←k + 1] < Aa+1(k + 1, 0) < Aa′(k + 1, b′[k←k + 1]) · m′ +
n′[k←k + 1] = d[k←k + 1].
Case 1.2 (Aa+1(k, 0) = d). In this case, a + 1 = a′, b′ = 0, m′ = 1, and
n′ = 0. We have Aa(k, b) ≤ c < Aa+1(k, 0) = Aa(k,Ak−1

a (k, ·)(0)). For � < k
we have that A�

a(k, 0) is in k-normal form by Lemma2. Thus the induction
hypothesis yields b[k←k + 1] < Ak−1

a (k + 1, ·)(0). The number Aa(k, b) is in
k-normal form and so the induction hypothesis applied to n < Aa(k, b) yields
n[k←k + 1] < Aa(k + 1, b[k←k + 1]). Moreover we have that m < Aa+1(k, 0).
This yields

c[k←k + 1] = Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1]

≤ Aa(k + 1, Ak−1
a (k + 1, ·)(0)) · Aa+1(k, 0) + Aa(k + 1, Ak−1

a (k + 1, ·)(0))
≤ (Ak

a(k + 1, ·)(0))2 + Ak
a(k + 1, ·)(0)

≤ Aa(k + 1, Ak
a(k + 1, ·)(0)) = Aa+1(k + 1, 0),

where the second inequality follows from

Aa+1(k, 0) = Ak
a(k, ·)(0) ≤ Ak

a(k + 1, ·)(0)

and the last from

Aa(k + 1, x) ≥ A0(k + 1, x) ≥ 3x ≥ x2 + x. (1)
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Case 2 (a′ < a). This case does not occur since then d < Aa′+1(k, 0) ≤
Aa(k, 0) ≤ c.
Case 3 (a = a′ and b < b′). The induction hypothesis yields b[k←k + 1] <
b′[k←k + 1] and n[k←k + 1] < Aa(k + 1, b[k←k + 1]). Now, consider two sub-
cases.
Case 3.1 (Aa(k, b+1) < d). Since d is in k-normal form and b+1 ≤ b′ we see that
Aa(k, b + 1) is in k-normal form by Lemma2. Then, the induction hypothesis
yields c[k←k + 1] < Aa(k + 1, (b + 1)[k←k + 1]) ≤ Aa(k + 1, b′[k←k + 1]) ≤
d[k←k + 1].
Case 3.2 (Aa(k, b+1) = d). We know that c = Aa(k, b)·m+n < Aa(k, b+1) = d.
Consider two further sub-cases.
Case 3.2.1 (a = 0). This means that c = kb · m + n < kb+1 = d, m < k,
and n < kb, where d has k-normal form kb+1. The induction hypothesis yields
b[k←k + 1] < (b + 1)[k←k + 1] and n[k←k + 1] < (k + 1)b[k←k+1]. We then
have that c[k←k + 1] = (k + 1)b[k←k+1] · m + n[k←k + 1] < (k + 1)b[k←k+1]+1 ≤
(k + 1)(b+1)[k←k+1] = d.
Case 3.2.2 (a > 0). Then,

c[k←k + 1] = Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1]

≤ Aa(k + 1, b[k←k + 1])) · Aa(k, b + 1) + Aa(k + 1, b[k←k + 1])

≤ (Ak
a−1(k + 1, ·)(Aa(k + 1, b[k←k + 1])))2

+ Ak
a−1(k + 1, ·)(Aa(k + 1, b[k←k + 1]))

< Aa(k + 1, b′[k←k + 1]) by (1),

where the second inequality uses

Aa(k, b+1) = Ak
a−1(k, ·)(Aa(k, b)) ≤ Ak

a−1(k+1, ·)(Aa(k+1, b[k←k+1])).

Case 4 (a = a′ and b′ < b). This case does not appear since otherwise d ≤
Aa(k, b′ + 1) ≤ c.
Case 5 (a = a′ and b′ = b and m < m′). Then the induction hypothesis yields

c[k←k + 1] = Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1]
< Aa(k + 1, b[k←k + 1])) · m + Aa(k + 1, b[k←k + 1])
≤ Aa(k + 1, b[k←k + 1])) · m′ ≤ d[k←k + 1].

Case 6 (a = a′ and b′ = b and m′ < m). This case is not possible given the
assumptions.
Case 7 (a = a′ and b′ = b and m′ = m). Then n < n′ and the induction
hypothesis yields

c[k←k + 1] = Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1]
< Aa(k + 1, b[k←k + 1]) · m + n′[k←k + 1] = d[k←k + 1].

Thus, the base-change operation is monotone. Next we see that it also pre-
serves normal forms.
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Lemma 4. If c = Aa(k, b) · m + n is in k-normal form, then c[k←k + 1] =
Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1] is in k + 1 normal form.

Proof. Assume that c =nf Aa(k, b)·m+n. Then, c < Aa+1(k, 0), c < Aa(k, b+1),
and n < Aa(k, b). Clearly, Aa(k + 1, 0) ≤ c[k←k + 1]. By Lemma 2, Aa+1(k, 0)
is in k-normal form, so that by Lemma 3, c < Aa+1(k, 0) yields c[k←k + 1] <
Aa+1(k +1, 0). Since Aa(k, b) is in k-normal form, Lemma 3 yields n[k←k +1] <
Aa(k + 1, b[k←k + 1]). It remains to check that we also have c[k←k + 1] <
Aa(k + 1, b[k←k + 1] + 1).

If a = 0, then c =nf Aa(k, b) · m + n means that c = kb · m + n with
m < k and n < kb. Then, m < k + 1 and n[k←k + 1] < (k + 1)b[k←k+1]. Thus
c[k←k + 1] = (k + 1)b[k←k+1] · m + n[k←k + 1] < (k + 1)b[k←k+1]+1 and thus
c[k←k +1] =nf (k +1)b[k←k+1] ·m+n[k←k +1]. In the remaining case, we have
for a > 0 that

c[k←k + 1] = Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1]
< Aa(k + 1, b[k←k + 1]) · Aa(k, b + 1) + Aa(k + 1, b[k←k + 1])
≤ Aa(k + 1, b[k←k + 1]) · Aa(k, b[k←k + 1] + 1) + Aa(k + 1, b[k←k + 1])

≤ (Ak
a−1(k, ·)Aa(k + 1, b[k←k + 1]))2 + Ak

a−1(k, ·)Aa(k + 1, b[k←k + 1])

< Ak+1
a−1(k + 1, ·)Aa(k + 1, b[k←k + 1]) by (1)

= Aa(k + 1, b[k←k + 1] + 1).

So Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1] is in k + 1-normal form.

These Ackermannian normal forms give rise to a new Goodstein process. In
order to prove that this process is terminating, we must assign ordinals to natural
numbers, in such a way that the process gives rise to a decreasing (hence finite)
sequence. For each k, we define a function ψk : N → Λ, where Λ is a suitable
ordinal, in such a way that ψkm is computed from the k-normal form of m.
Unnested Ackermannian normal forms correspond to ordinals below Λ = εω, as
the following map shows.

Definition 4. For k ≥ 2, define ψk : N → εω as follows:

1. ψk0 := 0.
2. ψkc := ωεa+ψkb · m + ψkn if c =nf Aa(k, b) · m + n.

Lemma 5. If c < d < ω then ψkc < ψkd.

Proof. Proof by induction on d with subsidiary induction on c. The assertion
is clear if c = 0. Let c =nf Aa(k, b) · m + n and d =nf Aa′(k, b′) · m′ + n′. We
distinguish cases according to the position of a relative to a′, the position of b
relative to b′, etc.

Case 1 (a < a′). We have n < c < Aa+1(k, 0) ≤ Aa′(k, 0) and, since Aa′(k, 0) ≤
d, the induction hypothesis yields ψkn < ωεa′+ψk0 = εa′ . We have b < c <
Aa+1(k, 0) ≤ Aa′(k, 0) and the induction hypothesis yields ψkb < ωεa′+ψk0 = εa′ .
It follows that εa + ψkb < εa′ , hence ψkc = ωεa+ψkb · m + ψkn < εa′ ≤ ψkd.
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Case 2 (a > a′). This case is not possible since this would imply that d <
Aa′+1(k, 0) ≤ Aa(k, 0) ≤ c < d.
Case 3 (a = a′). We consider several sub-cases.
Case 3.1 (b < b′). The induction hypothesis yields ψkb < ψkb′. Hence ωεa+ψkb <
ωεa+ψkb′

. We have n < Aa(k, b), and the subsidiary induction hypothesis yields
ψkn < ωεa+ψkb < ωεa+ψkb′

. Putting things together we see ψkc = ωεa+ψkb · m +
ψkn < ωεa+ψkb′ ≤ ψkd.
Case 3.2 (b > b′). This case is not possible since this would imply d < Aa(k, b′+
1) ≤ Aa(k, b) ≤ c < d.
Case 3.3 (b = b′). This case is divided into further sub-cases.
Case 3.3.1 (m < m′). We have n < Aa(k, b) and the subsidiary induction
hypothesis yields ψkn < ωεa+ψkb. Hence ψkc = ωεa+ψkb · m + ψkn < ωεa+ψkb′ ·
m′ ≤ ψkd.
Case 3.3.2 (m > m′). This case is not possible since this would imply d =
Aa(k, b) · m′ + n′ ≤ Aa(k, b) · m ≤ c < d.
Case 3.3.3 (m = m′). The inequality c < d yields n < n′ and the induction
hypothesis yields ψkn < ψkn′. Hence ψkc = ωεa+ψkb · m + ψkn < ωεa+ψkb · m +
ψkn′ = ψkd.

Our ordinal assignment is invariant under base change, in the following sense.

Lemma 6. ψk+1(c[k←k + 1]) = ψkc.

Proof. Proof by induction on c. The assertion is clear for c = 0. Let c =nf

Aa(k, b) · m + n. Then, c[k←k + 1] =nf Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1],
and the induction hypothesis yields

ψk+1(c[k←k + 1]) = ψk+1(Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1])
= ωεa+ψk+1(b[k←k+1]) · m + ψk+1(n[k←k + 1])
= ωεa+ψkb · m + ψkn = ψkc.

It is well-known that the so-called slow-growing hierarchy at level ϕω0
matches up with the Ackermann function, so one might expect that the cor-
responding Goodstein process can be proved terminating in PA+ TI(ϕω0). This
is true but, somewhat surprisingly, much less is needed here. We can lower ϕω0
to εω = ϕ1ω.

Theorem 1. For all � < ω, there exists a k < ω such that bk(�) = 0. This is
provable in PA + TI(εω).

Proof. Define o(�, k) := ψk+2bk(�). If bk(�) > 0, then, by the previous lemmata,

o(�, k + 1) = ψk+3bk+1(�) = ψk+3(bk(�)[k←k + 1] − 1)
< ψk+3(bk(�)[k←k + 1]) = ψk+2(bk(�)) = o(�, k).

Since (o(�, k))k<ω cannot be an infinite decreasing sequence of ordinals, there
must be some k with o(�, k) = 0, yielding bk(�) = 0.
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Now we are going to show that for every α < εω, PA+TI(α) 
� ∀�∃k bk(�) = 0.
This will require some work with fundamental sequences.

Definition 1. Let Λ be an ordinal. A system of fundamental sequences on Λ is
a function ·[·] : Λ×N → Λ such that α[n] ≤ α with equality holding if and only if
α = 0, and α[n] ≤ α[m] whenever n ≤ m. The system of fundamental sequences
is convergent if λ = limn→∞ λ[n] whenever λ is a limit, and has the Bachmann
property if whenever α[n] < β < α, it follows that α[n] ≤ β[1].

It is clear that if Λ is an ordinal then for every α < Λ there is n such that
α[1][2] . . . [n] = 0, but this fact is not always provable in weak theories. The
Bachmann property that will be useful due to the following.

Proposition 1. Let Λ be an ordinal with a system of fundamental sequences
satisfying the Bachmann property, and let (ξn)n∈N be a sequence of elements of
Λ such that, for all n, ξn[n+1] ≤ ξn+1 ≤ ξn. Then, for all n, ξn ≥ ξ0[1][2] . . . [n].

Proof. Let �k be the reflexive transitive closure of {(α[k], α) : α < ϕ2(0)}. We
need a few properties of these orderings. Clearly, if α �k β, then α ≤ β. It can be
checked by a simple induction and the Bachmann property that, if α[n] ≤ β < α,
then α[n] �1 β. Moreover, �k is monotone in the sense that if α �k β, then
α �k+1 β, and if α �k β, then α[k] �k β[k] (see, e.g., [11] for details).

We claim that for all n, ξn �n ξ0[1] . . . [n], from which the desired inequal-
ity immediately follows. For the base case, we use the fact that �0 is transi-
tive by definition. For the successor, note that the induction hypothesis yields
ξ0[1] . . . [n] �n ξn, hence ξ0[1] . . . [n + 1] �n+1 ξn[n + 1]. Then, consider three
cases.

Case 1 (ξn+1 = ξn). By transitivity and monotonicity, ξ0[1] . . . [n + 1] �n+1

ξ0[1] . . . [n] �n ξn = ξn+1 yields ξ0[1] . . . [n + 1] �n+1 ξn+1.
Case 2 (ξn+1 = ξn[n + 1]). Then, ξ0[1] . . . [n + 1] �n+1 ξn[n + 1] = ξn+1.
Case 3 (ξn[n + 1] < ξn+1 < ξn). The Bachmann property yields ξn[n + 1] �1

ξn+1, and since ξ0[1] . . . [n+1] �n+1 ξn[n+1], monotinicity and transitivity yield
ξ0[1] . . . [n + 1] �n+1 ξn+1.

Let ω0(α) := α and ωk+1(α) = ωωk(α). Let us define the standard fundamen-
tal sequences for ordinals less than ϕ20 as follows.

1. If α = ωβ + γ with 0 < γ < α, then α[k] := ωβ + γ[k].
2. If α = ωβ > β, then we set α[k] := 0 if β = 0, α[k] := ωγ · k if β = γ + 1, and

α[k] := ωβ[k] if β ∈ Lim.
3. If α = εβ > β, then α[k] := ωk(1) if β = 0, α[k] := ωk(εγ + 1) if β = γ + 1,

and α[k] := εβ[k] if β ∈ Lim.

This system of fundamental sequences enjoys the Bachmann property [11].
In view of Proposition 1, the following technical lemma will be crucial for

proving our main independence result for ACA′
0.

Lemma 7. Given k, c < ω with k ≥ 2, ψk+1(c[k←k + 1] − 1) ≥ (ψkc)[k].
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Proof. We prove the claim by induction on c. Let c =nf Aa(k, b) · m + n.

Case 1 (n > 0). Then the induction hypothesis and Lemma5 yield

ψk+1(c[k←k + 1] − 1) = ωεa+ψk+1(b[k←k+1]) · m + ψk+1(n[k←k + 1] − 1)

≥ ωεa+ψk(b) · m + (ψk(n))[k] = (ωεa+ψk(b) · m + ψk(n))[k]
= (ψk(Aa(k, b) · m + n))[k] = (ψkc)[k].

Case 2 (n = 0 and m > 1). Then the induction hypothesis and Lemma5 yield

ψk+1(c[k←k + 1] − 1)

= ψk+1(Aa(k + 1, b[k←k + 1]) · (m − 1) + ψk+1(Aa(k + 1, b[k←k + 1]) − 1)

≥ ψk(Aa(k, b) · (m − 1)) + (ψk(Aa(k, b)))[k] = (ψk(Aa(k, b) · m))[k] = (ψkc)[k].

Case 3 (n = 0 and m = 1). We consider several sub-cases.
Case 3.1 (a > 0 and b > 0). The induction hypothesis yields

ψk+1(c[k←k + 1] − 1) = ψk+1(Aa(k + 1, b[k←k + 1]) − 1)

≥ ψk+1(Aa(k + 1, (b[k←k + 1]) − 1) · k) = ωεa+ψk+1(b[k←k+1]−1) · k

≥ ωεa+(ψk(b))[k] · k ≥ (ωεa+ψk(b))[k] = (ψkc)[k],

since Aa(k + 1, (b[k←k + 1]) − 1) · k is in k + 1 normal form by Lemma2 and
Lemma 4.
Case 3.2 (a > 0 and b = 0). Then, the induction hypothesis yields

ψk+1(c[k←k + 1] − 1) = ψk+1(Aa(k + 1, 0) − 1) = ψk+1(A
k+1
a−1(k, ·)(0) − 1)

= ψk+1(Aa−1(k + 1, Ak
a−1(k + 1, ·)(0) − 1))

≥ ψk+1(A
k
a−1(k + 1, ·)(0)) = ωεa−1+ψk+1((A

k−1
a−1(k+1,·)(0)))

≥ ωψk+1((A
k−1
a−1(k+1,·)(0))) ≥ ωωk−1(εa−1+1)

= (εa)[k] = (ψk(Aa(k, 0)))[k] = (ψkc)[k],

since A�
a−1(k+1, ·)(0) is in k+1 normal form for � ≤ k by Lemma 2 and Lemma 4.

Case 3.3 (a = 0 and b > 0). Then the induction hypothesis yields similarly as
in Case 3.1:

ψk+1(c[k←k + 1] − 1) = ψk+1(A0(k + 1, b) − 1)
= ψk+1((k + 1)(b[k←k+1]−1) · k + · · · + (k + 1)0 · k)
≥ ψk+1((k + 1)(b[k←k+1]−1) · k)
≥ ωψk+1(b[k←k+1]−1) · k ≥ ω(ψkb)[k] · k ≥ (ψkc)[k],

since (k + 1)(b[k←k+1]−1) · k is in k + 1 normal form.
Case 3.4 (a = 0 and b = 0). The assertion follows trivially since then c = 1.
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Theorem 2. Let α < εω. Then PA + TI(α) 
� ∀�∃k bk(�) = 0. Hence ACA′
0 
�

∀�∃kbk(�) = 0.

Proof. Assume for a contradiction that PA+TI(α) � ∀�∃k bk(�) = 0. Then PA+
TI(α) � ∀�∃k bk(A�(2, 0)) = 0. Recall that o(A�(2, 0), k) = ψk+2(bk(A�(2, 0))).
We have o(A�(2, 0), 0) = εn. Lemma 7 and Lemma 5 yield o(A�(2, 0), k)[k + 1] ≤
o(A�(2, 0), k + 1) < o(A�(2, 0), k), hence Proposition 1 yields o(A�(2, 0), k) ≥
o(A�(2, 0))[1] . . . [k]. So the least k such that bk(A�(2, 0)) = 0 is at least as big
as the least k such that ε�[1] . . . [k] = 0. But by standard results in proof theory
[3], PA + TI(α) does not prove that this k is always defined as a function of �.
This contradicts PA + TI(α) � ∀�∃k bk(A�(2, 0))) = 0.

4 Goodstein Sequences for ACA+
0

In this section, we indicate how to extend our approach to a situation where the
base change operation can also be applied to the first argument of the Ackermann
function. The resulting Goodstein principle will then be independent of ACA+

0 .
The key difference is that the base-change operation is now performed recursively
on the first argument, as well as the second.

Definition 5. For k ≥ 2 and c ∈ N, define c[k←k + 1] by:

1. 0[k←k + 1] := 0
2. c[k←k+1] := Aa[k←k+1](k+1, b[k←k+1]) ·m+n[k←k+1] if c =nf Aa(k, b) ·

m + n.

Note that in this section, c[k←k + 1] will always indicate the operation of
Definition 5. We can then define a Goodstein process based on this new base
change operator.

Definition 6. Let � < ω. Put c0(�) := �. Assume recursively that ck(�) is defined
and ck(�) > 0. Then, ck+1(�) = ck(�)[k + 2←k + 3] − 1. If ck(�) = 0, then
ck+1(�) := 0.

Termination and independence results can then be obtained following the
same general strategy as before. We begin with the following lemmas, whose
proofs are similar to those for their analogues in Sect. 3.

Lemma 8. If c < d and k ≥ 2, then c[k←k + 1] < d[k←k + 1].

Lemma 9. If c = Aa(k, b) · m + n is in k-normal form, then c[k←k + 1] =
Aa[k←k+1](k + 1, b[k←k + 1]) · m + n[k←k + 1] is in k + 1 normal form.

It is well-known that the so-called slow-growing hierarchy at level Γ0 matches
up with the functions which are elementary in the Ackermann function, so one
might expect that the corresponding Goodstein process can be proved terminat-
ing in PA+ TI(Γ0). This is true but, somewhat surprisingly, much less is needed
here. Indeed, nested Ackermannian normal forms are related to the much smaller
ordinal ϕ2(0) by the following mapping.
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Definition 7. Given k ≥ 2, define a function χk : N → ϕ2(0) given by:

1. χk0 := 0.
2. χkc := ωεχka+χkb · m + ψkn if c =nf Aa(k, b) · m + n.

As was the case for the mappings ψk, the maps χk are strictly increasing and
invariant under base change, as can be checked using analogous proofs to those
in Sect. 3.

Lemma 10. Let c, d, k < ω with k ≥ 2.

1. If c < d, then χkc < χkd.
2. χk+1(c[k←k + 1]) = χkc.

Theorem 3. For all � < ω, there exists a k < ω such that ck(�) = 0. This is
provable in PA + TI(ϕ20).

Next, we show that for every α < ϕ20, PA + TI(α) 
� ∀�∃k ck(�) = 0. For
this, we need the following analogue of Lemma7.

Lemma 11. χk+1(c[k←k + 1] − 1) ≥ (χkc)[k].

Proof. We proceed by induction on c. Let c =nf Aa(k, b) · m + n. Let us concen-
trate on the critical case m = 1 and n = 0, where a > 0 and b = 0.

The induction hypothesis yields

χk+1(c[k←k + 1] − 1) = χk+1(Aa(k + 1, 0) − 1)

= χk+1(Ak+1
a[k←k+1]−1(k + 1, ·)(0) − 1) ≥ χk+1(Ak

a[k←k+1]−1(k + 1, ·)(0))

= ωεχk+1(a[k←k+1]−1)+ω
χk+1(A

k−1
a[k←k+1]−1(k+1,·)(0))

≥ ωk(εχk+1(a[k←k+1]−1) + 1)

≥ ωk(ε(χka)[k] + 1) ≥ (εχka)[k] = (χk(Aa(k, 0))[k],

since Ak
a[k←k+1]−1(k + 1, ·)(0) is in k + 1 normal form.

The remaining details of the proof of the theorem can be carried out similarly
as before.

Theorem 4. For every α < ϕ20, PA + TI(α) 
� ∀�∃k ck(�) = 0. Hence ACA+
0 
�

∀�∃kck(�) = 0.
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