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Abstract. It is known that while it is possible to convert between many
different representations of irrational numbers (e.g., between Dedekind
cuts and Cauchy sequences), it is in general not possible to do so subre-
cursively: conversions in general need to perform unbounded search. This
raises the question of categorizing the pairs of representations between
which either subrecursive conversion is possible, or is not possible.

The purpose of this paper is to prove the following positive result: for a
number of well-known representations (Beatty sequences, Dedekind cuts,
General base expansions, Hurwitz characteristics, and Locators) conver-
sion between the representations can be performed effectively and with
good subrecursive bounds.

Keywords: Computable analysis · Computational complexity ·
Subrecursion · Representation of irrational numbers

The benefits of various representations of real numbers by computable func-
tions is well-studied [10,16–18,21–23], and it is a standard result that the set
of “computable reals” is the same in most representations, but that uniformly
computable conversion between different representations is not always possi-
ble [18,22]. When computable conversion is possible, it is in general necessary
to perform unbounded search, and efficient, or subrecursive, conversion cannot
be done. For example, for any sufficiently large subrecursive class S of func-
tions satisfying mild conditions (e.g., the set of primitive recursive functions
or the set of Kalmár elementary functions), write SF ,SD, and SC for the sets
of irrational numbers representable by continued fractions, Dedekind cuts, and
rapidly converging Cauchy sequences computable by functions in S. Then it is
known that SF � SD � SC [13,21], and thus a fortiori there can in general
be no S-computable uniform conversion from the Cauchy representation to the
Dedekind cut representation, or from the Dedekind cut representation to the
continued fraction representation (for, if S is closed under composition, such
uniform conversions would imply SF = SD = SC).
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In this paper we derive upper bounds on the computational complexity of
conversion between various representations of irrational numbers where subre-
cursive conversion is possible. In general, an irrational α in some representation
R1 will be computable by some function f (e.g., for the continued fraction rep-
resentation [3; 7, 15, 1, 292, . . .] of π, f(0) = 3, f(1) = 7, . . .), and in some other
representation R2 by some function g (e.g., for the decimal expansion of π,
g(0) = 3, g(1) = 1, g(2) = 4); we are interested in the computational resources
required to compute g(n) when given access to the function f—in general this
will require both querying the function f a number of times and performing a
number of other operations, which we collectively call the “overhead” of conver-
sion. In addition to the intrinsic value of this is the consequence that, roughly,
if the overhead is a function in S, and S satisfies natural closure properties, it
follows that SR1 ⊆ SR2 .

The results of the paper are shown in the diagram below; all results in the
left-hand side of the diagram are proved explicitly in the paper. The arrows in
the right-hand side of the diagram are known from the literature [13–15]; we
defer more precise bounds on these (to wit, the existence of primitive recursive
bounds) to future research.

Dedekind cut

LocatorBeatty sequence

General base expansion Hurwitz characteristic

Complete left- and right- approximations

Continued fraction

Contractor Trace function

(Lem. 15 & 16)

(Lem. 19 & 20)

(Lem. 21 & 22)

(Lem. 17 & 18)

Subrecursive conversion impossible in general

Polynomial overhead between conversions Subrecursive conversion possible

For the purposes of the present paper, we are only interested in upper bounds
on conversion overhead. Our results show that conversion between Dedekind cuts
and other classic representations can be done with polynomial overhead (and,
by composition, conversion between any two of the considered representations in
the left-hand side of the diagram above can be done with exponential overhead).
More involved algorithms than the one we present here can indubitably be made,
forcing the upper bounds to be low-degree polynomials.

Certain prior results are known for the representations we consider, but at
a much coarser level of granularity; for example, Lehman [17] proved that the
Hurwitz characteristic of α is primitive recursive iff the Dedekind cut of α is
primitive recursive.

Remark 1. The overhead we consider is polynomial in the value of the index of
the desired approximation to an irrational; for example, if one wants to compute
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the nth digit in the base-b expansion of an irrational α ∈ (0, 1) from a Dedekind
cut of α, the overhead will be polynomial in n and b (as opposed to polynomial in
the binary representations of n and b). Note that accordingly, the conversions we
consider are thus computable in exponential time in the binary representations
of n and b.

Remark 2. As the representations in the above diagrams are most easily
expressed using functions, we believe that the natural formalizations for con-
versions are Turing machines with oracle access to the representations being
converted from. In other work on real number computation, there is a well-
developed notion of reducibility between representations that, roughly, requires
the representation to be written as an infinite string on one of the input tapes
of a type-2 Turing machine [6,12,22,24]. In that setting, for example, a function
f : Q ∩ [0, 1] −→ {0, . . . , b − 1} is most naturally expressed by imposing a com-
putable ordering on its domain (e.g., rationals appear in non-decreasing order of
their denominator), and the function values f(q) appear encoded as bit strings
in this order. We strongly conjecture that our results carry over to the type-2
setting mutatis mutandis.

1 Preliminaries

We assume basic familiary with computability and computational complexity
(standard textbooks are [1,8,20]). We write f(n) = poly(n) if f : N −→ N

is bounded above by a polynomial in n with positive integer coefficients, and
f(n) = polylog(n) if f is bounded above by a polynomial in log n with positive
integer coefficients.

We first define oracle machines in the usual way:

Definition 3. A (parameterized) function-oracle Turing machine is a (multi-
tape) Turing machine M = (Q, q0, F,Σ, Γ, δ) with initial state q0 ∈ Q, final
states F ⊆ Q, input and tape alphabets Σ and Γ (with Σ ⊆ Γ and { } ⊆ Γ \Σ),
and partial transition function δ such that M has a special query tape and two
distinct states qq, qa ∈ Q (the query and answer states).

To be executed, M is provided with a total function f : N −→ N (the oracle)
prior to execution on any input. We write Mf for M when f has been fixed–note
that Mf is then a usual (non-parameterized) function-oracle machine [8]. The
transition relation of Mf is defined as usual for Turing machines, except for the
state qq: If M enters state qq, let m be (a representation in the tape alphabet of)
the value currently on the query tape; M moves to state qa in a single step, and
the contents of the query tape are instantaneously changed to (the representation
in the tape alphabet of) f(m). The time- and space complexity of a function-
oracle machine is counted as for usual Turing machines, with the transition
between qq and qa taking |f(m)| time steps, and the space use of the query tape
after the transition being |f(m)|. The (input) size of a query is the number of
symbols on the query tape when M enters state qq.
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Function-oracle machines are in standard use in complexity theory of func-
tions on the set of real numbers (see, e.g., [11]).

Remark 4. All input and output tapes of Turing machines are assumed to have
alphabet {0, 1} in addition to the blank symbol. All work tapes have alphabet
{0, 1, 2} in addition to the blank symbol. Unless otherwise stated, all elements
of N, Z, and elements of any finite set, are assumed to be written on input,
query, and output tapes in their binary representation. Pairs (p, q) of integers
are assumed to be written using interleaved notation (i.e., the first bit of the
binary representation of p followed by the first bit of the binary representation
of q, and so forth). In case the representations have unequal length, the shortest
binary representation is padded with ‘2’ in the interleaving. Observe that the
length of the representation of a pair (p, q) is then O(log max{p, q}). All elements
p/q ∈ Q are assumed to be represented by the representation of (p, q).

As expected, using the semantic function of a function-oracle Turing machine
M with oracle to f as the oracle of another function-oracle Turing machine N
can be made to “cut out the middleman machine M”; that is, we could use a
single oracle machine with an oracle to f with bounds on time and oracle use
not much higher than the original machines M and N :

Proposition 5 (Compositionality). Let M and N be parameterized function-
oracle machines and let f be a map. Write g = φMf : A −→ B and
φNg : C −→ D for sets A,B,C,D (all representable by elements of {0, 1}+).
Let tM , tN , qM , qN , s : N −→ N be maps. Suppose that

1. Mf on input a ∈ A computes g(a) in time tM (|a|) using qM (|a|) queries to
f , and

2. Ng on input c ∈ C computes φNg in time tN (|c|) using qN (|c|) queries to g,
each of input size at most s(|c|).

Then there is a parameterized function-oracle machine P such that φf
P = φNg ,

and P f on input c ∈ C runs in time at most

O(qN (|c|)tM (s(|c|)) + tN (|c|))

using at most
qN (|c|)qM (s(|c|))

queries to f .

Proof. P is merely N with the original oracle tape replaced by two new work
tapes, a new oracle tape added, and each query to g replaced by execution of a
copy of M , with the new work tapes functioning as the “input” and “output”
tapes of the copy of M , and the new oracle tape as the oracle tape of the copy
of M . Every time N would query g, it writes the query a on the new “input”
work tape. The copy of M then computes g(a) using time at most tM (s(|c|))
with qM (s(|c|)) queries to f , hence a total of qN (|c|)qM (s(|c|)) queries to f . The
total time spent by P is the time spent by N plus at most tM (s(|c|)) steps per
oracle query, for a total of O(qN (|c|)tM (s(|c|)) + tN (|c|)) steps. ��
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In particular, function-oracle machines running in polynomial time and hav-
ing queries of polynomial input size are composable in the above way and yield
new machines running in polynomial time.

1.1 Farey Sequences and the Stern-Brocot Tree

A Farey sequence is a strictly increasing sequence of fractions between 0 and 1.
The Farey sequence of order k, denoted Fk, contains all fractions which when
written in their lowest terms, have denominators less than or equal to k.

Let a/b and c/d be fractions in their lowest terms. The fraction m(a/b, c/d) =
(a + c)/(b + d) is called the mediant of a/b and c/d. The ordered pair of two
consecutive fractions in a Farey sequence is called a Farey pair. It is easy to see
that a/b < m(a/b, c/d) < c/d if a/b �= c/d.

We arrange the fractions strictly between 0 and 1 in a binary search tree TF.

Definition 6. The Farey pair tree TF is the complete infinite binary tree where
each node has an associated Farey pair (a/b, c/d) defined by recursion on the
position σ ∈ {0, 1}∗ of a node in TF as follows: TF(ε) = (0/1, 1/1), and if TF(σ) =
(a/b, c/d), then TF(σ0) = (a/b, (a+c)/(b+d)) and TF(σ1) = ((a+c)/(b+d), c/d).
The depth of a node in TF is the length of its position (with the depth of the root
node being 0).

Abusing notation slightly, we do not distinguish between the pair TF(σ) =
(a/b, c/d) and the open interval (a/b, c/d).

The (left) Stern-Brocot tree1 TSB is the infinite binary tree obtained by the
Farey pair tree where each Farey pair (a/b, c/d) has been replaced by its mediant
m(a/b, c/d) = (a + c)/(b + d).

Thus, we have, for example:

TF(0) =
(

0
1
,
1
2

)
, TF(1) =

(
1
2
,
1
1

)
, TF(10) =

(
1
2
,
2
3

)
, TF(0000) =

(
0
1
,
1
5

)

We shall later need the two following ancillary propositions which we include
without proof.

Proposition 7. Let p/q ∈ Q∩ [0, 1] be a fraction in its lowest terms. Then, p/q
is a fraction in a Farey pair at depth at most p + q − 1 in TF.

Efficient computations of the elements of the Stern-Brocot tree (and hence
also the Farey pair tree) is possible [2,19]; for our purposes, we simply need the
following result:

Proposition 8. There is a Turing machine M such that for any σ ∈ {0, 1}∗,
φM (σ) = TF(σ) and M runs in time poly(1 + |σ|).
1 “Left” because the Stern-Brocot tree originally concerns the interval (0, 2) and we

are interested only in (0, 1) which corresponds to the left child of the Stern-Brocot
tree.
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2 Representations

We now introduce a number of well-known representations of real numbers. Rep-
resentations by Dedekind cuts [4,7], Beatty sequences [3]2, and Hurwitz charac-
teristics [9]3 were known in the 19th century or earlier. The representations by
locators and general base expansions are, to our knowledge, new, but natural. In
particular, the general base expansion yields the base-b expansions of α in any
integer base b ≥ 2 on demand; it turns out that this is the key to subrecursive
equivalence with Dedekind cuts (whereas the base-b expansion for any fixed b is
not subrecursively equivalent to Dedekind cuts, see [14]).

Definition 9. A function D : Q −→ {0, 1} is the (left) Dedekind cut of the
irrational number α when D(q) = 0 iff q < α.

Definition 10. A function B : N −→ Z is the (function computing the) Beatty
sequence of the irrational number α when

B(q)
q

< α <
B(q) + 1

q

Definition 11. A function Lα : Q × Q −→ {0, 1} is the locator of the real
number α when Lα(p, q) = 0 iff α is in the interval (p, q).

Definition 12. Let (0.D1D2 . . .)b be the base-b expansion of the real number α.
We define the function Eα

b : N −→ {0, . . . , b − 1} by Eα
b (0) = 0 and Eα

b (i) = Di

(for i ≥ 1).
A general base expansion of the real number α is the function

E : (N \ {0, 1}) × N −→ {0, . . . , b − 1}

where E(b, q) = Eα
b (q).

Definition 13. The Hurwitz characteristic of the irrational number α ∈ (0, 1)
is the map H : N −→ {0, 1}∗ such that H(0),H(1),H(2), . . . is a path in the
Stern-Brocot three, and: 4

α = lim
q→∞ m(TF(H(q))) = lim

q→∞ TSB(H(q))

2 Apparently, what is now known as Beatty sequences was used earlier by Bernard
Bolzano [5], whence this representation of reals could also be called Bolzano mea-
sures.

3 Use of the Hurwitz characteristic to represent numbers rather than a stepping stone
for other material is a much younger invention [17].

4 Strictly speaking, the classic Hurwitz characteristic corresponds to a path through
the full Stern-Brocot tree (not just the “left” tree as we consider here), and hence the
classic Hurwitz characteristic H ′ of α ∈ (0, 1) is the function defined by H ′(0) = 0
and H ′(q) = 0 · H(q − 1) for q > 0. This does not change our results in any material
way.
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3 Representations Subrecursively Equivalent
to Dedekind Cuts

The remainder of the paper is devoted to proving the following theorem:

Theorem 14. For each representation R below there is a parameterized
function-oracle machine M such that, for every irrational α between 0 and 1,
M when provided with an oracle to the R-representation of α, will compute the
Dedekind cut of R, and N when provided with an oracle to the Dedekind cut of
α, will compute the R-representation of α. Let n be the largest integer in the
input (i.e., n if domain of R is N, n = max{n1, n2} if the domain of R is N×N,
max{p, q} if the domain of R is Q, and max{p1, q1, p2, q2} if the domain of R
is Q × Q). Then, M and N will produce their output in time poly(n) using at
most poly(n) oracle calls of size at most poly(n).

– the locator of α
– the Beatty sequence of α
– the general base expansion of α
– the Hurwitz characteristic of α

Furthermore, conversion between any two of the above representations (e.g., from
the locator of α to the Beatty sequence of α) can be done by function-oracle
machines producing their output using exponential (in n) time, exponential (in
n) number of oracle calls, and exponential (in n) size of oracle calls.

The proof of conversion from and to Dedekind cuts is contained in the sequence
of lemmas below that all relate the various representations to the Dedekind
cut. All lemmas assert existence of parameterized function-oracle machines that
will convert from or to the Dedekind cut of α with polynomial overhead (often
with smaller overhead, whence the result follows a fortiori). The result that we
can convert between any of the representations using exponential overhead then
follows by an application of Proposition 5.

3.1 Conversion Between General Base Expansions and Dedekind
Cuts

Lemma 15. There is a parameterized function-oracle Turing machine M such
that if D : Q −→ {0, 1} is the Dedekind cut of any irrational number α ∈ (0, 1),
then φD

M : (N \ {0, 1}) × N −→ {0, . . . , b − 1} is the general base expansion of
α. Moreover, on input (b, n) ∈ (N \ {0, 1}) × N, MD runs in time O(b2poly(n)),
and uses at most n log2 b oracle calls, each of input size at most O(n log2 b) bits.

Proof. M constructs the sequence Eα
b (1), Eα

b (2), . . . , Eα
b (n) inductively by main-

taining an open interval Ii = (vi, wi) with rational endpoints vi, wi ∈ Q for each
i ∈ {0, . . . , n − 1} such that (i) α ∈ Ii, (ii) vi is a multiple of b−i, and (iii)
wi − vi = b−i. Initially, I0 = (0, 1). For each interval Ii, M splits Ii = (vi, wi)
into b equal-sized intervals

(vi, vi + b−(i+1)), . . . , (vi + (b − 1)b−(i+1), vi + b−i) = (vi + (b − 1)b−(i+1), wi)
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Observe that, for any interval (r1, r2), if D(r1) = D(r2) = 0, then α > r2, and
if D(r1) = D(r2) = 1, then α < r1 (and the case D(r1) = 1 ∧ D(r2) = 0 is not
possible). Thus, M can use D to perform binary search on (the endpoints of) the
above set of intervals to find the (necessarily unique) interval (vi + jb−(i+1), vi +
(j+1)b−(i+1)) that contains α (observe that, for this interval, D(vi+jb−(i+1)) = 0
and D(vi+(j+1)b−(i+1)) = 1). We then set (vi+1, wi+1) = (vi+jb−(i+1), vi+(j+
1)b−(i+1)). By construction, we have Eα(b, i+1) = j. Clearly, in each step i, there
are at most log2 b oracle calls to D, and the construction of each of the b intervals
and writing on the query tape can be performed in time polynomial in the
binary representation of the numbers involved, hence in time O(polylog(bi)) =
O(poly(i)polylog(b)). Hence, the total time needed to produce E(b, n) is at most
O(bnpoly(n)polylog(b)) = O(b2poly(n)) with at most n log2 b queries to D. In
each oracle call, the rational numbers involved are all endpoints of intervals
where the endpoints are sums of negative powers of b and where the exponent of
all powers are at most n. Hence, all oracle calls can be represented by rational
numbers using at most O(n log2 b) bits. ��

Lemma 16. There is a parameterized function-oracle Turing machine M such
that if E : (N \ {0, 1}) × N −→ {0, . . . , b − 1} is the general base expansion of α,
then φE

M : Q −→ {0, 1} is the Dedekind cut of α. Moreover, on input p/q ∈ Q,
ME runs in time O(log(max{p, q})), and uses exactly 1 oracle call of input size
at most O(log(q)).

Proof. On input p/q ∈ Q, M first checks if q = 1, and outputs 0 if p ≤ 0 and
1 if p ≥ 1. Otherwise, q > 1, and M computes E(q, 1); by definition, this is an
element of {0, . . . , q − 1}. Observe that D(p/q) = 0 iff p/q < α iff p ≤ E(q, 1).
Hence, M outputs 0 if p ≤ E(q, 1), and outputs 1 otherwise. M needs to write
the (representation of the) pair (q, 1) on the oracle tape and perform a single
comparison of numbers of magnitude at most max{p, q}, hence M uses time
O(log max{p, q}) for the comparison. M uses exactly one oracle call to E with
the pair (q, 1), the representation of which uses at most O(log q) bits. ��

3.2 Conversion Between Locators and Dedekind Cuts

Lemma 17. There is a parameterized function-oracle Turing machine M such
that if D : Q −→ {0, 1} is the Dedekind cut of any irrational number α ∈
(0, 1), then φD

M : Q × Q −→ {0, 1} is the locator of α. Moreover, on input
(p1/q1, p2/q2) ∈ Q × Q, MD runs in time O(log(max{p1, q1, p2, q2})), and uses
at most 2 oracle calls, each of input size at most O(log max{p1, q1, p2, q2}).

Proof. Let L be the locator of α. Observe that for any two rational num-
bers p1/q1, p2/q2 ∈ Q, we have α ∈ (p1/q1, p2/q2) iff L(p1/q1, p2/q2) = 0 iff
(D(p1/q1) = 0∧D(p2/q2) = 1). Hence, M simply queries D (using the binary rep-
resentations of the rationals) twice, outputs 1 if (D(p1/q1) = 0 ∧ D(p2/q2) = 1),
and outputs 1 otherwise. Clearly, the time needed is the time needed to transfer
p1/q1 and p2/q2 to the query tape plus some constant independent of the size of
the input, hence M uses time O(log(max{p1, q1, p2, q2})). ��
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Lemma 18. There is a parameterized function-oracle Turing machine M such
that if L : Q × Q −→ {0, 1} is the locator of any irrational number α ∈ (0, 1),
then φL

M : Q −→ {0, 1} is the Dedekind cut of α. Moreover, on input p/q ∈ Q,
ML runs in time O(polylog(max{p, q})), and uses at most 1 oracle call of input
size at most O(log max{p, q}).

Proof. Observe that for p/q ∈ (0, 1) ∩ Q, we have D(p/q) = L(p/q, 1). Hence,
M may, on input p/q simply perform a single query to L; this requires copying
its input to the oracle tape, i.e. only linear time in the size of the represen-
tation of the input. By convention, the input p/q is representable in at most
O(log max{p, q}) bits. ��

3.3 Conversion Between Beatty Sequences and Dedekind Cuts

Lemma 19. There is a parameterized function-oracle Turing machine M such
that if D : Q −→ {0, 1} is the Dedekind cut of any irrational number α ∈ (0, 1),
then φD

M : N −→ Z is the Beatty sequence of α. Moreover, on input n ∈ N, MD

runs in time O(polylog(n)), and uses at most �log n
 oracle calls to D, each of
input size at most O(log n).

Proof. On input n, M finds the least i ∈ {1, . . . , n} such that D( i
n ) = 1. As

D( i
n ) = 1 and j > i implies D( j

n ) = 1, the least i can be found by binary
search, halving the search range in each step5. This can be done by maintaining
two integers l and u ranging in {1, . . . , n}, and requires a maximum of log n
halving steps. In each halving step, M finds the midpoint m between l and u,
writes its binary representation on the query tape, queries D, and records the
answer. Then, l and u are updated using basic binary arithmetic operations
on integers, represented by at most O(log n) bits—if D(m/n) = 1, u := m,
and if D(m/n) = 0, l := m. Clearly, in each step, the arithmetic and update
operations can be performed in time polynomial in the size of the representation
of the integers, hence in time polylog(n). As (i − 1)/n < α < i/n, we have
B(n) = i − 1, and MD thus returns i − 1. ��
Lemma 20. There is a parameterized function-oracle Turing machine M such
that if B : N −→ Z is the Beatty sequence of any irrational number α ∈ (0, 1),
then φB

M : Q −→ {0, 1} is the Dedekind cut of α. Moreover, on input p/q ∈ Q,
MB runs in time O(log(max{p, q})), and uses exactly one oracle call of input
size O(log q).

Proof. Observe that the Dedekind cut D of α satisfies D(p/q) = 0 if p ≤ B(q),
and D(p/q) = 1 if p > B(q). Thus, M may perform the oracle call B(q) just
once, resulting in an integer B(q) (where B(q) ∈ {0, 1 . . . , q−1}). The comparison
p ≤ B(q) can be performed bitwise using the binary representations of p and
B(q) which is clearly linear in log(max{B(q), p}) ≤ log max{p, q}. Writing q on
the oracle tape clearly also takes time linear in log q. ��
5 Observe that a brute-force search is also possible, yielding at most n oracle calls

with input size at most O(log n) and obviating the need to reason about arithmetic
operations.
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3.4 Conversion Between Hurwitz Characteristics and Dedekind
Cuts

Lemma 21. There is a parameterized function-oracle Turing machine M such
that if H : N −→ {0, 1}∗ is the Hurwitz characteristic of any irrational number
α ∈ (0, 1), then φH

M : Q −→ {0, 1} is the Dedekind cut of α. Moreover, on input
p/q ∈ Q, MH runs in time poly(max{p, q}), and uses exactly one oracle call of
input size at most O(log max{p, q}).

Proof. On input p/q ∈ Q (where we assume wlog. that p/q is reduced to lowest
terms), M computes H(p + q) (using polylog(max{p, q}) operations to compute
the binary representation of p + q, and then performing a single oracle call;
note that the result of the oracle H(p + q) is a bit string of length exactly
p + q = poly(max{p, q}). M then computes TF(H(p + q)) (by Proposition 8 this
can be done in time poly(1 + |H(p + q)|) = poly(max{p, q})) to obtain a Farey
pair (a/b, c/d) such that a/b < α < c/d. By Proposition 7, any reduced fraction
p/q occurs as one of the fractions in a Farey pair in TF at depth at most p+q−1,
and thus exactly one of (i) p/q ≤ a/b and (ii) c/d ≤ p/q must hold. Observe
that D(p/q) = 0 iff p/q ≤ a/b. Whether (i) or (ii) holds can be tested in time
O(log max{a, b, c, d, p, q}). It is an easy induction on the depth d to see that a
numerator or denominator in any fraction occurring in a Farey pair at depth
d in TF is at most 2d. Hence, max{a, b, c, d, p, q} ≤ 2p+q, and the test can thus
be performed in time O(p + q) = O(max{p, q}). Thus, M needs a total time of
poly(max{p, q}). ��

Lemma 22. There is a parameterized function-oracle Turing machine M such
that if D : Q −→ {0, 1} is the Dedekind cut of any irrational number α ∈ (0, 1),
then φD

M : N −→ {0, 1}∗ is the Hurwitz characteristic of α. Moreover, on input
n ∈ N, MD runs in time poly(n), and uses exactly n oracle calls, each of input
size at most O(n).

Proof. On input n, M constructs a path of length n in the tree TSB corresponding
to the bit string H(n) by building the corresponding path in TF. M can do
this by starting at i = 0 and incrementing i, maintaining a current Farey pair
(ai/bi, ci/di) such that α ∈ (ai/bi; ci/di) for i = 0, . . . , n as the mediant of
(ai/bi, ci/di) gives rise to the two children pL = (ai/bi, (ai + ci)/(bi + di)) and
pR = ((ai + ci)/(bi + di), ci/di) of (ai/bi, ci/di) in TF. Because α is irrational,
it must be in exactly one of the open intervals (ai/bi, (ai + ci)/(bi + di)) and
((ai + ci)/(bi + di), ci/di), and thus (ai+1/bi+1, ci+1/di+1) must be either pL or
pR. Clearly, α ∈ (ai/bi, (ai+ci)/(bi+di)) iff D(ai+ci/bi+di) = 1 iff the ith bit of
H(n) is 0. Hence, M starts with (a0/b0, c0/d0) = (0/1, 1/1), and constructs the
n intervals (ai/bi, ci/di) for i = 1, . . . , n by computing the mediant and querying
D in each step. Observe that the query in step i is the (binary representation
of the) mediant of a Farey pair at depth i − 1, thus its denominator is bounded
above by 2i and its binary representation uses at most O(log 2i) = O(i) bits.

As the numerators and denominators at depth i in TF are of size at most 2i

(hence representable by i bits), computing the mediant at step i can be done
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in time at most O(i) = O(n) by two standard schoolbook additions, and the
step i contains exactly one query to D. Hence, the total time needed for M to
construct H(n) is at most O(npoly(n)) = poly(n), with exactly n oracle calls,
each of size at most O(log 2n) = O(n). ��

4 Conclusion and Future Work

We have analyzed conversions between representations equivalent to Dedekind
cuts, and we have seen that we can convert efficiently between any two such
representations (Theorem 14) . We strongly conjecture that the same efficiency
is not possible between representations equivalent to continued fractions. Indeed,
we regard the representations equivalent to continued fractions to be the most
interesting and challenging ones from a mathematical point of view. Among these
representations we find the trace functions and the contractors (see the figure
on Page 2). A function T : Q → Q is a trace function for the irrational number
α when |α − r| > |α − T (r)|. A function F : [0, 1] → (0, 1) is a contractor if
we have |F (r1) − F (r2)| < |r1 − r2| for any rationals r1, r2 where r1 �= r2.
Both trace functions and contractors can be converted to (and from) continued
fractions without unbounded search, and converting from a contractor to a trace
function is easy as it can be proved that every contractor is a trace function.
But conversely, we believe that it is not possible to convert a trace function to
a contractor within reasonably small time or space bounds.

Conversions between representations equivalent to rapidly converging Cauchy
sequences also deserve a further study. One such representation will be base-2
expansions over the digits 0 (zero), 1 (one) and 1 (minus one). In this represen-
tation, the rational number 1/4 can be written as 0.01, but also as 0.11. Another
interesting representation are the fuzzy Dedekind cuts. A fuzzy Dedekind cut for
an irrational number α is a function D : Z×N → {0, 1} satisfying (i) D(p, q) = 0
implies α < (p + 1)/q and (ii) D(p, q) = 1 implies (p − 1)/q < α. Thus, each
irrational α will have (infinitely) many fuzzy Dedekind cuts. If D is a fuzzy cut
for α and we know that D(3, 8) = 0, then we know that α lies below 4/8 (but we
do not know if α lies below 3/8). Moreover, if we also know that D(6, 16) = 1,
then we know that α lies in the interval (3/8 − 1/16, 3/8 + 1/8) (but we do not
know if α lies below or above 3/8).

Finally, some well-known representations are not subrecursively equivalent
to any of the three representations above, for example the base-b representation
for any integer base b ≥ 2. It is possible to convert a Dedekind cut to a base-b
expansion and a base-b expansion into a Cauchy sequence without unbounded
search, but not the other way around [14,21]. It is interesting to investigate the
set of representations subrecursively equivalent to such expansions.
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