q

Check for
updates

Reasoning About Strong Inconsistency in
ASP

Carlos Mencia!®) and Joao Marques-Silva?

! University of Oviedo, Gijén, Spain
menciacarlos@uniovi.es
2 ANITI, University of Toulouse, Toulouse, France
joao.marques-silva@univ-toulouse.fr

Abstract. The last decade has witnessed remarkable improvements in
the analysis of inconsistent formulas, namely in the case of Boolean Sat-
isfiability (SAT) formulas. However, these successes have been restricted
to monotonic logics. Recent work proposed the notion of strong incon-
sistency for a number of non-monotonic logics, including Answer Set
Programming (ASP). This paper shows how algorithms for reasoning
about inconsistency in monotonic logics can be extended to the case
of ASP programs, in the concrete case of strong inconsistency. Initial
experimental results illustrate the potential of the proposed approach.

1 Introduction

The last decade and a half witnessed a remarkable evolution in algorithms for
reasoning about inconsistency. This is the case with algorithms for the extraction
and enumeration of minimal unsatisfiable subsets (MUSes) [4-6,8,9,33,34,37,42]
and minimal correction subsets (MCSes) [3,6,21,26,27,36,39,40,45], but also
algorithms for maximum satisfiability (MaxSAT) [1,2,18,35,41]. This work was
motivated by earlier important advances [7,17,28,29,32,48]. Although most of
this work was proposed in the context of propositional formulas it is also the
case that most of the algorithms are amenable to generalization for different
fragments of First-Order Logic (FOL). These algorithms specifically addressed
monotonic logics, with propositional logic as a concrete example.

In the case of non-monotonic logics, minimal inconsistency is uninterest-
ing [16], because of non-monotonicity. Recent work proposed the concept of
strong inconsistency for non-monotonic logics [15,16], which enabled demon-
strating that well-known properties of inconsistent sets in monotonic logics also
apply in the case of strong inconsistency, with a reference example being the
minimal hitting set relationship between minimal inconsistent subsets and min-
imal correction subsets [46]. Nevertheless, a limitation of this earlier work is

This research is supported by the Spanish Government under project TIN2016-79190-
R, by the Principality of Asturias under grant IDI/2018/000176, and by ANITI, funded
by the French program “Investing for the Future—PIA3” under Grant agreement n°
ANR-19-PI3A-0004.

© Springer Nature Switzerland AG 2020

L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 332-342, 2020.
https://doi.org/10.1007/978-3-030-51825-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_24&domain=pdf
https://doi.org/10.1007/978-3-030-51825-7_24

Reasoning About Strong Inconsistency in ASP 333

that the algorithms proposed aim at being illustrative, consisting of simple set
enumeration approaches, known not to scale in practice [34].

This paper changes this state of affairs. Concretely, the paper proposes novel
simple insights, which enable any algorithm for reasoning about inconsistency
in the monotonic cases, to also be applicable to reasoning about strong inconsis-
tency in the non-monotonic cases. The paper demonstrates the proposed ideas
in the concrete setting of Answer Set Programming (ASP) [14,22], but these
can be applied in other settings provided mild conditions hold. The significance
of being able to reason efficiently about (strong) inconsistency in ASP should
be highlighted. Whereas SAT reasoners represent a remarkable (and unique)
problem solving technology, ASP blends efficient problem solving (by exploiting
the technologies that are the hallmark of SAT solvers) with a well-established
and widely used knowledge representation paradigm. The proposed algorithms
enable new applications of ASP based on reasoning about (strong) inconsistency.

2 Preliminaries

Boolean Satisfiability. We consider definitions and notation standard in Boolean
Satisfiability (SAT) [10]. Concretely, we consider propositional formulas in
conjunctive normal form (CNF), defined as a conjunction, or set, of clauses
F ={c1,...,cm} over a set of variables V(F) = {1, ..., z,} where a clause is a
disjunction of literals, and a literal is a variable x or its negation —x. An inter-
pretation is a mapping p: V(F) — {0,1}. If p satisfies F, it is referred to as a
model of F. F F G means that all the models of F are models of G. A minimal
(resp. maximal) model is such that the set of variables assigned value 1 (resp. 0)
is irreducible. A formula is satisfiable (F ¥ L) if it has a model; and otherwise
unsatisfiable (F E L). In the latter case, the following definitions apply:

Definition 1 (MUS/MCS). M C F is a minimal unsatisfiable subset (MUS)
if and only if M E L and for al M’ C M, M' ¥ 1. C C F is a minimal
correction subset (MCS) if and only if (F\C) ¥ L and for allC’' C C, F\C' E L.

MUSes are minimal explanations of unsatisfiability, while MCSes are irre-
ducible sets of clauses whose removal renders satisfiability. The complement of
an MCS is a maximal satisfiable subset (MSS). MUSes and MCSes are hitting set
duals: Every MCS is a minimal hitting set of all MUSes and vice versa [11,46].

Ezample 1. Let Fo,, = {(—x1), (x1), (1 V 22), (-x2)}. Fe, is unsatisfiable. It has
two MUSes: My = {(z1), (-z1)}, M2 = {(—z1), (x1 V z2), (mx2)}; and three
MCSes: € = {(-z1)}, Co = {(21), (21 V 22)}, C3 = {(21), (-22)}-

Minimal Sets over a Monotone Predicate. Several problems in propositional
logic can be reduced to computing a minimal set over a monotone predicate

(MSMP) [37,38]!. In this setting, a predicate p: 2% — {0,1}, defined over a

! MSMP was proposed in [37,38], but it was inspired by earlier work [12,13].

334 C. Mencia and J. Marques-Silva

reference set R, is monotone if whenever p(Ro) holds, then p(R1) also holds,
with Rp C R; € R. M C R is a minimal set over a predicate p if p(M) holds
and, for all M’ C M, p(M’) does not hold. As an example, given F E 1,
by setting R £ F, the MUSes of F are the minimal sets over the monotone
predicate p(W) £ —SAT(W), with W C R. The MCSes of F are the minimal
sets over p(W) = SAT(R\W), with W C R.

Answer Set Programming & Strong Inconsistency. We review basic concepts in
ASP. A more detailed account can be found in [14,22].

A (normal) logic program P = {rq,...,r,} is a finite set of rules of the fol-
lowing form: a « b1, ..., by, NOt Cyy1, ..., NOt ¢, where a, b; and ¢; are atoms.
A literal is an atom or its default negation not a. Extended logic programs
may include classical negation (—). For a rule r, body(r) denotes the literals
b1, .o b, NOt g1, ..., NOt ¢, and head(r) denotes the literal a. We write B (r)
for by, ...,by, and B~ (r) for ¢pi1, ...y ¢n. A rule is a fact if it has an empty body.
Further, we allow choice rules of the form n < {aj,...,ax}, with n > 0. A
program is ground if it does not contain any variables. A ground instance of a
program P, denoted grd(P), is a ground program obtained by substituting the
variables of P by all constants from its Herbrand universe.

The semantics of ASP programs can be defined via a reduct [25]. A set I of
ground atoms is a model of a program P if head(r) € I whenever BT (r) C I and
B~ (r)NI = { for every r € grd(P). The reduct of P w.r.t. the set I, denoted P!,
is defined as P! = {head(r) < B*(r) | r € grd(P), 1N B~ (r) = 0}. The set I is
an answer set of P if I is a minimal model of P!. The inclusion of choice rule
n < {ay,...,ar} guarantees that any answer set contains at least n atoms from
{a1,...,ar}. A program P is consistent if it has at least one consistent answer
set; otherwise, P is inconsistent.

This paper focuses on the analysis of inconsistent ASP programs. Through-
out, we will consider that programs are partitioned into two subsets: P = BU S,
where B denotes background knowledge, assumed to be consistent and which
cannot be relaxed, and S denotes the set of rules that can be dropped to achieve
consistency. In contrast to propositional logic, logical entailment is not mono-
tonic in ASP. Hence, supersets of an inconsistent program are not necessarily
inconsistent, and a subset of a consistent program may be inconsistent. This
way, MUSes and MCSes as defined for propositional logic do not capture their
intended meaning and properties. To overcome this drawback, the notion of
strong inconsistency [15,16]% was recently proposed: Given an inconsistent pro-
gram P = BUS, P/ = BUS’, with 8’ C S, is strongly P-inconsistent if for all S”,
with § € 8” C S, BUS” is inconsistent. In other words, strong inconsistency
denotes that all supersets (up to P) of a given subprogram are inconsistent. Min-
imal explanations and corrections of inconsistent ASP programs can be defined
in terms of strong inconsistency, as follows:

Definition 2 (MSIS/MSICS). Given an inconsistent program P = BU S,
the subset M C S is a minimal strongly P-inconsistent subset (MSIS) iff B U

2 This notion was defined for arbitrary non-monotonic logics. We show it for ASP.

Reasoning About Strong Inconsistency in ASP 335

M is strongly P-inconsistent and, for all M’ C M, B U M’ is not strongly
P-inconsistent. C C S 4is a minimal strong P-inconsistency correction subset
(MSICS) iff B U (S\C) is not strongly P-inconsistent and, for all C' C C,
B U (S\C") is strongly P-inconsistent.

The complement of an MSICS is a maximal consistent subset. Besides, every
MSIS is a minimal hitting set of the set of all MSICSes and vice versa [15,16].

Example 2. Consider the inconsistent program P,, = B, U S.,, with B., =
and Se;, = {ry : @ < not a,not b., 7 : b « not a., r3 : —b.}. There are
two MSISes: My = {r1,r3}, Ma = {re,r3}; and two MSICSes: C; = {r1,r2},
Cy = {rs}. Notice that although {r1} is inconsistent, it is not strongly P,.-
inconsistent, since {ry,rs} is consistent (with the only answer set {b}).

Related Work. Debugging ASP programs has attracted a large body of research
(see [20] for a survey). Systems as spock [24] or Ouroboros [43,44], based on
meta-programming, enable pinpointing errors causing inconsistency, as unsup-
ported atoms or unsatisfied rules. On the other hand, DWASP [19] allows for inter-
actively debugging ASP programs by exploiting unsatisfiable cores. In contrast,
our goal is computing MSISes and MSICSes, in the case of strong inconsistency.
Our work is closely related to [30,31], which extended a number of algorithms for
MSSes in SAT to maximal consistent subsets in ASP (and so MSICSes). Herein,
we focus on computing MSISes as well, and on enumerating both kinds of sets. To
our best knowledge, the only proposed approach for computing MSISes [15,16]
relies on exhaustive set enumeration and was not evaluated empirically.

3 Reasoning About Strongly Inconsistent ASP Programs

3.1 Strong Inconsistency and MSMP

Strong inconsistency exhibits a monotonicity property, that all the supersets
(up to P) of a strongly P-inconsistent program are strongly P-inconsistent too:

Proposition 1. Let P=BUS, and Py = BUU, with U C S, be strongly P-
inconsistent. Then, for allU C U’ C S, Py = BUU' is strongly P-inconsistent.

Proof. Since Py is strongly P-inconsistent, for all U’ with U C U’ C S, BUU’
is inconsistent. Hence, for any superset U’ with U C U’ C S, it holds that for
all U’ CU” C S, BUU" is inconsistent. So, Py is strongly P-inconsistent. 0

Throughout, for a given program P = BU S, and R C S, SATY(B, S, R)
indicates whether there is a superset of R (up to S) that together with B is
consistent, i.e. it is true iff there exists R’, with R € R’ C S, such that P’ =
B U R’ is consistent. Noticeably, SATT(B, S, R) is false iff B U R is strongly
P-inconsistent. We show that computing an MSIS is an instance of MSMP.

Proposition 2. Computing an MSIS is an instance of the MSMP problem.

336 C. Mencia and J. Marques-Silva

Algorithm 1: Deletion-based minimal set computation

Input: p: Monotone predicate, R: Reference set
Output: M: Minimal set

1 MR, // M 1is over-approximation
2 foreach u € M do // Inv: p(M)
3 if p(M\ {u}) then // Do we need u?
4 M= M\ {u}; // If not, drop it
5 return M; // Final M is a minimal set

Proof. Let p(W) £ =SATT(B, S, W) with W C R, and R 2 S. We prove that p
is monotone and that any minimal set over p is an MSIS of P = BU S.

Monotonicity: If p(WW) holds, BUW is strongly P-inconsistent. By Proposition 1,
for all W/, with W C W' C S, BUW is strongly P-inconsistent, so p(W’) holds.
Correctness: Let M be a minimal set for which p(M) holds, i.e. BUM is strongly
P-inconsistent. Since M is minimal, for any M’ C M, p(M’) does not hold, i.e.
B U M/’ is not strongly P-inconsistent. Thus, by Definition 2, M is an MSIS. O

Computing an MSICS can also be reduced to MSMP. The proof is analogous,
by defining p(W) £ SATH(B, S, S\W) with W C R, and R = S.

3.2 Computing Minimal Explanations and Corrections

The reductions above enable computing MSISes and MSICSes by using any
algorithm for MSMP and an oracle implementing SAT™ (B,S,R).

Extracting a Single Minimal Set. Algorithms for computing a single minimal
set in MSMP include Deletion [17], Progression [37] or QuickXplain [32], among
others [8]. Herein we focus on the deletion-based approach, shown in Algorithm 1.

Given an inconsistent program P = BUS, by setting the predicate to p(W) £
-SATH(B,S,W) with W C R, and R £ S, Algorithm 1 proceeds as follows:
Starting with M = R, the algorithm iteratively picks a rule u € M and tests
whether B U (M\{u}) is strongly P-inconsistent. If it is, u is removed from M;
otherwise u is kept in M. After considering all the rules in R, M is an MSIS.

An MSICS of P can be computed using basic linear search (BLS) [6,36]:
Starting with & = 0, iteratively pick a rule in w € S\S and test whether
SAT™ (B, S,SU{u}) holds. If it does, BU(SU{u}) is not strongly P-inconsistent,
and u is added to &. On termination, the set of rules not added to S is
an MSICS (and S is a maximal consistent subset). Besides, if the oracle for
SAT™ (B, S,SU{u}) returns a witness after positive answers, all the elements in
S satisfied can be added to S, saving some predicate tests. BLS is equivalent to
Algorithm 1 using the predicate p(W) £ SATT (B, S, S\W), with W C R, and
R=£S.

Reasoning About Strong Inconsistency in ASP 337

Algorithm 2: Minimal set enumeration

Input: P = BUS: Inconsistent ASP program
Output: MSISes and MSICSes of P

1 T {pi|r€eSh

2 H«— 0 // Block MSISes and MSICSes
3 while true do

4 (st, MzM) « ComputeMaximalModel(H);

5 if not st then return

6 R—{ri|pi € MzM}; // Pick selected rules
7 if not SAT*(B, S, R) then

8 M «— ComputeMSIS(B, S, R); // Extract MSIS from R
9 ReportMSIS(M);

10 b—{-pi|ri €M} // Block the MSIS
11 else

12 ReportMSICS(S \ R);

13 b—{pi | ps € I\ MzM}; // Block the MSICS
14 H — HU{b};

Enumerating Minimal Sets. MARCO [33] is a successful approach for enumerat-
ing MUSes and MCSes of CNF formulas. This algorithm exploits the hitting set
duality between MUSes and MCSes. Since this relationship also holds between
MSISes and MSICSes, MARCO can be adapted to ASP, as shown in Algorithm 2.

For a given inconsistent program P = B U S, the algorithm associates a
propositional variable p; with each rule r; € S, and maintains a CNF formula H
defined on these variables. The formula H, initially empty, serves to subsequently
avoid considering any superset (resp. subset) of previously found MSISes (resp.
MSICSes). Iteratively, a maximal model MaM of H is computed, which induces
the set of rules R whose associated variables are set to 1 in Mz M. Then, if the
program BUR is strongly P-inconsistent (i.e. if SATT (B, S, R) does not hold), an
MSIS M C R of P is extracted (e.g. by using Algorithm 1, with R £ R), whose
supersets are blocked by adding a negative clause on its associated variables to
‘H. Otherwise, R is a maximal consistent subset, and so S\ R is an MSICS of P,
whose subsets are blocked by adding a positive clause on its associated variables
to H. The process is repeated until H becomes unsatisfiable, with the guarantee
that all MSISes and MSICSes of P have been computed.

Algorithm 2 is organized to give (heuristic) preference to finding MSISes
quickly. We refer to it as eMax. A variant giving preference to finding MSICSes
can be easily obtained, by computing minimal models of H (instead of maximal
ones) and extracting an MSICS whenever SAT' (B, S, R) holds. This variant is
referred to as eMin.

Implementing SATT (B, S, R). It remains to discuss the way SATT(B, S, R) can
be implemented in ASP. We invoke an ASP solver on an modified program which
includes selector atoms and choice rules. This approach was used in [30,31] to
compute maximal consistent subsets. For a set of atoms A, choice(A) denotes

338 C. Mencia and J. Marques-Silva

the rule 0 < {ay,..,ar}, with a; € A. Modern ASP solvers allow choice rules,
and their inclusion does not increase the complexity beyond NP [47].

For a given program P = B U S, we first build the program P; = B U S,
where S, is obtained from S as follows: for each rule r; € S we introduce a fresh
atom s;, and add the rule head(r;) < body(r;), s; to Ss. Note that if the fact s;
is added to Ps, the rule r; is activated, and relaxed otherwise. For a given subset
R C S, we use s(R) to denote the set of selector atoms for rules in R in Sy, i.e.
s(R) = {s; | r; € R}. Then, the test SAT" (B, S, R) is solved by invoking an ASP
solver on the program P’ = Py UU,c4(gr){s} U choice(s(S\R)). Notice that each
rule r € R is active in P’. Besides, the inclusion of the rule choice(s(S\R)) allows
for activating any (or none) of the rules in S\ R when looking for answer sets of
P’. Hence, P’ is consistent iff the program B U R is not strongly P-inconsistent.

Ezxample 3. Let P = B U S be the program in Example2, and consider the
test SATT(B, S, {r1}). We first build P, = {a < not a,not b, s1., b < not a, s5.,
—b « s3.}. Then, we define P’ = P; U {s1.} U choice({s2,s3}). P’ is consistent
(with the unique answer set {b, s1,s2}), indicating that {r} is not strongly
P-inconsistent.

4 Preliminary Results

This section reports an initial experimental assessment of the proposed
approaches. We implemented a prototype in Python 2.7, interfacing the ASP
solver clingo [23] (v. 5.4.0), and ran a series of experiments on a Linux
machine (2.26 GHz, 128 GB). Each process was limited to 3600s and 4 GB.
Below, ComputeMSIS (resp. ComputeMSICS) is Algorithm 1 using the predicate
shown in Sect.3 for computing an MSIS (resp. MSICS). Besides, witnesses are
used in the extraction of MSICSes as an optimization, as described earlier. On
the other hand, eMax corresponds to Algorithm 2, giving preference to find-
ing MSISes quickly, and eMin is the variant that gives preference to MSIC-
Ses. In these cases, maximal and minimal models are computed using the tool
mesls [36]°.

Similarly to earlier work [31], we built a number of instances. We considered
three problem domains (common in ASP competitions): Graceful graphs, Knight
tour with holes and Solitaire. Each instance is an inconsistent ASP program
P = BUS, where B contains the rules encoding the problem domain (assumed
correct) and S contains the facts specific for each instance. Given the complexity
of the tasks to solve, the instances are reasonably small. The benchmarks are as
follows: 1) Graceful graphs: Given a graph (V, E') the goal is to label its vertices
with distinct integers in the range 0..|E| so that each edge is labeled with the
absolute difference between the labels of its vertices and all edge labels are
distinct. S contains the facts indicating the edges, so |S| = |E|. We considered
values of |V] € {10,20} and |E| € {10,20,50}. 2) Knight tour with holes: Given

3 Computing a minimal/maximal model can be reduced to computing an MCS. For
this purpose, several alternatives can be used (e.g. [3,36,39,40]).

Reasoning About Strong Inconsistency in ASP 339

10* T d d o 10t
2
E
=
£
£
o
ol i i]
1070 o 10" 10° 103 10*
ComputeMSICS Max
(a) ComputeMSIS vs ComputeMSICS (b) eMin vs eMax

Fig. 1. Running times

3500 u Y 5 O y 4 3500 -
o—o eMax &= eMin
& eMin o—o eMax
3000 : 3000 . .

2500 / : ; 2500
1000 / / 1000

I/ //
500 i / 500 V.,

H i H
0 2000 4000 6000 8000 10000 0 500

<)
S
S
S

CPU time (s)
73

g

T

CPU time (s)
7

2

2

10000 15000 20000
MSISes MSICSes
(a) Reported MSISes (b) Reported MSICSes

Fig. 2. Number of reported sets (eMin vs eMax)

an N x N board with H holes, the problem asks if a knight chess piece can visit
all non-hole positions of the boards exactly once returning to the initial position.
S consists of facts with the positions of holes, so |S| = H. We considered values
of N € {7,8} and H € {10,20,30}. 8) Solitaire: Given a 7 x 7 board, with 2 x 2
corners removed (i.e. with 33 squares), an initial configuration is specified by
facts empty(L) and full(L), indicating if each square L is empty or contains
a stone. A stone can be moved by two squares if it jumps over another stone,
which is removed. The goal is to perform T steps. S contains the facts empty(L)
and full(L), so |S| = 33. We considered values of T' € {8,10,12,14,16,18}. For
each configuration, we built 20 random instances, making 360 in all.

340 C. Mencia and J. Marques-Silva

The results are summarized in Fig. 1. Figure 1a shows, for each instance, the
running times needed for computing a single MSIS and an MSICS. ComputeMSIS
and ComputeMSICS solved, respectively, 295 and 317 instances. The results vary
across the set of instances, although in more cases computing an MSICS was per-
formed faster than computing an MSIS. Figure 1b compares eMax and eMin. In
this case, complete enumeration was achieved for 172 and 167 instances respec-
tively. However, as the plot indicates, there is no clear winner.

Figure 2 shows the number of reported minimal sets over the whole bench-
mark set. By the time limit eMax reports 9008 MSISes and 12081 MSICSes,
whereas eMin computes 5684 MSISes and 20057 MSICSes. As shown in Fig. 2a,
eMax is much more efficient at computing MSISes, whereas eMin finds MSICSes
faster (see Fig. 2b). Thus, each variant is effective at its intended purpose. These
results suggest that a combination may be a good option for obtaining both sets
quickly.

5 Conclusions

Recent work proposed the concept of strong inconsistency [15,16], which pro-
vides a way of reasoning about inconsistency in non-monotonic logics. This paper
shows how the large body of work for reasoning about (minimal) inconsistency
in monotonic logics, originally developed in the context of SAT, can be readily
applied to the case of reasoning about strong inconsistency in non-monotonic
logics. Furthermore, the paper applies these insights to the case of ASP. Exper-
imental results illustrate the scope and applicability of the proposed approach.

References

1. Ansétegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxSAT through
satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427—
440. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_39

2. Ansétegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77-105 (2013)

3. Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: a
simple way of managing optional clauses. In: AAAI, pp. 835-841 (2014)

4. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently com-
pute minimal unsatisfiable sets. In: Kroening, D., Pasareanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9207, pp. 70-86. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21668-3_5

5. Bacchus, F., Katsirelos, G.: Finding a collection of MUSes incrementally. In: Quim-
per, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 35-44. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-33954-2_3

6. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2005. LNCS, vol. 3350, pp. 174-186. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30557-6_14

7. Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving
over-determined constraint satisfaction problems. In: IJCAI, pp. 276-281 (1993)

https://doi.org/10.1007/978-3-642-02777-2_39
https://doi.org/10.1007/978-3-319-21668-3_5
https://doi.org/10.1007/978-3-319-21668-3_5
https://doi.org/10.1007/978-3-319-33954-2_3
https://doi.org/10.1007/978-3-540-30557-6_14
https://doi.org/10.1007/978-3-540-30557-6_14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Reasoning About Strong Inconsistency in ASP 341

Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AT Com-
mun. 25(2), 97-116 (2012)

Bendik, J., Cern4, I., Benes, N.: Recursive online enumeration of all minimal unsat-
isfiable subsets. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138,
pp- 143-159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_9
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure
and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25-46 (2003)

Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of coun-
terexamples to induction. In: FMCAD, pp. 173-180 (2007)

Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. For-
mal Aspects of Comput. 20(4-5), 379-405 (2008). https://doi.org/10.1007/s00165-
008-0080-9

Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92-103 (2011)

Brewka, G., Thimm, M., Ulbricht, M.: Strong inconsistency in nonmonotonic rea-
soning. In: IJCAI, pp. 901-907 (2017)

Brewka, G., Thimm, M., Ulbricht, M.: Strong inconsistency. Artif. Intell. 267,
78-117 (2019)

Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in
linear programs. ORSA J. Comput. 3(2), 157-168 (1991)

Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT
instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225-239. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-23786-7_19

Dodaro, C., Gasteiger, P., Musitsch, B., Ricca, F., Shchekotykhin, K.: Interactive
debugging of non-ground ASP programs. In: Calimeri, F., Ianni, G., Truszczynski,
M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 279-293. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23264-5_24

Fandinno, J., Schulz, C.: Answering the “why” in answer set programming - a
survey of explanation approaches. Theory Pract. Log. Program. 19(2), 114-203
(2019)

Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for
inconsistent constraint sets. Al EDAM 26(1), 53-62 (2012)

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, San Rafael (2012)

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
extended report. Technical report, University of Potsdam (2014)

Gebser, M., Piihrer, J., Schaub, T., Tompits, H.: A meta-programming technique
for debugging answer-set programs. In: AAAI, pp. 448-453 (2008)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070-1080 (1988)

Grégoire, E., Izza, Y., Lagniez, J.: Boosting MCSes enumeration. In: IJCAI, pp.
1309-1315 (2018)

Grégoire, E., Lagniez, J., Mazure, B.: An experimentally efficient method for (MSS,
CoMSS) partitioning. In: AAAI pp. 2666—2673 (2014)

Grégoire, E., Mazure, B., Piette, C.: Extracting MUSes. In: ECAI, pp. 387-391
(2006)

https://doi.org/10.1007/978-3-030-01090-4_9
https://doi.org/10.1007/s00165-008-0080-9
https://doi.org/10.1007/s00165-008-0080-9
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-319-23264-5_24

342

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

C. Mencia and J. Marques-Silva

Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from con-
straint networks. In: ECAI, pp. 113-117 (2006)

Janota, M., Marques-Silva, J.: On minimal corrections in ASP. CoRR
abs/1406.7838 (2014). http://arxiv.org/abs/1406.7838

Janota, M., Marques-Silva, J.: On minimal corrections in ASP. In: RCRA, pp.
45-54 (2017). http://ceur-ws.org/Vol-2011/paper5.pdf

Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In: AAAI, pp. 167-172 (2004)

Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223-250 (2015). https://doi.org/10.1007/s10601-015-
9183-0

Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning 40(1), 1-33 (2008). https://doi.org/
10.1007/s10817-007-9084-z

Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted Boolean
optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495-508.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_45
Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI, pp. 615-622 (2013)

Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates
in Boolean formulae. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 592-607. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39799-8_39

Marques-Silva, J., Janota, M., Mencia, C.: Minimal sets on propositional formulae.
Problems and reductions. Artif. Intell. 252, 22-50 (2017)

Mencia, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sub-
linear oracle queries. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol.
9710, pp. 342-360. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2_21

Mencia, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In:
IJCAI, pp. 1973-1979 (2015)

Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478-534
(2013). https://doi.org/10.1007/s10601-013-9146-2

Narodytska, N., Bjgrner, N., Marinescu, M.V., Sagiv, M.: Core-guided minimal
correction set and core enumeration. In: IJCAI, pp. 1353-1361 (2018)

Oetsch, J., Piihrer, J., Tompits, H.: Catching the ouroboros: on debugging non-
ground answer-set programs. Theory Pract. Log. Program. 10(4-6), 513-529
(2010

Poller)es, A., Frithstiick, M., Schenner, G., Friedrich, G.: Debugging non-ground
ASP programs with choice rules, cardinality and weight constraints. In: Cabalar,
P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI), vol. 8148, pp. 452-464. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40564-8_45

Previti, A., Mencia, C., Jarvisalo, M., Marques-Silva, J.: Premise set caching for
enumerating minimal correction subsets. In: AAAI, pp. 6633-6640 (2018)

Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57-95
(1987)

Simons, P., Niemel4, 1., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1-2), 181-234 (2002)

de Siqueira N., J.L., Puget, J.: Explanation-based generalisation of failures. In:
ECAI, pp. 339-344 (1988)

http://arxiv.org/abs/1406.7838
http://ceur-ws.org/Vol-2011/paper5.pdf
https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1007/978-3-642-02777-2_45
https://doi.org/10.1007/978-3-642-39799-8_39
https://doi.org/10.1007/978-3-642-39799-8_39
https://doi.org/10.1007/978-3-319-40970-2_21
https://doi.org/10.1007/978-3-319-40970-2_21
https://doi.org/10.1007/s10601-013-9146-2
https://doi.org/10.1007/978-3-642-40564-8_45

	Reasoning About Strong Inconsistency in ASP
	1 Introduction
	2 Preliminaries
	3 Reasoning About Strongly Inconsistent ASP Programs
	3.1 Strong Inconsistency and MSMP
	3.2 Computing Minimal Explanations and Corrections

	4 Preliminary Results
	5 Conclusions
	References

