
Sorting Parity Encodings by Reusing Variables

Leroy Chew(B) and Marijn J. H. Heule

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
lchew@andrew.cmu.edu

Abstract. Parity reasoning is challenging for CDCL solvers: Refuting
a formula consisting of two contradictory, differently ordered parity con-
straints of modest size is hard. Two alternative methods can solve these
reordered parity formulas efficiently: binary decision diagrams and Gaus-
sian Elimination (which requires detection of the parity constraints). Yet,
implementations of these techniques either lack support of proof logging
or introduce many extension variables.

Thecompact,commonly-usedencodingofparityconstraintsusesTseitin
variables. We present a technique for short clausal proofs that exploits
these Tseitin variables to reorder the constraints within the DRAT sys-
tem. The size of our refutations of reordered parity formulas is O(n log n).

1 Introduction

Modern SAT solving technology is based on Conflict Driven Clause Learning
(CDCL) [12]. The resolution proof system [16] has a one-to-one correspon-
dence [15] with CDCL solving. In practice, however, the preprocessing techniques
used in modern solvers go beyond what can be succinctly represented in a res-
olution proof. As a consequence, when we need to present verifiable certificates
of unsatisfiable instances, resolution is not always sufficient. Extended Resolution
(ER) [20] is a strong proof system that can polynomially simulate CDCL and many
other techniques. However, ER is not necessarily the most useful system in prac-
tice, as we also want to minimise the degree of the polynomial simulation.

The DRAT proof system [7] is polynomially equivalent to ER [8]. Yet most
practitioners favour DRAT due to its ability to straightforwardly simulate known
preprocessing and inprocessing techniques. DRAT works by allowing inference
to go beyond preserving models and instead preserves only satisfiability.

In this paper, we demonstrate DRAT’s strengths on a particular kind of un-
satisfiable instances that involve parity constraints. Formulas with parity con-
straints have been benchmarks for SAT for decades. The Dubois family encodes
the refutation of two contradictory parity constraints over the same variables
using the same variable ordering. Urquhart formulas [21] encode a modulo two
sum of the degree of each vertex of a graph, the unsatisfiability comes from
an assertion that this sum is odd, a violation of the Handshake Lemma. The
Parity family from Crawford and Kearns [3] takes multiple parity instances on
a set of variables and combines them together. For these problems, practical
solutions have been studied using Gaussian elimination, equivalence reasoning,
binary decision diagrams and other approaches [5,6,9–11,13,18,19,22].
c© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 1–10, 2020.
https://doi.org/10.1007/978-3-030-51825-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-51825-7_1

2 L. Chew and M.J.H. Heule

Extracting checkable proofs in a universal format has been another mat-
ter entirely. While it is believed that polynomial size circuitry exists to solve
these problems, actually turning them into proofs could mean they may only
be “short” in a theoretical polynomial-size sense rather than a practical one.
Constructing a DRAT proof of parity reasoning has been investigated theoreti-
cally [14], but no implementation exists to actually produce them nor is it clear
whether the size is still reasonable to be useful in practice.

There has been some investigation into looking at DRAT without the use
of extension variables. DRAT−, which is DRAT without extension variables, is
somewhere in between resolution and ER in terms of power. Several simulation
results for DRAT− [2], show that it is a powerful system even without the sim-
ulation of ER. A key simulation technique was the elimination and reuse of a
variable, which we use to find short DRAT− proofs of a hard parity formula.

The structure of parity constraints can be manipulated by reusing variables
and we exploit the associativity and commutativity of the parity function. We
demonstrate this on formulas similar to the Dubois family except the variables
now appear in a random order in one parity constraint. We show how to obtain
DRAT proofs of size O(n log n) without using additional variables. Our method
can also be used to produce ER proofs of similar size with new variables.

2 Preliminaries

In propositional logic a literal is a variable x or its negation x, a clause is a
disjunction of literals and a Conjunctive Normal Form (CNF) is conjunction
of clauses. A unit clause is a clause containing a single literal. We denote the
negation of literal l as l (or ¬l). The variable corresponding to literal l is var(l).
If C is a clause, then C is the conjunction of the negation of the literals in C
each a unit clause. In this paper, we treat clauses/formulas as unordered and
not containing more than one copy of each literal/clause respectively.

Unit propagation simplifies a conjunctive normal form F by building a partial
assignment and applying it to F . It builds the assignment by satisfying any literal
that appears in a unit clause. Doing so may negate opposite literals in other
clauses and result in them effectively being removed from that clause. In this
way, unit propagation can create more unit clauses and can keep on propagating
until no more unit clauses remain or the empty clause is reached. We denote
that the empty clause can be derived by unit propagation applied to CNF F
by F �1 ⊥. Since unit propagation is an incomplete but sound form of logical
inference this is a sufficient condition to show that F is a logical contradiction.

The DRAT proof system. Below we define the rules of the DRAT proof sys-
tem. Each rule modifies a formula by either adding or removing a clause while
preserving satisfiability or unsatisfiability, respectively.

Definition 1 (Asymmetric Tautology (AT) [7]). Let F be a CNF formula.
A clause C is an asymmetric tautology w.r.t. F if and only if F ∧ C �1 ⊥.

Sorting Parity Encodings by Reusing Variables 3

Asymmetric tautologies are also known as RUP (reverse unit propagation)
clauses. The rules ATA and ATE allow us to add and eliminate AT clauses. ATA
steps can simulate resolution steps and weakening steps.

F (ATA: C is AT w.r.t. F)
F ∧ C

F ∧ C (ATE: C is AT w.r.t. F)
F

Definition 2 (Resolution Asymmetric Tautology (RAT) [7]). Let F be a
CNF formula. A clause C is a resolution asymmetry tautology w.r.t. F if and
only if there exists a literal l ∈ C such that for every clause l ∨ D ∈ F it holds
that F ∧ D ∧ C �1 ⊥.

The rules RATA and RATE allow us to add and eliminate RAT clauses.
RATA can be used to add new variables that neither occur in F or anywhere
else. This can be used to simulate extension steps in ER.

F (RATA: C is RAT w.r.t. F)
F ∧ C

F ∧ C (RATE: C is RAT w.r.t. F)
F

3 A parity contradiction based on random orderings

In this section we will detail the main family of formulas investigated in this
work. These formulas will be contradictions expressing both the parity and non-
parity on a set of variables.

We define the parity of propositional literals a, b, c as follows

xor(a, b, c) := (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c)

Let X = {x1, . . . , xn}, and let σ be a bijection between literals on X, that
preserves negation (σ(¬l) = ¬σ(l)). Let e denote the identity permutation on
the literals of X. Let T = {t1, . . . , tn−3}. We define Parity(X,T, σ) as

xor(σ(x1), σ(x2), t1) ∧
n−4∧

j=1

xor(tj , σ(xj+2), tj+1) ∧ xor(tn−3, σ(xn−1), σ(xn))

This formula is satisfiable if and only if the total parity of {σ(xi) | xi ∈
X} is 1. The T variables act as Tseitin variables and whenever the formula is
satisfied ti+1 is the sum modulo two of σ(x1), . . . , σ(xi+2). The final clauses,
xor(tn−3, σ(xn−1), σ(xn)) thus are satisfied when the sum of tn−3, σ(xn−1) and
σ(xn) is 1 mod 2. Suppose we pick σ so that there is some i ∈ [n] such that
σ(xj) is a negative literal if and only if j = i. Let T ′ = {t′1, . . . , t′n−3} be
another set of Tseitin variables. Parity(X,T, σ)∧Parity(X,T ′, e) is false as it
states the parity of X is true but also states it false. However the permutation
σ obfuscates the similarities between the two Parity parts of the formula.

Were σ(xj) = xj for all j �= i and σ(xi) = −xi then these formulas would be
equivalent to the Dubois formulas and a linear proof could be made by induc-
tively deriving clauses that express t′j = tj for j < i − 1 and then t′j �= tj for
j ≥ i − 1. This will always allow us to derive a contradiction. While a linear

4 L. Chew and M.J.H. Heule

ATA

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

q ∨ a ∨ b ∨ c

RATE

d p ∨ a ∨ b

d p ∨ a ∨ b

d p ∨ a ∨ b

d p ∨ a ∨ b

d p ∨ q ∨ c

d p ∨ q ∨ c

d p ∨ q ∨ c

d p ∨ q ∨ c

RATA

p ∨ c ∨ b

p ∨ c ∨ b

p ∨ c ∨ b

p ∨ c ∨ b

p ∨ q ∨ a

p ∨ q ∨ a

p ∨ q ∨ a

p ∨ q ∨ a

ATE

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

d q ∨ a ∨ b ∨ c

Fig. 1. DRAT steps required for Lemma 1, d denotes a deletion step.

resolution proof is known for the Dubois, it is unknown what the size of the
shortest resolution proof of Parity(X,T, σ)∧Parity(X,T ′, e) for a random σ.
While the Dubois family are a special case of these formulas, these formulas are
in turn a special case of the Tseitin graph formulas [20] where the vertex degree
is always 3.

When σ �= e we still have a contradiction due to the commutativity of the par-
ity function. However such a straightforward DRAT proof becomes obstructed
by the disarranged ordering. This permutation also makes these formulas hard
for CDCL solvers (see Section 4). We will show that Parity(X,T ′, e) can be
efficiently reordered. Afterwards a short resolution proof arises. This brings us
to our main theoretical result.

Theorem 1. Let X = {x1, . . . , xn}, T = {t1, . . . , tn}, T ′ = {t′1, . . . , t
′
n} and let

σ be a bijection between literals on X, that preserves negation. Suppose there is
some i ∈ [n] such that σ(xj) is a negative literal if and only if j = i. The 3-CNF
Parity(X,T, σ) ∧ Parity(X,T ′, e) has a proof of size O(n log n).

In the remainder of this section we will prove Theorem 1. We begin with
an essential lemma that uses the DRAT rules to perform elementary adjacent
swaps on literals in xor constraints.

Lemma 1. Suppose we have a CNF F and two sets of xor clauses xor(a, b, p)
and xor(p, c, q), where variable p appears nowhere in F . We can infer

F ∧ xor(a, b, p) ∧ xor(p, c, q)
F ∧ xor(b, c, p) ∧ xor(p, a, q)

in a constant number of DRAT steps without adding new variables.

Proof. The idea is to eliminate variable p so that we define q directly as the
parity of a, b, c using eight “ternary xor” clauses. Each of these clauses can

Sorting Parity Encodings by Reusing Variables 5

be added directly via ATA. We can now remove (using RATE) all clauses that
contain variable p. These steps are equivalent to performing Davis-Putnam (DP)
resolution [4] on variable p.

What we are left with is that two levels of parity have been replaced with
one level of ternary parity. We can reverse the above steps to get us two levels of
parity yet again, but we can swap a and c (since they appear symmetrically in
our “ternary xor” clauses). We re-use the eliminated p to now mean the xor of b
and c using RATA. Finally, we remove the “ternary xor” clauses using ATE. 	

Note that here elimination is required only because we want to re-use the
variable p. We can also show a similar step in ER without the elimination steps,
introducing the “ternary xor” clauses immediately with resolution. We can in-
troduce the four xor(p′, b, c) extension clauses for p′, and by resolving them with
the ternary clauses on b we get eight intermediate clauses which can resolve with
each other on c to get the remaining four xor(p′, a, q) clauses. Without ATA and
RATA steps, this process involves 50% more addition steps, but since it contains
no deletion steps we have 25% fewer steps in total. ER proofs allow us to keep
lemmas without deletion so where we have more than two parity constraints we
may wish to reuse derived parity clauses. On the other hand DRAT− keeps the
number of variables and clauses fixed when searching when we do not know the
structure of formula and can stop the search size from growing.

Sorting the input literals. We can switch the two parity inputs using Lemma 1
in a constant number of proof steps. Furthermore the technique in DRAT does
not require any additional extension variables and since the number of addition
and deletion steps in Lemma 1 is the same, the working CNF does not change
in size. Sorting using adjacent variables requires Θ(n2) swaps.

Let us ignore the variables xn−1 and xn and the clauses that include them
as special cases. We can take xor(x1, x2, t1) ∧ ∧n−4

i=1 xor(ti, xi+2, ti+1) as the def-
inition of tn−3 in circuit form, using the X variables as input gates and the ti
variables as xor (⊕) gates. This circuit is a tree with linear depth. the distance
between two input nodes is linear in the worst-case, which is why we get Ω(n2)
many swaps. However Lemma 1 allows us even more flexibility, we can not only
rearrange the input variables but the Tseitin variables.

For example if we have xor(ti, xi+2, ti+1) and xor(ti−1, xi+1, ti) clauses we can
eliminate ti so that ti+1 is defined as the parity of xi+1, xi+2, and ti−1. However

3

2

1

x1 x2

x3

x4

x5

x6

3

2 1

x1 x2x3x4

x5

x6

Fig. 2. Swapping the position of an internal node to balance the tree.

6 L. Chew and M.J.H. Heule

7

43

21 5 6

x1 x2 x3 x4 x5 x6 x7 x8

7

43

2

1 5 6

x1

x2

x3 x4

x5 x6 x7 x8

7

4

3

2

1

5 6x1

x2

x3 x4 x5 x6 x7 x8

7

4

3

2

1

5 6x1

x2

x3 x4 x5 x6 x7 x8

7

4

3

2

1

5 6

x1x2

x3 x4

x5 x6 x7 x8

7

4

3

2

1

5

6

x1

x2 x3 x4x5 x6

x7 x8

Fig. 3. Moving two literals next to each other. Top: moving x2 up to the source of the
tree. Bottom: moving x2 down to swap with x7

we can now redefine ti as the xor of xi+1, xi+2 (using xor(ti, xi+1, xi+2)) and ti+1

as the xor of ti and ti−1 (using xor(ti+1, ti, ti−1)). See Figure 2 for an example
and notice how we change the topology of the tree.

In �n
2 many swaps we can change our linear depth tree into a tree that

consists of a two linear branches of depth at most �n
2 � joined at the top by an

xor. This means that using a divide and conquer approach, we can turn this tree
in a balanced binary tree of �log2 n� depth in O(n log n) many steps.

The purpose of a log depth tree structure is to allow leaf-to-leaf swapping
from both ends of the the tree without having to do a linear number of swaps,
in fact we can do arbitrary leaf swaps in O(�log n�) many individual steps. This
is done by pushing a variable up its branch to the source node of the tree and
pushing it back down another branch to its destination as in Figure 3. Then we
can reverse the steps with the variable being swapped out. The resulting tree
even retains the position of all other nodes.

Note that we also have the variables xn and xn−1 that only appear in the
clauses of xor(tn−3, xn−1, xn). Suppose the two children of tn−3 in its definition
circuit are a and b, in other words xor(tn−3, a, b) are the clauses currently defining
tn−3. Without loss of generality suppose we want to swap xn−1 with a.

The clauses of xor(tn−3, xn−1, xn) are exactly the same as the clauses of
xor(tn−3, xn−1, xn). Using Lemma 1 we can eliminate tn−3 and gain eight clauses
that represent that xn is the ternary xor of a, b and xn−1. Then we can reverse
the steps but instead swap the positions of xn−1 and a.

Sorting Parity Encodings by Reusing Variables 7

In this way we can introduce xn−1 or xn into the tree and swap it with
any leaf. Once again we only require O(log n) many applications of Lemma 1 to
completely swap the position of xn−1 or xn with any leaf.

Arriving at the empty clause. The total number of leaf-to-leaf swaps we
are required to perform is bounded above linearly so we stay within O(n log n)
many steps. We can now undo the balanced tree into a linear tree in (we reverse
what we did to balance it) keeping within an O(n log n) upper bound.

Recall that we performed a sort on the variables in Parity(X,T ′, e) thereby
transforming it into Parity(X,T ′, σ′) with var(σ′(x)) = var(σ(x)), resulting
in the formula Parity(X,T, σ) ∧ Parity(X,T ′, σ′). Thus the final part of the
proof now involves refuting a formula equivalent to one of the Dubois formulas.

We create a proof that inductively shows equivalence or non-equivalence be-
tween variables tj ∈ T and the t′j ∈ T ′ starting from j = 1 to j = n − 3. If there
is an even number of instances i, 1 ≤ i ≤ j + 1 where σ′(xi) �= σ(xi) we derive
(t′j ∨ tj) and (t′j ∨ tj). If there are an odd number of instances i, 1 ≤ i ≤ j + 1
where σ′(xi) �= σ(xi) we instead derive (t′j ∨ tj) and (t′j ∨ tj).

Whichever case, we can increase j with the addition (ATA) of six clauses.
We can think of this as working via DP resolution in a careful order: σ(xj+1),
tj−1, t′j from j = 1 to n − 3 in increasing j (and treat σ(x1) as t0).

Finally, when j = n − 3, we have either already exceeded the single value
i such that σ′(xi) �= σ(xi), or it appears in n − 1 or n. Either way, we can
add the four clauses (σ(xn−1)∨σ(xn)), (¬σ(xn−1)∨σ(xn)), (σ(xn−1)∨¬σ(xn)),
(¬σ(xn−1)∨¬σ(xn)) then the two unit clauses (σ(xn)) and (¬σ(xn)) and finally
the empty clause. This final part of the refutation uses O(n) many ATA steps.

4 Evaluation

The formulas we ran experiments on are labelled rpar(n, g). Which represent
Parity(X,T, σ(n,g)) ∧ Parity(X,T ′, e) using the DIMACS format. The pa-
rameter n is the number of input variables and a random number genera-
tor g. The CNF uses variables X = {1, . . . , n}, T = {n + 1, . . . , 2n − 3},
T ′ = {2n − 2, . . . , 3n − 6}, e is the identity permutation, and σ(n,g) is a ran-
dom permutation based on g, where one random literal in,g is flipped by σ.

We ran a program rParSort that generated an instance rpar(n, rnds) based on
a seed s and also generated a DRAT proof based on Theorem 1. We compare the
size of our proofs by ones produced by the state-of-the-art SAT solver CaDiCaL [1]
(version 1.2.1) and the tool EBDDRES [17] (version 1.1). The latter solves the
instance using binary decision diagrams and turns the construction into an ER
proof. These ER proofs can easily be transformed into the DRAT format as
DRAT generalizes ER. Proof sizes (in the number of DRAT steps, i.e. lines in
the proof) are presented and compared in Figure 4.

rParSort proofs remained feasible for values as large as n = 4000 with proofs
only being 150MB due to the O(n log n) upper bound in proof lines. We believe

8 L. Chew and M.J.H. Heule

n vars clauses lines size(KB)

10 24 64 1 681 25
20 54 144 7 469 115
50 144 384 30 657 481

101 297 792 77 971 1 426
250 744 1 984 253 777 4 810
500 1 494 3 984 583 885 11 176

1 000 2 994 7 984 1 344 837 29 278
2 000 5 994 15 984 3 023 541 67 405
3 000 8 994 23 984 4 778 373 107 276
4 000 11 994 31 984 6 668 629 150 181 34 36 38 40 42 44 46

104

105

106

107

108

n

EBDDRES
CaDiCaL
rParSort

Fig. 4. rParSort proof sizes for rpar(n, rnd53) formulas (left). Comparisons of average
(of 10) proof sizes on n ∈ {35, . . . , 45} (right).

leading coefficient is also kept small by number of factors such as the proof lines
being width 4 and only 16 being needed per swap step.

CaDiCaL showed difficulty for modest values of n. While proofs with less than
106 lines are common for n = 35, the size and running time grows exponentially
and by n = 41 proofs are larger than 107 lines. CaDiCaL times out using a 5000
seconds limit on some instances with n = 46 and on most instances with n ≥ 50.

The size of proofs produced by EBDDRES appears to grow slower compared
to CDCL, which is not surprising as BDDs can solve the formulas in polynomial
time. However, as can be observed in Figure 4, the ER proofs are actually bigger
for small n. The extracted DRAT proofs (converted from the ER proofs) are
large: the average proof with n ≥ 35 had more than 107 lines. This means that
this BDD-based approach is not practical to express parity reasoning in DRAT.

5 Conclusion

We have shown that through manipulating existing encoding variables DRAT
can take advantage of the commutativity of xor definitions via Lemma 1. Our
proof generator is capable of producing reasonable-sized proofs for instances with
tens of thousands of variables, while state-of-the-art SAT solvers without xor
detection and Gaussian elimination, such as CaDiCaL, can only solve instances
up to about 60 variables. Although these formulas are also doable for BDD-based
approaches, the resulting proofs are too big for practical purposes.

The DRAT proofs are in the fragment of DRAT−, where the number of
variables stays fixed, which is of potential benefit to the checker. If we are not
concerned with the introduction of new variables, our DRAT proofs can easily
be made into ER proofs with only a 50% increase in addition steps (and the
introduction of new variables). This is an alternative approach that may prove
useful in other settings where elimination of a variable is not so easy.

Sorting Parity Encodings by Reusing Variables 9

Acknowledgements. The authors thank Armin Biere for his useful comments on
an earlier draft. This work has been support by the National Science Foundation
(NSF) under grant CCF-1618574.

References

1. Biere, A.: CaDiCaL at the SAT Race 2019 (2019)
2. Buss, S., Thapen, N.: DRAT proofs, propagation redundancy, and extended res-

olution. In: International Conference on Theory and Applications of Satisfiability
Testing. pp. 71–89. Springer (2019)

3. Crawford, J.M., Kearns, M.J., Schapire, R.E.: The minimal disagreement parity
problem as a hard satisfiability problem (1994)

4. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7, 210–215 (1960)

5. Han, C.S., Jiang, J.H.R.: When Boolean satisfiability meets Gaussian elimination
in a simplex way. In: Madhusudan, P., Seshia, S.A. (eds.) Computer Aided Verifi-
cation. pp. 410–426. Springer, Berlin, Heidelberg (2012)

6. Heule, M., van Maaren, H.: Aligning CNF- and equivalence-reasoning. In: Hoos,
H.H., Mitchell, D.G. (eds.) Theory and Applications of Satisfiability Testing. pp.
145–156. Springer, Berlin, Heidelberg (2005)

7. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) Automated Reasoning. pp. 355–370. Springer, Berlin, Heidel-
berg (2012)

8. Kiesl, B., Rebola-Pardo, A., Heule, M.J.H.: Extended resolution simulates DRAT.
In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) Automated Reasoning - 9th
International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14–17, 2018, Proceedings. Lecture Notes
in Computer Science, vol. 10900, pp. 516–531. Springer (2018)

9. Laitinen, T., Junttila, T., Niemelä, I.: Extending clause learning DPLL with parity
reasoning. In: Proceedings of the 2010 Conference on ECAI 2010: 19th European
Conference on Artificial Intelligence. pp. 21–26. IOS Press, NLD (2010)

10. Laitinen, T., Junttila, T., Niemela, I.: Equivalence class based parity reasoning with
DPLL(XOR). In: Proceedings of the 2011 IEEE 23rd International Conference on
Tools with Artificial Intelligence. pp. 649–658. ICTAI ’11, IEEE Computer Society,
USA (2011)

11. Li, C.M.: Equivalent literal propagation in the DLL procedure. Discrete Applied
Mathematics 130(2), 251–276 (2003), the Renesse Issue on Satisfiability

12. Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT
solvers. In: Handbook of Satisfiability. IOS Press (2009)

13. Ostrowski, R., Grégoire, É., Mazure, B., Säıs, L.: Recovering and exploiting struc-
tural knowledge from CNF formulas. In: Van Hentenryck, P. (ed.) Principles and
Practice of Constraint Programming - CP 2002. pp. 185–199. Springer, Berlin,
Heidelberg (2002)

14. Philipp, T., Rebola-Pardo, A.: DRAT proofs for XOR reasoning. In: Michael, L.,
Kakas, A. (eds.) Logics in Artificial Intelligence. pp. 415–429. Springer Interna-
tional Publishing, Cham (2016)

15. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence 175(2), 512–525 (2011)

10 L. Chew and M.J.H. Heule

16. Robinson, J.A.: Theorem-proving on the computer. Journal of the ACM 10(2),
163–174 (1963)

17. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev,
D., Harrison, J., Hirsch, E.A. (eds.) Computer Science – Theory and Applications.
pp. 600–611. Springer, Berlin, Heidelberg (2006)

18. Soos,M.:EnhancedGaussian elimination inDPLL-basedSATsolvers. In:Berre,D.L.
(ed.) POS-10. Pragmatics of SAT. EPiC Series in Computing, vol. 8, pp. 2–14.
EasyChair (2012)

19. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing -
SAT 2009. pp. 244–257. Springer, Berlin, Heidelberg (2009)

20. Tseitin, G.C.: On the complexity of derivations in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in Mathematics and Mathematical Logic, Part II,
pp. 115–125 (1968)

21. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34(1), 209–219
(1987)

22. Warners, J.P., van Maaren, H.: A two-phase algorithm for solving a class of hard
satisfiability problems. Operations Research Letters 23(3), 81–88 (1998). ISSN
0167-6377

	Sorting Parity Encodings by Reusing Variables
	1 Introduction
	2 Preliminaries
	3 A parity contradiction based on random orderings
	4 Evaluation
	5 Conclusion
	References

