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Abstract. Automata networks are a very general model of interacting
entities, with applications to biological phenomena such as gene regu-
lation. In many contexts, the order in which entities update their state
is unknown, and the dynamics may be very sensitive to changes in this
schedule of updates. Since the works of Aracena et al., it is known that
update digraphs are pertinent objects to study non-equivalent block-
sequential update schedules. We prove that counting the number of
equivalence classes, that is a tight upper bound on the synchronism sen-
sitivity of a given network, is #P-complete. The problem is nevertheless
computable in quasi-quadratic time for oriented cacti, and for oriented
series-parallel graphs thanks to a decomposition method.

1 Introduction

Since their introduction by McCulloch and Pitts in the 1940s through the well
known formal neural networks [20], automata networks (ANs) are a general
model of interacting entities in finite state spaces. The field has important con-
tributions to computer science, with Kleene’s finite state automata [17], linear
shift registers [14] and linear networks [12]. At the end of the 1960s, Kauffman
and Thomas (independently) developed the use of ANs for the modeling of bio-
logical phenomena such as gene regulation [16,28], providing a fruitful theoretical
framework [26].

ANs can be considered as a collection of local functions (one per component),
and influences among components may be represented as a so called interac-
tion digraph. In many applications the order of components update is a priori
unknown, and different schedules may greatly impact the dynamical properties
of the system. It is known since the works of Aracena et al. in [4] that update
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1 23 4
⊕ ⊕f1(x) = 0

f2(x) = x4

f3(x) = x1 ∨ ¬x4

f4(x) = x3

Fig. 1. Example of an AN f on the Boolean alphabet [q] = {1, 2} (conventionally
renamed {0, 1}), its interaction digraph, and a {⊕, �}-labeling labB = labB′ cor-
responding to the two equivalent update schedules B = ({1, 2, 3}, {4}) and B′ =
({1, 3}, {2, 4}).

digraphs (consisting of labeling the arcs of the interaction digraphs with ⊕ and
�) capture the correct notion to consider a biologically meaningful family of
update schedules called block-sequential in the literature. Since another work of
Aracena et al. [3] a precise characterization of the valid labelings has been known,
but their combinatorics remains puzzling. After formal definitions and known
results in Sects. 2 and 3, we propose in Sect. 4 an explanation for this difficulty,
through the lens of computational complexity theory: we prove that counting the
number of update digraphs (valid {⊕,�}-labelings) is #P-complete. In Sect. 5
we consider the problem restricted to the family of oriented cactus graphs and
give a O(n2 log n log log n) time algorithm, and finally in Sect. 6 we present a
decomposition method leading to a O(n2 log2 n log log n) algorithm for oriented
series-parallel graphs.

2 Definitions

Given a finite alphabet [q] = {1, . . . , q}, an automata network (AN) of size n
is a function f : [q]n → [q]n. We denote xi the component i ∈ [n] of some
configuration x ∈ [q]n. ANs are more conveniently seen as n local functions
fi : [q]n → [q] describing the update of each component, i.e. with fi(x) = f(x)i.
The interaction digraph captures the effective dependencies among components,
and is defined as the digraph Gf = ([n], Af ) with

(i, j) ∈ Af ⇐⇒ fj(x) �= fj(y) for some x, y ∈ [q]n with xi′ = yi′ for all i′ �= i.

It is well known that the schedule of components update may have a great
impact on the dynamics [5,13,21,23]. A block-sequential update schedule B =
(B1, . . . , Bt) is an ordered partition of [n], defining the following dynamics

f (B) = f (Bt) ◦ · · · ◦ f (B2) ◦ f (B1) with f (Bi)(x)j =

{
fj(x) if j ∈ Bi

xj if j /∈ Bi

i.e., parts are updated sequentially one after the other, and components within
a part are updated in parallel. For the parallel update schedule Bpar = ([n]),
we have f (Bpar) = f . Block-sequential update schedules are a classical family of
update schedules considered in the literature, because they are perfectly fair:
every local function is applied exactly once during each step. Equipped with an
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update schedule, f (B) is a discrete dynamical system on [q]n. In the following
we will shortly say update schedule to mean block-sequential update schedule.

It turns out quite intuitively that some update schedules will lead to the
same dynamics, when the ordered partitions are very close and the difference
relies on components far apart in the interaction digraph (see an example on
Fig. 1). Aracena et al. introduced in [4] the notion of update digraph to capture
this fact. To an update schedule one can associate its update digraph, which is a
{⊕,�}-labeling of the arcs of the interaction digraph of the AN, such that (i, j)
is negative (�) when i is updated strictly before j, and positive (⊕) otherwise.
Formally, given an update schedule B = (B1, . . . , Bt),

∀(i, j) ∈ Af : labB((i, j)) =

{
⊕ if i ∈ Bti and j ∈ Btj with ti ≥ tj ,

� if i ∈ Bti and j ∈ Btj with ti < tj .

Remark 1. Loops are always labeled ⊕, hence we consider our digraphs loopless.

The following result has been established: given two update schedules, if the
relative order of updates among all adjacent components are identical, then the
dynamics are identical. It leads naturally to an equivalence relation on update
schedules, at the heart of the present work.

Theorem 1 ([4]). Given an AN f and two update schedules B,B′, if labB =
labB′ then f (B) = f (B′). Hence we denote B ≡ B′ if and only if labB = labB′ .

It is very important to note that, though every update schedule corresponds
to a {⊕,�}-labeling of Gf , the reciprocal of this fact is not true. For example, a
cycle with all arcs labeled � would lead to a contradiction where components are
updated strictly before themselves. Aracena et al. gave a precise characterization
of valid update digraphs (i.e. the ones corresponding to at least one update
schedule).

Theorem 2 ([3]). A labeling function lab : A → {⊕,�} is valid if and only if
there is no cycle (i0, i1, . . . , ik), with i0 = ik, of length k > 0 such that both:

– ∀ 0 ≤ j < k : lab((ij , ij+1)) = ⊕ ∨ lab((ij+1, ij)) = �,
– ∃ 0 ≤ j < k : lab((ij+1, ij)) = �.

In words, the multidigraph where the orientation of negative arcs is reversed,
does not contain a cycle with at least one negative arc (forbidden cycle).

As a corollary, one can decide in polynomial time whether a labeling is valid
(Valid-UD Problem is in P). We are interested in the following.

Update Digraphs Counting (#UD)
Input: a digraph G = (V,A).
Output: #UD(G) = |{lab : A → {�,⊕} | lab is valid}|.

The following definition is motivated by Theorem2.
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Definition 1. Given a digraph G = (V,A), let Ḡ = (V, Ā) denote the undirected
multigraph underlying G, i.e. with an edge {i, j} ∈ Ā for each (i, j) ∈ A.

Remark 2. We can restrict our study to connected digraphs (that is, such that Ḡ
is connected), because according to Theorem 2 the only invalid labelings contain
(forbidden) cycles. Given some G with V1, . . . , Vk its connected components,
and G[Vi] the subdigraph induced by Vi, we straightforwardly have #UD(G) =∏

i∈[k] #UD(G[Vi]), and this decomposition can be computed in linear time from
folklore algorithms.

Theorem 3. #UD is in #P.

Proof. The following non-deterministic algorithm runs in polynomial time
(Valid-UD Problem is in P), and its number of accepting branches equals
#UD(G):

1. guess a labeling lab : A → {⊕,�} (polynomial space),
2. accept if lab is valid, otherwise reject.

��

3 Further Known Results

The consideration of update digraphs has been initiated by Aracena et al. in
2009 [4], with their characterization (Theorem2) in [3]. In Sect. 4 we will present
a problem closely related to #UD that has been proven to be NP-complete in
[3], UD Problem, and bounds that we can deduce on #UD (Corollary 1, from
[2]). In [1] the authors present an algorithm to enumerate update digraphs, and
prove its correctness. They also consider a surprisingly complex question: given
an AN f , knowing whether there exist two block-sequential update schedules
B,B′ such that f (B) �= f (B′), is NP-complete. The value of #UD(G) is known to
be 3n − 2n+1 + 2 for bidirected cycles on n vertices [23], and to equal n! if and
only if the digraph is a tournament on n vertices [2].

4 Counting Update Digraphs Is #P-complete

The authors of [3] have exhibited an insightful relation between valid labelings
and feedback arc sets of a digraph. We recall that a feedback arc set (FAS) of
G = (V,A) is a subset of arcs F ⊆ A such that the digraph (V,A \ F ) is acyclic,
and its size is |F |. This relation is developed inside the proof of NP-completeness
of the following decision problem. We reproduce it as a Lemma.

Update Digraph Problem (UD Problem)
Input: a digraph G = (V,A) and an integer k.
Question: does there exist a valid labeling of size at most k?

The size of a labeling is its number of ⊕ labels. It is clear that minimizing the
number of ⊕ labels (or equivalently maximizing the number of � labels) is the
difficult direction, the contrary being easy because lab(a) = ⊕ for all a ∈ A is
always valid (and corresponds to the parallel update schedule Bpar).



330 K. Perrot et al.

3 2

1
⊕⊕⊕

Fig. 2. F = {(1, 2), (2, 3), (3, 1)} is a FAS, but the corresponding labeling is not valid:
component 3 is updated prior to 2, 1 not prior to 2, and 3 not prior to 1, which is
impossible.

Lemma 1 (appears in [3, Theorem 16]). There exists a bijection between
minimal valid labelings and minimal feedback arc sets of a digraph G = (V,A).

Proof (sketch). To get the bijection, we simply identify a labeling lab with its
set of arcs labeled ⊕, denoted Flab = {a ∈ A | lab(a) = ⊕}. ��

Any valid labeling corresponds to a FAS, and every minimal FAS corresponds
to a valid labeling, hence the following bounds hold. The strict inequality for the
lower bound comes from the fact that labeling all arcs ⊕ does not give a minimal
FAS, as noted in [2] where the authors also consider the relation between update
digraphs (valid labelings) and feedback arc sets, but from another perspective.

Corollary 1 ([3]). For any digraph G, let #FAS(G) and #MFAS(G) be the num-
ber of FAS and minimal FAS of G, then #MFAS(G) < #UD(G) ≤ #FAS(G).

From Lemma 1 and results on the complexity of FAS counting problems pre-
sented in [22], we have the following corollary (minimum FAS are minimal, hence
the identity is a parsimonious reduction from the same problems on FAS).

Corollary 2. Counting the number of valid labelings of minimal size is #P-
complete, and of minimum size is #·OptP[log n]-complete.

However the correspondence given in Lemma 1 does not hold in general: there
may exist some FAS F such that lab with Flab = F is not a valid labeling (see
Fig. 2 for an example). As a consequence we do not directly get a counting reduc-
tion to #UD. It nevertheless holds that #UD is #P-hard, with the following
reduction.

Theorem 4. #UD is #P-hard.

Proof. We present a (polynomial time) parsimonious reduction from the problem
of counting the number of acyclic orientations of an undirected graph, proven to
be #P-hard in [18].

Given an undirected graph G = (V,E), let ≺ denote an arbitrary total order
on V . Construct the digraph G′ = (V,A) with A the orientation of E according
to ≺, i.e. (u, v) ∈ A ⇐⇒ {u, v} ∈ E and u ≺ v. An example is given on Fig. 3
(left). A key property is that G′ is acyclic, because A is constructed from an
order ≺ on V (a cycle would have at least one arc (u, v) with v ≺ u).
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Fig. 3. Left: an undirected graph G (instance of acyclic orientation counting), and the
obtained digraph G′ (instance of update digraph counting). Right: a valid labeling A
of G′, and the corresponding orientation O of G.

We claim that there is a bijection between the valid labelings of G′ and the
acyclic orientations of G: to a valid labeling lab : A → {⊕,�} of G′ we associate
the orientation

O = {(u, v) | (u, v) ∈ A and lab((u, v)) = ⊕}
∪ {(v, u) | (u, v) ∈ A and lab((u, v)) = �}.

First remark that O is indeed an orientation of E: each edge of E is trans-
formed into an arc of A, and each arc of A is transformed into an arc of O. An
example is given on Fig. 3 (right). Now observe that O is exactly obtained from
G′ by reversing the orientation of arcs labeled � by lab. Furthermore, a cycle in
O must contain at least one arc labeled � by lab, because G′ is acyclic and ⊕
labels copy the orientation of G′. The claim therefore follows directly from the
characterization of Theorem 2. ��

5 Quasi-quadratic Time Algorithm for Oriented Cacti

The difficulty of counting the number of update digraphs comes from the inter-
play between various possible cycles, as is assessed by the parsimonious reduction
from acyclic orientations counting problem to #UD. Answering the problem for
an oriented tree with m arcs is for example very simple: all of the 2m label-
ings are valid. Cactus undirected graphs are defined in terms of very restricted
entanglement of cycles, which we can exploit to compute the number of update
digraphs for any orientation of its edges.

Definition 2. A cactus is a connected undirected graph such that any vertex (or
equivalently any edge) belongs to at most one simple cycle (cycle without vertex
repetition). An oriented cactus G is a digraph such that Ḡ is a cactus.

Cacti may intuitively be thought as trees with cycles. This is indeed the idea
behind the skeleton of a cactus introduced in [9], via the following notions:

– a c-vertex is a vertex of degree two included in exactly one cycle,
– a g-vertex is a vertex not included in any cycle,
– remaining vertices are h-vertices,
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Fig. 4. An oriented cactus G, with {c, g, h}-vertex labels. Graft arcs are dashed, cycles
forming directed cycles are dotted, and cycles not forming directed cycles are solid.
Theorem 5 counts #UD(G) = 2123(23 − 1)(25 − 1)(24 − 2) = 48 608.

and a graft is a maximal subtree of g- and h-vertices with no two h-vertices
belonging to the same cycle. Then a cactus can be decomposed as grafts and
cycles (two classes called blocks), connected at h-vertices according to a tree skele-
ton. These notions directly apply to oriented cacti (see an example on Fig. 4).

Theorem 5. #UD is computable in time O(n2 log n log log n) for oriented
cacti.

Proof. The result is obtained from the skeleton of an oriented cactus G, since
potential forbidden cycles are limited to within blocks of the skeleton. From this
independence, any union of valid labelings on blocks is valid, and we have the
product

#UD(G) =
∏

H∈G
2|H| ∏

H∈�C
(2|H| − 1)

∏
H∈C

(2|H| − 2)

where G is the set of grafts of G, �C is the set of cycles forming directed cycles,
C is the set of cycles not forming directed cycles, and |H| is the number of arcs
in block H. Indeed, grafts cannot create forbidden cycles hence any {⊕,�}-
labeling will be valid, cycles forming a directed cycle can create exactly one
forbidden cycle (with � labels on all arcs), and cycles not forming a directed
cycle can create exactly two forbidden cycles (one for each possible direction of
the cycle). In a first step the skeleton of a cactus can be computed in linear
time [9]. Then, since the size n of the input is equal (up to a constant) to the
number of arcs, the size of the output contains O(n) bits (upper bounded by the
number of {⊕,�}-labelings), thus naively we have O(n) terms, each of O(n) bits,
and the O(n log n log log n) Schönhage–Strassen integer multiplication algorithm
gives the result. ��
Remark 3. Assuming multiplications to be done in constant time in the above
result would be misleading, because we are multiplying integers having a number
of digits in the magnitude of the input size. Also, the result may be slightly
strengthened by considering the O(n log n 22 log∗ n) algorithm by Fürer in 2007.

6 Series-Parallel Decomposition Method

In this section we present a divide and conquer method in order to solve #UD,
i.e. in order to count the number of valid labelings (update digraphs) of a given
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digraph. What will be essential in this decomposition method is not the orienta-
tion of arcs, but rather the topology of the underlying undirected (multi)graph
Ḡ. The (de)composition is based on defining two endpoints on our digraphs,
and composing them at their endpoints. It turns out to be closely related to
series-parallel graphs first formalized to model electric networks in 1892 [19].
In Subsect. 6.1 we present the operations of composition, and in Subsect. 6.2 we
show how it applies to the family of oriented series-parallel graphs.

6.1 Sequential, Parallel, and Free Compositions

Let us first introduce some notations and terminology on the characterization
of valid labelings provided by Theorem2. Given lab : A → {⊕,�}, we denote
G̃lab = (V, Ã) the multidigraph obtained by reversing the orientation of negative
arcs:

(i, j) ∈ Ã ⇐⇒ (i, j) ∈ A and lab((i, j)) = ⊕,
or (j, i) ∈ A and lab((j, i)) = �.

For simplicity we abuse the notation and still denote lab the labeling of the arcs
of G̃lab (arcs keep their label from G to G̃lab). From Theorem 2, lab is a valid
labeling if and only if G̃lab does not contain any cycle with at least one arc
labeled �, called forbidden cycle (it may contain cycles with all arcs labeled ⊕).
A path from i to j in G̃lab is called negative if it contains at least one arc labeled
�, and positive otherwise.

Definition 3. A source-sink labeled graph (ss-graph) (G,α, β) is a multigraph
G with two distinguished vertices α �= β. A triple (G,α, β) with G a digraph such
that (Ḡ, α, β) is a ss-graph, is called an oriented ss-graph (oss-graph).

We can decompose the set of update digraphs (denoted UD(G) = {lab : A →
{⊕,�} | lab is valid}) into an oss-graph (G,α, β), based on the follow sets.

UD(G)+α→β = {lab ∈ UD(G) | there exists a path from α to β in G̃lab,

and all paths from α to β in G̃lab are positive}
UD(G)−

α→β = {lab ∈ UD(G) | there exists a negative path from α to β in G̃lab}
UD(G)∅

α→β = {lab ∈ UD(G) | there exist nopath from α to β in G̃lab}

We define analogously UD(G)+β→α, UD(G)−
β→α, UD(G)∅

β→α, and partition UD(G)
as:

1. UD(G)+,+
α,β = UD(G)+α→β ∩ UD(G)+β→α

2. UD(G)+,∅
α,β = UD(G)+α→β ∩ UD(G)∅

β→α

3. UD(G)−,∅
α,β = UD(G)−

α→β ∩ UD(G)∅

β→α

4. UD(G)∅,+
α,β = UD(G)∅

α→β ∩ UD(G)+β→α

5. UD(G)∅,−
α,β = UD(G)∅

α→β ∩ UD(G)−
β→α

6. UD(G)∅,∅
α,β = UD(G)∅

α→β ∩ UD(G)∅

β→α

Notice that the three missing combinations, UD(G)+,−
α,β , UD(G)−,+

α,β and UD(G)−,−
α,β ,

would always be empty because such labelings contain a forbidden cycle. For
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α

u

β

(G, α, β)

α′ β′

(G′, α′, β′)

α β′

((G, α, β), (G′, α′, β′))

α β

((G, α, β), (G′, α′, β′))

α β

((G, α, β), G′)

Fig. 5. Example of series and parallel compositions, and a free composition at u, β′.

convenience let us denote S = {(+,+), (+, ∅), (−, ∅), (∅,+), (∅,−), (∅, ∅)}.
Given any oss-graph (G,α, β) we have

#UD(G) =
∑

(s,t)∈S

#UD(G)s,t
α,β (1)

where #UD(G)s,t
α,β = |UD(G)s,t

α,β |. Oss-graphs may be thought as black boxes,
we will compose them using the values of #UD(G)s,t

α,β , regardless of their inner
topologies.

Definition 4. We define three types of compositions (see Fig. 5).

– The series composition of two oss-graphs (G,α, β) and (G′, α′, β′) with V ∩
V ′ = ∅, is the oss-graph S((G,α, β), (G′, α′, β′)) = (D,α, β′) with D the one-
point join of G and G′ identifying components β, α′ as one single component.

– The parallel composition of two oss-graphs (G,α, β) and (G′, α′, β′) with V ∩
V ′ = ∅, is the oss-graph P((G,α, β), (G′, α′, β′)) = (D,α, β) with D the two-
points join of G and G′ identifying components α, α′ and β, β′ as two single
components.

– The free composition at v, v′ of an oss-graph (G = (V,A), α, β) and a
digraph G′ = (V ′, A′) with V ∩ V ′ = ∅, v ∈ V , v′ ∈ V ′, is the oss-graph
F((G,α, β), G′) = (D,α, β) with D the one-point join of G and G′ identify-
ing v, v′ as one single component.

Remark that the three types of compositions from Definition 4 also apply to
(undirected) ss-graph (Ḡ, α, β). Series and free compositions differ on the end-
points of the obtained oss-graph, which has important consequences on counting
the number of update digraphs, as stated in the following results. We will see in
Theorem 6 from Subsect. 6.2 that both series and free compositions are needed
in order to decompose the family of (general) oriented series-parallel graphs (to
be defined).

Lemma 2. For (D,α, β′) = S((G,α, β), (G′, α′, β′)), the values of #UD(D)s,t
α,β′

for all (s, t) ∈ S can be computed in time O(n log n log log n) (with n the binary
length of the values) from the values of #UD(G)s,t

α,β and #UD(G′)s,t
α′,β′ for all

(s, t) ∈ S.

Proof (sketch). The result is obtained by considering the 36 couples of some
UD(G)s,t

α,β and some UD(G′)s′,t′
α′,β′ , each combination giving an element of UD(D)s′′,t′′

α,β′

for some (s′′, t′′) ∈ S. ��
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Lemma 3. For (D,α, β) = P((G,α, β), (G′, α′, β′)), the values of #UD(D)s,t
α,β

for all (s, t) ∈ S can be computed in time O(n log n log log n) (with n the binary
length of the values) from the values of #UD(G)s,t

α,β and #UD(G′)s,t
α′,β′ for all

(s, t) ∈ S.

Proof (sketch). The proof is analogous to Lemma2, except that some couples
may create invalid labelings. ��

Note that Remark 3 also applies to Lemmas 2 and 3. For the free composition
the count is easier.

Lemma 4. For (D,α, β) = F((G,α, β), G′), we have #UD(D)s,t
α,β = #UD(G)s,t

α,β

#UD(G′) for all (s, t) ∈ S.

Proof. The endpoints of the oss-graph (D,α, β) are the endpoints of the oss-
graph (G,α, β), and it is not possible to create a forbidden cycle in the union of a
valid labeling on G and a valid labeling of G′, therefore the union is always a valid
labeling of D, each one belonging to the part (s, t) of (D,α, β) corresponding to
the part (s, t) ∈ S of (G,α, β). ��

6.2 Application to Oriented Series-Parallel Graphs

The series and parallel compositions of Definition 4 correspond exactly to the
class of two-terminal series-parallel graphs from [25,29].

Definition 5. A ss-graph (G,α, β) is two-terminal series-parallel (a ttsp-graph)
if and only if one the following holds.

– (G,α, β) is a base ss-graph with two vertices α, β and one edge {α, β}.
– (G,α, β) is obtained by a series or parallel composition1 of two ttsp-graphs.

In this case G alone is called a blind ttsp-graph.

Adding the free composition allows to go from two-terminal series-parallel
graphs to (general) series-parallel graphs [11,29]. More precisely, it allows exactly
to add tree structures to ttsp-graphs, as we argue now (ttsp-graphs do not con-
tain arbitrary trees, its only acyclic graphs being simple paths; e.g. one cannot
build a claw from Definition 5).

Definition 6. A multigraph G is series-parallel (sp-graph) if and only if all its
2-connected components are blind ttsp-graphs. A digraph G such that Ḡ is an
sp-graph, is called an oriented sp-graph (osp-graph).

The family of sp-graphs corresponds to the multigraphs obtained by series,
parallel and free compositions from base ss-graphs.

Theorem 6. G is an sp-graph if and only if (G,α, β) is obtained by series,
parallel and free compositions from base ss-graphs, for some α, β.
1 With Definition 4 applied to (undirected) ss-graphs.
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Proof (sketch). Free compositions allow to build all sp-graphs, because it offers
the possibility to create the missing tree structures of ttsp-graphs: arbitrary
1-connected components linking 2-connected ttsp-graphs. Moreover free compo-
sitions do not go beyond sp-graphs, since the obtained multigraphs still have
treewidth 2. ��
Theorem 7. #UD is solvable in time O(n2 log2 n log log n) on osp-graphs
(without promise).

Proof (sketch). This is a direct consequence of Lemmas 2, 3 and 4, because all
values are in O(2n) (the number of {⊕,�}-labelings) hence on O(n) bits, the
values of #UD(G)s,t

α,β are trivial for oriented base ss-graphs, and we perform
O(n log n) compositions (to reach Formula 1). The absence of promise comes
from a linear time recognition algorithm in [29] for ttsp-graphs, which also pro-
vides the decomposition structure. ��

Again, Remark 3 applies to Theorem 7.

7 Conclusion

Our main result is the #P-completeness of #UD, i.e. of counting the number
of non-equivalent block-sequential update schedules of a given AN f . We proved
that this count can nevertheless be done in O(n2 log n log log n) time for oriented
cacti, and in O(n2 log2 n log log n) time for oriented series-parallel graphs. This
last result has been obtained via a decomposition method providing a divide-
and-conquer algorithm.

Remark that cliques or tournaments are intuitively difficult instances of
#UD, because of the intertwined structure of potential forbidden cycles. It
turns out that K4 is the smallest clique that cannot be build with series, parallel
and free decompositions, and that series-parallel graphs (Definition 6) correspond
exactly to the family of K4-minor-free graphs [11] (it is indeed closed by minor
[27]). In further works we would like to extend this characterization and the
decomposition method to (di)graphs with multiple endpoints.

The complexity analysis of the algorithms presented in Theorems 5 and 7 may
be improved, and adapted to the parallel setting using the algorithms presented
in [7,15]. One may also ask for which other classes of digraphs is #UD(G) com-
putable efficiently (in polynomial time)? Since we found such an algorithm for
graphs of treewidth 2, could it be that the problem is fixed parameter tractable
on bounded treewidth digraphs? Rephrased more directly, could a general tree
decomposition (which, according to the proof of Theorem6, is closely related to
the series-parallel decomposition for treewidth 2) be exploited to compute the
solution to #UD? Alternatively, what other types of decompositions one can
consider in order to ease the computation of #UD(G)?

Finally, from the multiplication obtained for one-point join of two graphs
(Lemma 4 on free composition), we may ask whether #UD(G) is an evaluation
of the Tutte polynomial? From its universality [8], it remains to know whether
there is a deletion-contradiction reduction. However defining a Tutte polynomial
for directed graphs is still an active area of research [6,10,24,30].
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