
Deterministic and Nondeterministic
Iterated Uniform Finite-State
Transducers: Computational
and Descriptional Power

Martin Kutrib1, Andreas Malcher1, Carlo Mereghetti2(B) ,
and Beatrice Palano3

1 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,andreas.malcher}@informatik.uni-giessen.de

2 Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano,
via Celoria 16, 20133 Milan, Italy

carlo.mereghetti@unimi.it
3 Dipartimento di Informatica “G. degli Antoni”, Università degli Studi di Milano,

via Celoria 18, 20133 Milan, Italy
palano@unimi.it

Abstract. An iterated uniform finite-state transducer (iufst) operates
the same length-preserving transduction, starting with a sweep on the
input string and then iteratively sweeping on the output of the previ-
ous sweep. The iufst accepts or rejects the input string by halting in an
accepting or rejecting state along its sweeps. We consider both the deter-
ministic (iufst) and nondeterministic (niufst) version of this device. We
show that constant sweep bounded iufsts and niufsts accept all and
only regular languages. We study the size cost of removing nondeter-
minism as well as sweeps on constant sweep bounded niufsts, and the
descriptional power of constant sweep bounded iufsts and niufsts with
respect to classical models of finite-state automata. Finally, we focus on
non-constant sweep bounded devices, proving the existence of a proper
infinite nonregular language hierarchy depending on the sweep complex-
ity both in the deterministic and nondeterministic case. Also, we show
that the nondeterministic devices are always more powerful than their
deterministic variant if at least a logarithmic number of sweeps is given.

Keywords: Iterated transducers · State complexity · Sweep
complexity · Language hierarchies

1 Introduction

The notion of an iterated uniform finite-state transducer (iufst) has been intro-
duced in [13] and can be described as a finite transducer that iteratively sweeps
from left to right over the input tape while performing the same length-preserving
transduction at each sweep. In particular, the output of the previous sweep is
c© Springer Nature Switzerland AG 2020
M. Anselmo et al. (Eds.): CiE 2020, LNCS 12098, pp. 87–99, 2020.
https://doi.org/10.1007/978-3-030-51466-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51466-2_8&domain=pdf
http://orcid.org/0000-0002-7778-7257
http://orcid.org/0000-0003-3948-4658
https://doi.org/10.1007/978-3-030-51466-2_8

88 M. Kutrib et al.

taken as input for every new transduction sweep. (Throughout the paper, the
attribute “uniform” indicates that the transduction is identical at each sweep:
the transduction always starts from the same initial state on the leftmost tape
symbol, and operates the same transduction rules at each computation step.)
This model is motivated by typical applications of transducers or cascades of
transducers, where the output of one transducer is used as the input for the next
transducer. For example, finite-state transducers are used for the lexical anal-
ysis of computer programs and the produced output is subsequently processed
by pushdown automata for the syntactical analysis. In [7], cascades of finite-
state transducers are used in natural language processing. Another example is
the Krohn-Rhodes decomposition theorem which shows that every regular lan-
guage is representable as the cascade of several finite-state transducers, each one
having a “simple” algebraic structure [8,10]. Finally, it is shown in [6] that cas-
cades of deterministic pushdown transducers lead to a proper infinite hierarchy
in between the deterministic context-free and the deterministic context-sensitive
languages with respect to the number of transducers involved.

In contrast to all these examples and other works in the literature (see, e.g.,
[5,16,18]), where the subsequently applied transducers are in principle different
and not necessarily length-preserving, the model of iufsts introduced in [13]
requires that the same transducer is applied in every sweep and that the trans-
duction is deterministic and length-preserving. More precisely, an iufst works
in several sweeps on a tape which initially contains the input string concate-
nated with a right endmarker. In every sweep, the finite-state transducer starts
in its initial state at the first tape cell, is applied to the tape, and prints its
output on the tape. The input is accepted or rejected, if the transducer halts
in an accepting or rejecting state. In [13], iufsts both with a constant number
and a non-constant (in the length of the input) number of sweeps are investi-
gated. In the former case, it is possible to characterize exactly the set of regular
languages. Thus, tight upper and lower bounds for converting iufsts into deter-
ministic finite automata (dfas) and vice versa are established. Furthermore, as
always done for several models (see, e.g., [1–3]), the state complexity of language
operations, that is, the costs in terms of the number of states needed for union,
intersection, complementation, and reversal, is investigated in depth. Finally, the
usually studied decidability questions such as emptiness, finiteness, equivalence,
and inclusion are proved to be NL-complete, showing that these questions have
the same computational complexity as for dfas. For the case of a non-constant
number of sweeps, the situation is quite different. It is shown that a logarith-
mic number of sweeps is sufficient to accept unary non-semilinear languages,
while with a sublogarithmic number of sweeps only regular languages can be
accepted. Moreover, the existence of a finite hierarchy with respect to the num-
ber of sweeps is obtained. Finally, all usually studied decidability questions are
shown to be undecidable and not even semidecidable for iufsts performing at
least a logarithmic number of sweeps.

Iterated Uniform Finite-State Transducers 89

In this paper, we enhance the model of iufsts by nondeterminism, thus
obtaining their nondeterministic version (niufsts). As in [13], we are interest
in niufsts exhibiting both a constant and non-constant number of sweeps.

Constant sweep bounded niufsts are proved to accept exactly regular lan-
guages. So, their ability of representing regular languages in a very succinct
way turns out to be worth investigating, as well as comparing such an ability
with that of other more traditional models of finite-state automata. This type
of investigation, whose importance is witnessed by a well consolidated trend in
the literature, focuses on the size of formalisms for representing languages and
is usually referred to as descriptional complexity. Being able to have “small”
devices representing/accepting certain languages, leads to relevant consequences
either from a practical point of view (less hardware needed to construct such
devices, less energy absorption, less cooling problems, etc.), and from a the-
oretical point of view (higher manageability of proofs and representations for
languages, reductions of difficult problems on general computing devices to the
same problems on simpler machines, etc.). The reader is referred to, e.g., [11],
for a thoughtful survey on descriptional complexity and its consequences.

Non-constant sweep bounded niufsts are then studied for their computa-
tional power, i.e., the ability of accepting language families. In particular, such
an ability is related to the number of sweeps as a function of the input length.

After defining niufsts in Sect. 2, we discuss in detail an example that demon-
strates the size advantages of niufsts with a constant number of sweeps in com-
parison with its deterministic variant and the classical models of deterministic
and nondeterministic finite automata (nfas). Precisely, we exhibit a language
accepted by a niufst such that any equivalent iufst requires exponentially more
states and sweeps, while any equivalent nfa (resp., dfa) requires exponentially
(resp., double-exponentially) more states.

In Sect. 3, we study size advantages of niufsts with a constant number of
sweeps in more generality. By evaluating the state cost of sweep removal, we show
that any niufst featuring n states and k sweeps can be simulated by an nk-
state nfa, and hence by a 2nk

-state dfa as well. Next, we exhibit a unary (resp.,
binary) language witnessing the obtained size blow-up for turning a constant
sweep niufst into an equivalent nfa (resp., dfa) is unavoidable.

In the last two sections, we consider niufsts with a non-constant number
of sweeps. First, we establish in Sect. 4 an infinite proper hierarchy with respect
to the number of sweeps. Interestingly, this result also extends the known finite
hierarchy in the deterministic case to an infinite hierarchy.

Finally, we study in Sect. 5 the question of whether the nondeterministic
model is more powerful than the deterministic model. We get that the question
can be answered in the affirmative if at least a logarithmic number of sweeps is
provided. Moreover, we show that nondeterminism cannot be matched in power
by the deterministic paradigm even if a sublinear number of sweeps is given.

90 M. Kutrib et al.

2 Definitions and Preliminaries

We denote the set of positive integers and zero by N. Given a set S, we write 2S

for its power set and |S| for its cardinality. Let Σ∗ denote the set of all words
over the finite alphabet Σ. The empty word is denoted by λ, and Σ+ = Σ∗ \{λ}.
The length of a word w is denoted by |w|.

Roughly speaking, an iterated uniform finite-state transducer is a finite-state
transducer which processes the input in multiple passes (also sweeps). In the first
pass it reads the input word followed by an endmarker and emits an output word.
In the following passes it reads the output word of the previous pass and emits a
new output word. The number of passes taken, the sweep complexity, is given as
a function of the length of the input. Here, we are interested in weak processing
devices: we will consider length-preserving finite-state transducers, also known
as Mealy machines [17], to be iterated.

Formally, we define a nondeterministic iterated uniform finite-state trans-
ducer (niufst) as a system T = 〈Q,Σ,Δ, q0,�, δ, F+, F−〉, where Q is the set
of internal states, Σ is the set of input symbols, Δ is the set of output symbols,
q0 ∈ Q is the initial state, � ∈ Δ\Σ is the endmarker, F+ ⊆ Q is the set of accept-
ing states, F− ⊆ (Q\F+) is the set of rejecting states, and δ : Q×(Σ∪Δ) → 2Q×Δ

is the transition function, which is total on (Q \ (F+ ∪ F−)) × (Σ ∪ Δ) and such
that the endmarker is emitted only if it is read (i.e., no transition (q,�) ∈ δ(p, x)
is allowed, with x �= �). The niufst T halts whenever the transition function
is undefined (which may happen only for states from F+ ∪ F−) or T enters an
accepting or rejecting state at the end of a sweep. Since transduction is applied
in multiple passes, that is, in any but the initial pass it operates on an output of
the previous pass, the transition function depends on input symbols from Σ ∪Δ.
We denote by T (w) the set of possible outputs produced by T in a complete
sweep on input w ∈ (Σ ∪ Δ)∗.

A computation of the niufst T on input w ∈ Σ∗ consists of a sequence of
words w1, . . . , wi, wi+1, . . . ∈ (Σ ∪Δ)∗ satisfying w1 ∈ T (w�) and wi+1 ∈ T (wi)
for i ≥ 1. The computation is halting if there exists an r ≥ 1 such that T halts
on wr, thus performing r sweeps. The input word w ∈ Σ∗ is accepted by T
if all computations on w are halting and at least one computation halts in an
accepting state. The input word w ∈ Σ∗ is rejected if all computations on w
are halting and none of the computations halts in an accepting state. Indeed,
the output of the last sweep is not used. The language accepted by T is the set
L(T) ⊆ Σ∗ defined as L(T) = {w ∈ Σ∗ | w is accepted by T }.

A niufst is said to be deterministic (iufst) if and only if |δ(p, x)| ≤ 1,
for all p ∈ Q and x ∈ (Σ ∪ Δ). In this case, we simply write δ(p, x) = (q, y)
instead of δ(p, x) = {(q, y)} assuming that the transition function is a mapping
δ : Q × (Σ ∪ Δ) → Q × Δ.

We chose to designate our transductors as “uniform” since they perform the
same transduction at each sweep: they always start from the same initial state
on the leftmost tape symbol, operating the same transduction rules at every
computation step. Yet, we quickly observe that a niufst is clearly a restricted
version of a linear bounded automaton (see, e.g., [12]). So, any language accepted

Iterated Uniform Finite-State Transducers 91

by a niufst is context-sensitive. We leave it as an open problem to exhibit
context-sensitive languages which cannot be accepted by any niufst.

Given a function s : N → N, a niufst is said to be of sweep complexity s(n)
whenever it accepts or rejects any word of length n in at most s(n) sweeps. In
this case, we use the notation s(n)-niufst. Note that sweep complexity requires
that any input is either accepted or rejected, that is, the niufst always halts. It
is easy to see that a 1-iufst (resp., 1-niufst) is actually a deterministic (resp.,
nondeterministic) finite automaton (dfa and nfa, respectively).

Throughout the paper, two accepting devices are said to be equivalent if and
only if they accept the same language.

2.1 Accepting Languages by Iterated Transductions: An Example

In order to clarify the notion of acceptance by iterated transduction, we propose
a language and design several accepting devices for such a language. For any
integer k ≥ 2, we define the block language

Bk = {u1#u2# · · · #um | ui ∈ {0, 1}k, m > 1, ∃i < m : ui = um }.

To accept Bk by a dfa, 22
k+1 states are necessary and sufficient. On the other

hand, an exponentially smaller nfa A may accept Bk as follows:

1. In a first phase, on each block in the input string, A stores the block in its
finite control and then nondeterministically decides whether to keep the block
or to ignore it. Along this phase, A checks the correct block structure of the
input so far scanned as well. This phase takes 2k+1 states.

2. Once A decides to keep a block, say u, in its finite control, a second phase
starts in which A scans the rest of the input checking the correct block struc-
ture and guessing another block w to be matched symbol-by-symbol against
u. If matching is successful and w is the last block, then A accepts. This phase
takes 2k+1 · (k + 1) states.

Globally, the nfa A features 2k+1 + 2k+1 · (k + 1) = 2k+1 · (k + 2) states.
Indeed, A can also be seen as a 2k+1 · (k + 1)-state 1-niufst which outputs

the scanned symbol at each step. However, paying by the number of sweeps (see,
e.g., [15]), we can build a k-niufst T for Bk with only O(k) states. Informally:

1. In a first sweep, T checks the correct block structure of the input string,
nondeterministically chooses two blocks to be matched symbol-by-symbol,
and compares the first symbol of the two blocks by storing the first symbol
of the first block in its finite control and replacing these two symbols with a
blank symbol.

2. At the ith sweep, T checks the ith symbol of the two blocks chosen in the
first sweep by storing and blank-replacing symbols as explained at the previ-
ous point. To distinguish the first sweep (where both nondeterministic block
choices and symbol comparisons take place) from the others (where only
symbol comparisons take place), a special symbol can replace the first input
symbol at the beginning of the first sweep.

92 M. Kutrib et al.

It is not hard to see that O(k) states are needed to check input formatting along
the first sweep, and that a constant number of states suffices to blank-replacing
and comparing input symbols. Indeed, after k sweeps all nondeterministically
chosen blocks symbols are compared so that T may correctly accept or reject.
This gives the claimed state and sweep bounds for T .

We remark that: (i) a 2k(k + 4)-state 2k-iufst is designed in [13] for Bk,
(ii) 22

k+1 states are necessary and sufficient to accept Bk by a dfa, and that
(iii) nk states are sufficient for a dfa to simulate an n-state k-iufst [13]. These
facts, together with above designed O(k)-states k-niufst, show that niufsts
can be exponentially more succinct than iufsts either in the number of states,
or the number of sweeps, or possibly both. Indeed, we also have that niufsts
can be exponentially more succinct than nfas and double-exponentially more
succinct than dfas.

In the next section, we approach more generally the analysis of the descrip-
tional power of niufsts with respect to their deterministic counterparts and
classical finite-state models.

3 Reducing Sweeps and Removing Nondeterminism

Let us begin by showing how to reduce sweeps from niufsts and evaluate the
state cost of reduction. We will then use this construction to reduce to one the
sweeps of constant sweep bounded niufst, thus obtaining equivalent nfas whose
number of states will be suitably bounded.

Theorem 1. Let n, k > 0 be integers. Every n-state k-niufst (resp., k-iufst)
can be converted to an equivalent ni-state �k

i
-niufst (resp., �k
i
-iufst).

Proof. Let T = 〈Q,Σ,Δ, q0,�, δ, F+, F−〉 be a k-niufst with |Q| = n. To
simplify the proof, we show how to transform a k-iufst into an equivalent
�k
2
-niufst T ′ with n2 states, i.e, we prove the theorem for i = 2. We sup-

pose that δ is completely defined. The opposite case is briefly discussed at the
end of the proof.

The idea is to simulate two consecutive sweeps of T in one sweep. To this
aim, the set of states of T ′ is defined as Q2, its initial state is the pair (q0, q0),
and the set of output symbols is Δ2. In order to define the transition function δ′

of T ′, we remark that: (i) the simulation of the first two sweeps takes place on
the input string in Σ∗, while (ii) the simulations for the other sweeps take place
on output strings in (Δ2)∗ but only the second component of scanned symbols
from Δ2 is to be considered for the computation in T ′. Therefore, we use σ to
denote either a symbol from Σ for situation (i) and the second component of a
symbol from Δ2 for situation (ii) and, with a slight abuse of notation, we define
δ′ : Q2 × (Σ ∪ Δ) → 2Q2×Δ2

as

δ′((s1, s2), σ) � ((t1, t2), (τ1, τ2)) ⇔ δ(s1, σ) � (t1, τ1) and δ(s2, τ1) � (t2, τ2).

Iterated Uniform Finite-State Transducers 93

A state (f1, f2) ∈ Q2 is accepting (resp., rejecting) in T ′ whenever either f1 ∈ F+

(resp., f1 ∈ F−) or f2 ∈ F+ but f1 �∈ F− (resp, f2 ∈ F− but f1 �∈ F+). The
reader may verify that the n2-state �k

2
-niufst T ′ is equivalent to T .
In case δ of T is not completely defined (and this may happen only on states

in F+ ∪ F−), the number of states of T ′ does not increase as well. In fact,
suppose T halts in q ∈ F+ ∪ F− in the middle of the input string on the jth
sweep. We define δ′ in such a way that the simulation of the jth sweep of T
remains in q at every step and after the endmarker scanning as well.

It is not hard to see that this construction can be suitably adapted to merge
2 < i ≤ k sweeps into one, thus yielding a niufst equivalent to T featuring �k

i

sweeps and ni states. Yet, it is also easy to see that the construction preserves
determinism. ��

The sweep reduction presented in Theorem 1 can be directly used to trans-
form constant sweep bounded niufsts into equivalent nfas:

Theorem 2. Let n, k > 0 be integers. Every n-state k-niufst can be converted
to an equivalent nfa with at most nk states.

Proof. Given an n-state k-niufst, by Theorem 1 we can obtain an equivalent
nk-state 1-niufst which is actually a nfa. ��

We obtain the optimality of the state blow-up in Theorem 2 by establishing
an optimality condition for the size cost of sweep reduction proved in Theorem 1.
To this aim, for n, k > 0, let the unary language

Ln,k = { ac·nk | c ≥ 0 }.

In [13], an n-state k-iufst for Ln,k is provided, whereas any equivalent dfa or
nfa needs at least nk states. By using Ln,k as witness language, we can show

Theorem 3. Let n, k, i > 0 be integers such that i divides k. There exists an
n-state k-niufst T such that any equivalent k

i -niufst T ′ cannot have less than
ni states.

Proof. Suppose by contradiction, we can always design T ′ with k
i sweeps and

s < ni states. By using our construction in Theorem 1, we can obtain from T ′

an equivalent 1-niufst A with s
k
i < nk states. Clearly, having a single sweep,

A is a nfa. By using this approach on the n-state k-iufst above recalled for the
language Ln,k, we could obtain an equivalent nfa featuring less than nk states,
a contradiction. ��

By Theorem 3, one may easily obtain

Corollary 4. For any integers n, k > 0, there exists an n-state k-niufst which
cannot be converted to an equivalent nfa with less than nk states.

We conclude this section by discussing the optimal size cost of turning con-
stant sweep bounded niufsts into dfas, i.e., the cost of removing both nonde-
terminism and sweeps at once:

94 M. Kutrib et al.

Theorem 5. Let n, k > 0 be integers. Every n-state k-niufst can be converted
to an equivalent dfa with at most 2nk

states.

Proof. The result follows by first converting, according to Theorem 2, the
n-state k-niufst into an equivalent nk-state nfa which, in turn, is con-
verted to an equivalent 2nk

-state dfa by the usual powerset construction (see,
e.g., [12]) ��

The optimality of the size blow-up in Theorem 5 can be proved by considering
the following language for any n, k > 1:

En,k = { vbw | v, w ∈ {a, b}∗, |w| = c · nk for c > 0 }.

Theorem 6. For any integers m > 1 and k > 0, there is an m-state k-niufst
which cannot be converted to an equivalent dfa with less than 2(m−1)k states.

Proof. As above quoted, an n-state k-niufst is given in [13], for the unary
language Ln,k = { ac·nk | c ≥ 0 }. Such a device can be trivially converted to an
n-state k-niufst T for the binary language {w ∈ {a, b}∗ | |w| = c·nk for c > 0}.
We use T as a module for designing an (n + 1)-state k-niufst T ′ accepting the
language En,k. Informally, T ′ uses a separate state to scan the input string
during the first sweep and, upon reading a symbol b, it nondeterministically
decides whether to keep on reading the input string or to call the n-state k-iufst
module T which checks whether the length of the remaining part of the input
string is a multiple of nk.

On the other hand, by suitably using pigeonhole arguments (see, e.g., [4]),
we can show that any dfa for En,k needs at least 2nk

states. In fact, suppose by
contradiction a dfa A exists, accepting En,k with less than 2nk

states. Clearly, by
counting arguments, there exist α, β ∈ {a, b}∗ such that α �= β, |α| = |β| = nk,
and the computation of A on both α and β ends up in the same (non-accepting)
state q. Since α �= β, without loss of generality, we can assume that α = xay
and β = vbw, for suitable x, y, v, w ∈ {a, b}∗ such that |x| = |v| and |y| = |w|.

Now, consider any string z ∈ {a, b}∗ satisfying |z| = nk − |y| = nk − |w|,
and let the strings α′ = α z and β′ = β z. Note that 1 ≤ |z| ≤ nk, and so
|α′| = |β′| ≤ 2 · nk. Therefore, the acceptance/rejection by A on α′ and β′ is
only due to the symbol at position |x| + 1 = |v| + 1. This clearly means that the
string α′ does not belong to En,k while β′ does. However, in the computation
on both α′ and β′, the dfa A reaches the same state q before consuming z and,
being deterministic, the same state after consuming z. Hence, either A accepts
both the two strings or rejects both of them, a contradiction. ��

4 An Infinite Sweep Hierarchy

We now consider s(n)-niufsts where s(n) is a non-constant function. In what
follows, by log n we denote the logarithm of n to base 2. In [13] it is proved
that o(log n) sweep bounded iufsts accept regular languages only, and that

Iterated Uniform Finite-State Transducers 95

such a logarithmic sweep lower bound is tight for nonregular acceptance. Then,
a three-level proper language hierarchy is established, where O(n) sweeps are
better than O(

√
n) sweeps which, in turn, are better than O(log n) sweeps for

iufst. Here, we extend the hierarchy to infinitely many levels for both iufsts
and niufsts.

Let f : N → N be a non-decreasing function. Its inverse is defined as the
function f−1(n) = min{m ∈ N | f(m) ≥ n }. To show an infinite hierarchy
dependent on some resources, where the limits of the resources are given by
some functions in the length of the input, it is often necessary to control the
lengths of the input so that they depend on the limiting functions. Usually, this
is done by requiring that the functions are constructible in a desired sense. The
following notion of constructibility expresses the idea that the length of a word
relative to the length of a prefix is determined by a function. A non-decreasing
computable function f : N → N is said to be constructible if there exists an
s(n)-iufst T with s(n) ∈ O(f−1(n)) and an input alphabet Σ ·∪ {a}, such that

L(T) ⊆ { amv | m ≥ 1, v ∈ Σ∗, |v| = f(m) }
and such that, for all m ≥ 1, there exists a word of the form amv in L(T). The
s(n)-iufst T is said to be a constructor for f .

Since constructible functions describe the length of the whole word dependent
on the length of a prefix, it is obvious that each constructible function must be
greater than or equal to the identity. In order to show that the class of functions
that are constructible in this sense is sufficiently rich to witness an infinite dense
hierarchy, we next show that it is closed under addition and multiplication:

Proposition 7. Let f : N → N and g : N → N be two constructible functions.
Then the functions f + g and f · g are constructible as well.

In [13] it is shown that the unary language Luexpo = { a2k | k ≥ 0 } is accepted
by some s(n)-iufst with s(n) ∈ O(log n). The construction can straightfor-
wardly be extended to show that the function f(n) = 2n is constructible. More-
over, again from [13], we know that Leq = {u$v | u ∈ Σ∗

1 , v ∈ Σ∗
2 , and |u| = |v| }

is a language accepted by some s(n)-iufst with s(n) ∈ O(n), where Σ1 is an
alphabet not containing the symbol $ and Σ2 is an arbitrary alphabet. Even
in this case, only a tiny modification shows that the identity function is con-
structible. These facts together with Proposition 7 yield, in particular, that the
function f(n) = nx for all x ≥ 1 is constructible.

In what follows, we use the fact, proved in [13], that the copy language with
center marker {u$u | u ∈ {a, b}∗ } is accepted by some s(n)-iufst satisfying
s(n) ∈ O(n). The next theorem provides some language that separates the levels
of the hierarchy.

Theorem 8. Let f : N → N be a constructible function, Tf be a constructor
for f with input alphabet Σ ·∪ {a}, and b be a new symbol not belonging to
Σ ·∪ {a}. Then language Lf = {u$uv | u ∈ {a, b}∗, v ∈ Σ∗, a2|u|+1v ∈ L(Tf) }
is accepted by some s(n)-iufst with s(n) ∈ O(f−1(n)).

96 M. Kutrib et al.

Proof. Since the suffix v of a word w ∈ Lf must be the suffix of some word
a2|u|+1v in L(Tf), we have that |v| = f(2|u|+1) and |w| = 2|u|+1+f(2|u|+1).
Since s(n) is claimed to be of order O(f−1(n)), an s(n)-iufst accepting Lf may
perform at least O(2|u| + 1) many sweeps.

An s(n)-iufst T accepting Lf essentially combines in parallel the acceptors
for the copy language with center marker and the language L(Tf). To this end, T
establishes two tracks in its output. On the first track T simulates an acceptor for
the copy language {u$u | u ∈ {a, b}∗ }, where the first symbol of Σ (i.e., the first
symbol of v) acts as endmarker. In this way, the prefix u$u is verified. The result
of the computation is written to the output track. This task takes O(2|u| + 1)
sweeps. On the second track T simulates the constructor Tf , where all symbols
up to the first symbol of Σ (i.e., all symbols of the prefix u$u) are treated as
input symbols a. In this way, T verifies that |v| = f(2|u| + 1). The result of the
computation is written to the output track. This task takes O(2|u| + 1) sweeps.

Finally, T rejects whenever one of the above simulations ends rejecting.
Instead, T accepts if it detects positive simulation results of the two tasks on
the tracks. ��

To show that the witness language Lf of Theorem 8 is not accepted by any
s(n)-niufst with s(n) ∈ o(f−1(n)), we use Kolmogorov complexity and incom-
pressibility arguments. General information on this technique can be found, for
example, in the textbook [14, Ch. 7]. Let w ∈ {a, b}∗ be an arbitrary binary
string. Its Kolmogorov complexity C(w) is defined to be the minimal size of a
binary program (Turing machine) describing w. The following key fact for using
the incompressibility method is well known: there exist binary strings w of any
length such that |w| ≤ C(w).

Theorem 9. Let f : N → N be a constructible function, Tf be a constructor
for f with input alphabet Σ ·∪ {a}, and b be a new symbol not belonging to
Σ ·∪ {a}. Then language Lf = {u$uv | u ∈ {a, b}∗, v ∈ Σ∗, a2|u|+1v ∈ L(Tf) }
cannot be accepted by any s(n)-niufst with s(n) ∈ o(f−1(n)).

Proof. Contrarily, let us assume that Lf is accepted by some s(n)-niufst T =
〈Q,Σ ·∪ {a, b},Δ, q0,�, δ, F+, F−〉 with s(n) ∈ o(f−1(n)).

We choose a word u ∈ {a, b}∗ long enough such that C(u) ≥ |u|. Then, we
consider an accepting computation of T on u$uv, and derive a contradiction by
showing that u can be compressed via T . To this end, we describe a program P
which reconstructs u from a description of T , the length |u|, and the sequence of
the o(f−1(n)) many states q1, q2, . . . , qr entered along the accepting computation
at that moments in which T reads the first symbol after the $ along its o(f−1(n))
sweeps, n being the total length of the input.

Basically, the program P takes the length |u| and enumerates the finitely
many words u′v′ with u′ ∈ {a, b}|u|, v′ ∈ Σ∗, and |v′| = f(2|u| + 1). Then, for
each word in the list, it simulates by dovetailing all possible computations of T
on u′v′ and, in particular, it simulates o(f−1(n)) successive partial sweeps of T
on u′v′, where the ith sweep is started in state qi for 1 ≤ i ≤ r. If the simulation
ends accepting, we know that u$u′v′ belongs to Lf and, thus, u′ = u.

Iterated Uniform Finite-State Transducers 97

Let us consider the size of P . Let |T | denote the constant size of the descrip-
tion of T , and |P | denote the constant size of the program P itself. The binary
description of the length |u| takes O(log(|u|)) bits. Each state of T can be encoded
by O(log(|Q|)) bits. So, we have

C(u) ∈ |P |+ |T |+O(log(|u|)+o(f−1(n)) ·O(log(|Q|)) = O(log(|u|))+o(f−1(n)).

Since n = 2|u| + 1 + f(2|u| + 1) and f(n) ≥ n, for all n ≥ 1, we have n ∈
Θ(f(2|u| + 1)). So, we can conclude that C(u) ∈ O(log(|u|)) + o(|u|) = o(|u|).
This contradicts our initial assumption C(u) ≥ |u|, for u long enough. Therefore,
T cannot accept Lf with sweep complexity o(f−1(n)). ��

Finally, we would like to remark that, due to our observation that all functions
f(n) = nx are constructible for x ≥ 1, it is an easy application of the above
theorems to obtain the following infinite hierarchies with regard to the number
of sweeps both in the deterministic and the nondeterministic case. Namely: For
every x ≥ 1 we have that the set of all languages that are accepted by s(n)-iufsts
(s(n)-niufsts) with s(n) ∈ O(n1/(x+1)) is properly included in the set of all
languages that are accepted by s(n)-iufsts (s(n)-niufsts) with s(n) ∈ O(n1/x).

5 Nondeterminism Beats Determinism on All Levels

We now turn to compare the computational power of iufsts and niufsts. Since
for sweep bounds of order o(log n) both variants accept regular languages only
(see [9,13]), it remains to consider sweep bounds beyond o(log n). Here, we will
show that there exist witness languages that are accepted by some nondeter-
ministic s(n)-niufst with s(n) ∈ O(log n), but cannot be accepted by any
deterministic s(n)-iufst with s(n) ∈ o(n), thus separating determinism from
nondeterminism for almost all levels of the sweep hierarchy.

For any integer k ≥ 1, let bink : {0, 1, 2, . . . , 2k−1} → {0, 1}k map any integer
in the range from 0 to 2k − 1 to its binary representation of length k, starting
from the left with the least significant bit and possibly completed with zeroes to
the right. E.g., bin4(5) = 1010 and bin4(12) = 0011. We consider the language

D = { akb2
k

bink(0)u0 bink(1)u1 · · · bink(2k − 1)u2k−1 bink(i)ui |
k ≥ 2, 1 ≤ i ≤ 2k − 1, uj ∈ {a, b}k for all 1 ≤ j ≤ 2k − 1 }.

Theorem 10. The language D can be accepted by an s(n)-niufst satisfying
s(n) ∈ O(log n).

Proof. We sketch the construction of an s(n)-niufst T that accepts D with
s(n) ∈ O(log n). The basic idea of the construction is to use two output tracks.
So, during its first sweep, T splits the input into two tracks, each one getting the
original input. In addition, T verifies if the structure of the input is correct, that
is, if the input is of the form a+b+0+{a, b}+({0, 1}+{a, b}+)+1+{a, b}+ with at
least two leading a’s. If the form is incorrect, T rejects.

98 M. Kutrib et al.

In subsequent sweeps, T behaves as follows. The original input on the first
track is kept but the symbols can be marked, while on the second track the
input is successively shifted to the right. More precisely, in any sweep the first
unmarked symbol a in the leading a-block is marked. In the following b-block,
every second unmarked symbol b is marked. In the further course of the sweep,
the leftmost unmarked symbol in any {0, 1}-block as well as in any {a, b}-block
is marked. On the second track, the input is shifted to the right by one symbol,
whereby the last symbol is deleted and some blank symbol is added at the left.

Let k ≥ 2 be the length of the leading a-block. When the last of its symbols
is marked, T checks in the further course of the sweep whether in the following b-
block exactly one symbol remains unmarked, and whether in all remaining blocks
the last symbol is being marked. Only in this case the computation continues.
In all other cases T halts rejecting.

From the construction so far, we derive that if the computation continues
then all but the second block have the same length, namely, length k. Moreover,
since in the second block every second unmarked symbol has been marked during
a sweep and one symbol is left, the length of the block is 2k.

Next, T continues to shift right the content of the second track until the
{0, 1}-blocks are aligned with their neighboring {0, 1}-blocks (except for the
last one). This takes other k sweeps. In the next sweep, T checks if the {0, 1}-
block on the second track is an integer that is one less the integer in the aligned
block on the first track. This can be done by adding one on the fly and comparing
the result with the content on the first track. Only if the check is successful, T
continues. Otherwise, it halts rejecting. In the former case, we get that the
sequence of {0, 1}-blocks are the numbers from 0 to 2k − 1 in ascending order.

In the next sweep, T guesses the {0, 1}-block that has to match the rightmost
{0, 1}-block and marks it appropriately. Finally, this block together with its
following {a, b}-block is symbolwise compared with the last {0, 1}-block together
with its following {a, b}-block in another 2k sweeps. To this end, note that T
can detect that the last block follows when it scans a {0, 1}-block consisting of
1’s only. For the comparison, the symbols can further be marked appropriately.

Now, T accepts only if the guessed {0, 1}-block together with its following
{a, b}-block match the last {0, 1}- and {a, b}-block. Otherwise T rejects. The
construction shows that for any word from D there is one accepting computation
and that only words from D are accepted. So, T accepts D.

Altogether, T performs at most 1+k +k +1+2k ∈ O(k) sweeps. The length
of the input is k + 2k + (2k + 1) · 2k = O(k2k). Since log(O(k2k)) ∈ O(k), the
niufst T obeys the sweep bound s(n) ∈ O(log n). ��

To see that the language D is not accepted by any s(n)-iufst with s(n) ∈
o(n), we use again Kolmogorov complexity and incompressibility

Theorem 11. The language D cannot be accepted by any s(n)-iufst satisfying
s(n) ∈ o(n).

Acknowledgements. The authors wish to thank the anonymous referees for useful
comments and remarks.

Iterated Uniform Finite-State Transducers 99

References

1. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The size-cost of Boolean
operations on constant height deterministic pushdown automata. Theoret. Com-
put. Sci. 449, 23–36 (2012)

2. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Boolean language operations
on nondeterministic automata with a pushdown of constant height. J. Comput.
Syst. Sci. 90, 99–114 (2017)

3. Bertoni, A., Mereghetti, C., Palano, B.: Trace monoids with idempotent generators
and measure-only quantum automata. Nat. Comput. 9(2), 383–395 (2010)

4. Bianchi, M.P., Mereghetti, C., Palano, B.: Complexity of promise problems on
classical and quantum automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.)
Computing with New Resources. LNCS, vol. 8808, pp. 161–175. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13350-8 12

5. Bordihn, H., Fernau, H., Holzer, M., Manca, V., Mart́ın-Vide, C.: Iterated sequen-
tial transducers as language generating devices. Theoret. Comput. Sci. 369(1–3),
67–81 (2006)

6. Citrini, C., Crespi-Reghizzi, S., Mandrioli, D.: On deterministic multi-pass analysis.
SIAM J. Comput. 15(3), 668–693 (1986)

7. Friburger, N., Maurel, D.: Finite-state transducer cascades to extract named enti-
ties in texts. Theoret. Comput. Sci. 313(1), 93–104 (2004)

8. Ginzburg, A.: Algebraic Theory of Automata. Academic Press, Cambridge (1968)
9. Hartmanis, J.: Computational complexity of one-tape turing machine computa-

tions. J. ACM 15(2), 325–339 (1968)
10. Hartmanis, J., Stearns, R.E.: Algebraic Structure Theory of Sequential Machines.

Prentice-Hall, Upper Saddle River (1966)
11. Holzer, M., Kutrib, M.: Descriptional complexity - an introductory survey. In:

Mart́ın-Vide, C. (ed.) Scientific Applications of Language Methods, pp. 1–58. Impe-
rial College Press (2010)

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Boston (1979)

13. Kutrib, M., Malcher, A., Mereghetti, C., Palano, B.: Descriptional complexity of
iterated uniform finite-state transducers. In: Hospodár, M., Jirásková, G., Kon-
stantinidis, S. (eds.) DCFS 2019. LNCS, vol. 11612, pp. 223–234. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23247-4 17

14. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its
Applications, 3rd edn. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11298-1

15. Malcher, A., Mereghetti, C., Palano, B.: Descriptional complexity of two-way push-
down automata with restricted head reversals. Theoret. Comput. Sci. 449, 119–133
(2012)

16. Manca, V.: On the generative power of iterated transductions. In: Words, Semi-
groups, and Transductions - Festschrift in Honor of G. Thierrin, pp. 315–327. World
Scientific (2001)

17. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34,
1045–1079 (1955)

18. Pierce, A.: Decision problems on iterated length-preserving transducers. Bachelor’s
thesis, SCS Carnegie Mellon University, Pittsburgh (2011)

https://doi.org/10.1007/978-3-319-13350-8_12
https://doi.org/10.1007/978-3-030-23247-4_17
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1

	Deterministic and Nondeterministic Iterated Uniform Finite-State Transducers: Computational and Descriptional Power
	1 Introduction
	2 Definitions and Preliminaries
	2.1 Accepting Languages by Iterated Transductions: An Example

	3 Reducing Sweeps and Removing Nondeterminism
	4 An Infinite Sweep Hierarchy
	5 Nondeterminism Beats Determinism on All Levels
	References

