®

Check for
updates

Taming High Treewidth with
Abstraction, Nested Dynamic
Programming, and Database Technology

Markus Hecher®) | Patrick Thier®™), and Stefan Woltran®

Institute of Logic and Computation, TU Wien, Vienna, Austria
{hecher, thier,woltran}@dbai.tuwien.ac.at

Abstract. Treewidth is one of the most prominent structural parame-
ters. While numerous theoretical results establish tractability under the
assumption of fixed treewidth, the practical success of exploiting this
parameter is far behind what theoretical runtime bounds have promised.
In particular, a naive application of dynamic programming (DP) on tree
decompositions (TDs) suffers already from instances of medium width.
In this paper, we present several measures to advance this paradigm
towards general applicability in practice: We present nested DP, where
different levels of abstractions are used to (recursively) compute TDs
of a given instance. Further, we integrate the concept of hybrid solv-
ing, where subproblems hidden by the abstraction are solved by classical
search-based solvers, which leads to an interleaving of parameterized and
classical solving. Finally, we provide nested DP algorithms and imple-
mentations relying on database technology for variants and extensions of
Boolean satisfiability. Experiments indicate that the advancements are
promising.

1 Introduction

Treewidth [43] is a prominent structural parameter, originating from graph the-
ory and is well-studied in the area of parameterized complexity [6,18,40]. For
several problems hard for complexity class NP, there are results [12] showing so-
called (fixed-parameter) tractability, which indicates a fized-parameter tractable
(FPT) algorithm running in polynomial time assuming that a given parameter
(e.g., treewidth) is fixed. Practical implementations exploiting treewidth include
generic frameworks [3,5,36], but also dedicated solvers that deal with problems
ranging from (counting variants of) Boolean satisfiability (SAT) [25], over gener-
alizations thereof [9,10] based on Quantified Boolean Formulas (QBFs), to for-
malisms relevant to knowledge representation and reasoning [22]. For SAT, these
solvers are of particular interest as there is a well-known correspondence between
treewidth and resolution width [2]. QBFs extend Boolean logic by explicit uni-
versal and existential quantification over variables, which has applications in
formal verification, synthesis, and AI problems such as planning [28]. Some of

© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 343-360, 2020.
https://doi.org/10.1007/978-3-030-51825-7_25


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-51825-7_25

344 M. Hecher et al.

these parameterized solvers are particularly efficient for certain fragments [37],
and even successfully participated in problem-specific competitions [42].

Most of these systems are based on dynamic programming (DP), where a tree
decomposition (TD) is traversed in a post-order, i.e., from the leaves towards the
root, and thereby for each TD node tables are computed. The size of these tables
(and thus the computational efforts required) are bounded by a function in the
treewidth of the instance. Although dedicated competitions [15] for treewidth
advanced the state-of-the-art for efficiently computing treewidth and TDs [1,47],
these DP approaches reach their limits when instances have higher treewidth; a
situation which can even occur in structured real-world instances [38]. Neverthe-
less in the area of Boolean satisfiability, this approach proved to be successful
for counting problems, such as, e.g., (weighted) model counting [24,25,44] and
projected model counting [23].

To further increase the applicability of this paradigm, novel techniques are
required which (1) rely on different levels of abstraction of the instance at hand;
(2) treat subproblems originating in the abstraction by standard solvers when-
ever widths appear too high; and (3) use highly sophisticated data management
in order to store and process tables obtained by dynamic programming.

Contributions. Above aspects are treated as follows.

1. To tame the beast of high treewidth, we propose mested dynamic program-
ming, where only parts of an abstraction of a graph are decomposed. Then,
each TD node also needs to solve a subproblem residing in the graph, but
may involve vertices outside the abstraction. In turn, for solving such sub-
problems, the idea of nested DP is to subsequently repeat decomposing and
solving more fine-grained graph abstractions in a nested fashion. This results
not only in elegant DP algorithms, but also allows to deal with high treewidth.
While candidates for obtaining abstractions often originate naturally from the
problem, nested DP may require non-obvious sub-abstractions, for which we
present a generic solution.

2. To further improve the capability of handling high treewidth, we show how to
apply nested DP in the context of hybrid solving, where established, standard
solvers (e.g., SAT solvers) and caching are incorporated in nested DP such that
the best of two worlds are combined. Thereby, structured solving is applied
to parts of the problem instance subject to counting or enumeration, while
depending on results of subproblems. These subproblems (subject to search)
reside in the abstraction only, and are solved via standard solvers.

3. We implemented a system based on a recently published tool called dpdb [24]
for using database management systems (DBMS) to efficiently perform table
manipulation operations needed during DP. Our system uses and significantly
extends this tool in order to perform hybrid solving, thereby combining nested
DP and standard solvers. As a result, we use DBMS for efficiently implement-
ing the handling of tables needed by nested DP. Preliminary experiments
indicate that nested DP with hybrid solving can be fruitful.

We exemplify these ideas on the problem of Projected Model Counting (#3SAT)
and discuss adaptions for other problems.



Taming High Treewidth with Abstraction, Nested DP and Databases 345

ts ({2}) 4,
byﬁa M {r,;}

Fig. 1. Graph G (left), a TD T of graph G (right).

2 Background

Projected Model Counting. We define Boolean formulas in the usual way,
cf., [28]. A literal is a Boolean variable x or its negation —x. A (CNF) formula ¢
is a set of clauses interpreted as conjunction. A clause is a set of literals inter-
preted as disjunction. For a formula or clause X, we abbreviate by var(X) the
variables that occur in X. An assignment of ¢ is a mapping I : var(yp) — {0, 1}.
The formula ¢[I] under assignment I is obtained by removing every clause ¢
from ¢ that contains a literal set to 1 by I, and removing from every remaining
clause of ¢ all literals set to 0 by I. An assignment [ is satisfying if o[I] = 0.
Problem #SAT asks to output the number of satisfying assignments of a formula.
Projected Model Counting #3SAT takes a formula ¢ and a set P C var(p) of pro-
jection variables, and asks for #3SAT(p, P) := [{I~1(1)NP | p[I] = 0}|. Conse-
quently, SAT(p) := #3SAT(p, D), and #SAT(p) = #3ISAT(p, var(p)). #3ISAT
is #-NP-complete [19] and thus probably harder than #SAT (#P-complete).

Tree Decomposition and Treewidth. We assume familiarity with graph
terminology, cf., [17]. A tree decomposition (TD) [43] of a given graph G is
a pair 7 = (T,x) where T is a rooted tree and x assigns to each node
t € V(I') aset x(t) € V(G), called bag, such that (i) V(G) = U,ey () x(1),
(ii) E(Q) C {{u,v} |t € V(T),{u,v} C x(t) }, and (iii) for each r,s,t € V(T),
such that s lies on the path from r to ¢, we have x(r) N x(t) C x(s). We let
width(7) = max;cy(r) [x(t)| — 1. The treewidth tw(G) of G is the minimum
width(7") over all TDs T of G. For a node t € V(T'), we say that type(t) is leaf
if ¢ has no children and x(¢) = 0; join if ¢ has children ¢’ and " with ¢’ # ¢” and
x(t) = x(t') = x(#"); intr (“introduce”) if ¢ has a single child ¢, x(¢') C x(¢) and
Ix(®)] = |x(t)| + 1; rem (“removal”) if ¢ has a single child ¢/, x(¢') 2 x(¢) and
Ix(t)] = |x(®)| + 1. If for every node t € V(T'), type(t) € {leaf, join, intr, rem},
the TD is called nice. A nice TD can be computed from a given TD 7 in linear
time without increasing the width [31], assuming the width of 7 is fixed.

Ezample 1. Figurel depicts a graph G and a (non-nice) TD 7 of G of width 2.

Relational Algebra. We formalize DP algorithms by means of relational alge-
bra [11], similar to related work [24]. A table 7 is a finite set of rows r over a
set att(7) of attributes. Each row r € 7 is a set of pairs (a,v) with a € att(7) and v
in domain dom(a) of a, s.t. for each a € att(r) there is exactly one (a,v) € r.
Notably, apart from counters we use mainly binary domains in this paper.
Selection of rows in T according to a Boolean formula ¢ is defined by o, (1) =
{r | r € 7,p[ass(r)] = 0}, assuming that ass(r) refers to the truth assignment
over the attributes of binary domain of a given row r € 7. Given a relation 7/



346 M. Hecher et al.

Listing 1: Table algorithm #SAT:(xt, ¢+, (T1,. .., Te)) for solving #SAT on node ¢
of a nice tree decomposition, cf., [24].

In: Bag x:, bag formula ¢, child tables (71,...7¢) of t.
Out: Table ;.

1 if type(t) = leaf then 7, := {{(cnt, 1)} }

2 else if type(t) = intr, and a € x+ is introduced then

8| 7 i=m o, {{(a.0)} {(a1)})

4 else if type(t) = rem, and a & x: is removed then

5 Tt = XtGunt*SUM(cnr)(Hatt(Tl)\{a}TI)

6 else if type(t) = join then

7

Tt 1= Iy, fentcntoent’} (T2 DA a=a’ PU{a—a’}T2)

aExt
t acatt(Tg)

with att(7")Natt(7) = 0, we refer to the cross-join by 7x 7' = {rUr’ | r € 7,1' €
7'}. Further, a join (using @) corresponds to 7 <, 7/ := o,(7 x 7). We define
renaming of T, given a set A of attributes, and a bijective mapping m : att(r) —
A by pm(7) == {(m(a),v) | (a,v) € T}. T projected to A C att(r) is given by
(1) :={ra|r €7}, where rg := {(a,v) | (a,v) € r,a € A}. This is lifted to
extended projection HA,(m_f), assuming attribute a € att(7) \ A and arithmetic
function f : 7 — N. Formally, we define Il (o f)(7) == {ra U{(a, f(r))} | 7 €
7}. We use aggregation by grouping aG(qg), where we assume A C att(7),a €
att(7) \ A and an aggregate function g : 27 — dom(a). We define 4G qg)(7) =
{rU{(a,g(rr]))} | r € Ia(7)}, where 7[r] :=={r" | ' € 7,7 Dr}.

3 Towards Nested Dynamic Programming

A solver based on dynamic programming (DP) evaluates a given input instance Z
in parts along a given TD of a graph representation G of the instance. Thereby,
for each node t of the TD, intermediate results are stored in a table ;. This is
achieved by running a so-called table algorithm, which is designed for a certain
graph representation, and stores in 7; results of problem parts of Z, thereby
considering tables 7y for child nodes ¢’ of t. DP works for many problems:

1. Construct a graph representation G of T.

2. Compute (some) tree decomposition 7 = (T, x) of G.

3. Traverse the nodes of T in post-order (bottom-up tree traversal of T'). At
every node t of T during post-order traversal, execute a table algorithm that
takes as input bag x(t), a certain bag instance I; depending on the problem,
as well as previously computed child tables of t. Then, the results of this
execution are stored in table 7.

4. Finally, interpret table 7, for the root node n of T" in order to output the
solution to the problem for instance Z.

Having relational algebra and this paradigm at hand, we exemplarily show how
to solve #SAT, required for solving #3ISAT later. To this end, we need the
following graph representation for a given formula ¢. The primal graph G, [44]



Taming High Treewidth with Abstraction, Nested DP and Databases 347

of a formula ¢ has as vertices its variables, where two variables are joined by
an edge if they occur together in a clause of ¢. Given a TD 7 = (T, x) of G,
and a node t of T'. Then, we let bag instance ¢, of ¢, called bag formula, be the
clauses { ¢ | c € ¢,var(c) C x(t) } entirely covered by the bag x(t).

Now, the only ingredient that is still missing for solving #SAT via dynamic
programming along a given TD, is the table algorithm #SAT;. For brevity, table
algorithm #SAT; as presented in Listing 1 shows the four cases corresponding to
the four node types of a nice TD, as any TD node forms just an overlap of these
four cases. Each table 7, consists of rows using attributes x(¢) U{cnt}, represent-
ing an assignment of ; and cnt is a counter. Then, the table 7 for a leaf node ¢,
where type(t) = leaf, consists of the empty assignment and counter 1, cf., Line 1.
For nodes ¢ with introduced variable a € x(t), we guess in Line 3 for each assign-
ment of the child table, whether a is set to true or to false, and ensure that ¢y is
satisfied. When an atom « is removed in a remove node ¢, we project assignments
of child tables to x(¢), cf., Line 5, and sum up counters of the same assignments.
For join nodes, counters of equal assignments are multiplied (Line 7).

C1 C2 c3 Caq

————

Ezample 2. Let p:={{—x,y,a},{z, -y, ~a},{x,b},{x,-b}}. Observe that G of
Fig. 1 is the primal graph G, and that there are 6 satisfying assignments of ¢. We
discuss selected cases of running algorithm #SAT; on each node ¢ of TD 7jce of
Fig. 2 in post-order, thereby evaluating ¢ in parts. Observe that type(t;) = leaf.
Consequently, 71 = {{(cnt, 1)}}, cf., Line 1. Nodes t € {ta,t3,t4} are of type(t) =
intr. Thus, we cross-join table 7 with {{(z,0)},{(x,1)}} (two possible truth
assignments for x), cf., Line 3, which is cross-joined with {{(a,0)},{(a,1)}},
and then with {{(y,0)},{(y,1)}}. Then, for node t4, we additionally filter, cf.,
Line 3, those rows, where ¢;, = {¢1,ca} is satisfied and obtain table 74. Node t5
is of type(ts) = rem, where a is removed, i.e., by the properties of TDs, it is
guaranteed that all clauses of ¢ using a are checked below ¢5 and that no clause
involving a will occur above t4. Consequently, 75 is obtained from 74 by pro-
jecting to {x,y} and summing up the counters cnt of rows of equal assignments
correspondingly, cf., Line 5. Similarly, one proceeds with 74 and the right part
of the tree, obtaining tables 77 — 719. In node ¢11, we join common assignments
of tables 74 and 719, and multiply counters cnt accordingly. Finally, we obtain 6
satisfying assignments, as expected. In all the tables the corresponding parts of
assignment I, where z,y,b are set to 1 and a is set to 0 are highlighted.

Although these tables obtained via table algorithms might be exponential in
size, the size is bounded by the width of the given TD of the primal graph G.,.
Still, practical results of such algorithms show competitive behaviour [3,25]
up to a certain width. As a result, instances with high (tree-)width seem out
of reach. Even further, if we lift the table algorithm #SAT, in order to solve
problem #3SAT, we are double exponential in the treewidth [23] and suffer
from a rather complicated algorithm. To mitigate these issues, we present a
novel approach to deal with high treewidth, by nesting of DP on abstractions
of G,. As we will see, this not only works for #SAT, but also for #3SAT with
adaptions.



348 M. Hecher et al.

i| (x,y,cnt)

0,0,2)

Fig. 2. Tables obtained by #SAT: on Tnice for ¢ of Example 2.

3.1 Essentials for Nested Dynamic Programming

Assume that a set U of variables of ¢, called nesting variables, appears uniquely
in one TD node ¢. Then, one could do DP on the TD as before, but no truth value
for any variable in U is stored. Instead, clauses involving U could be evaluated
by nested DP within node ¢, since variables U appear uniquely in ¢. Indeed,
for DP on the other (non-nesting) variables, only the result of this evaluation
is essential. Now, before we can apply nested DP, we need abstractions with
room for choosing nesting variables between the empty set and the set of all the
variables. Inspired by related work [16,20,26,29], we define the nested primal
graph N:;‘ for a given formula ¢ and a given set A C var(p) of abstraction
variables. To this end, we say a path P in primal graph G, is a nesting path
(between u and v) using A, if P =wu,vq,...,ve,v (£ > 0), and every vertex v; is
a nesting variable, i.e., v; ¢ A for 1 <14 < £. Note that any path in G, is nesting
using A if A = (. Then, the vertices of nested primal graph ij“ correspond
to A and there is an edge between two vertices u,v € A if there is a nesting
path between u and v. Observe that the nested primal graph only consists of
abstraction variables and, intuitively, “hides” nesting variables in nesting paths
of primal graph G.

Ezample 3. Recall formula ¢ and primal graph G, of Example 2. Given abstrac-
tion variables A= {z, y}, nesting paths of G, are, e.g., Py =z, P,=1x,b, P3=0, z,
Py,==z,y, Ps=x,a,y. However, neither path Ps =y, x,b, nor path P, =b,z,y,a
is nesting using A. Nested primal graph N:,f‘ contains edge {x,y} over vertices A
due to paths Py, Ps.

The nested primal graph provides abstractions of needed flexibility for nested
DP. Indeed, if we set abstraction variables to A= var(y), we end up with full
DP and zero nesting, whereas setting A =) results in full nesting, i.e., nesting
of all variables. Intuitively, the nested primal graph ensures that clauses subject
to nesting (containing nesting variables) can be safely evaluated in exactly one
node of a TD of the nested primal graph. To formalize this, we let nestReach(U)



Taming High Treewidth with Abstraction, Nested DP and Databases 349

Listing 2: Algorithm HybDP 5., (depth, o, P’, A") for hybrid solving of #3SAT by
nested DP with abstraction variables A’.

In: Nesting depth > 0, formula ¢, projection variables P’ C var(y), and
abstraction variables A" C var(¢p).
Out: Number #3SAT(¢, P’) of assignments.

1 ¢, P +— BCP_And_Preprocessing(ip, P’)

2 A—A'NP
3 if ¢ € dom(cache) /*Cache Hit occurred*/ then return cache(y) - 2/7"\F!
4 if var(p) N P = () then return SAT(yp) - 2IP\P
5 (T,x) < Decompose_via_Heuristics(NZ') /* Decompose */
6 width «— max; in 7 |x(¢)] — 1
7 if width > thresholdnybria or depth > thresholdgepin, /* Standard Solver */ then
8 if var(¢) = P then cache «— cache U{(p, #SAT(¢))}
9 L else cache « cache U{(p, #3SAT(p, P))}
10 return cache(yp) 2P\

11 if width > thresholdapst- /* Abstract via Heuristics & Decompose */ then
12 A «— Choose_Subset_via_Heuristics(A, ¢)
13 (T, x) < Decompose_via_Heuristics(N;)

14 n « root(T)

15 7 {} /* empty mapping */

16 for iterate ¢ in post-order(7T,n) /* Nested Dynamic Programming */ do
17 {t1,...,te} < children(T, t)

18 T¢ « #3SAT:(depth, X(t), ¢, Pty A"\ A, (Tey, -+, T2,))

19 cache « cache U{(p,c)} where cne(7n) = {{(cnt, c)}}

20 return cache(yp) - 2l PP

for any set U C var(ip) of variables containing nesting variables (U € A), be the
set of vertices of all nesting paths of G, between vertices a, b using A such that
(i) both a,b € U, or (ii) a € U \ A. Intuitively, this definition ensures that from
a given set U of variables, we obtain reachable (i) nesting and (ii) abstraction
variables, needed to evaluate clauses over U. Then, assuming a TD 7 of N, ;‘, we
say a set U C var(ip) of variables (“compatible set”) is compatible with a node ¢
of T, and vice versa, if (I) U = nestReach(U), and (II) U N A C x(t).

Ezample 4. Assume again formula ¢, primal graph G, and abstraction vari-
ables A = {x,y} of the previous example. Further, consider any TD (T, )
of N;;‘. Observe that nestReach({b}) = {b,x} due to nesting path b, z, i.e., {b}
is not a compatible set. However, {b,x} is compatible with any node ¢ of T
where x € x(t). Indeed, to evaluate clauses c3,cqs € @, we need to evaluate
both b and . Similarly, {a,x} is not a compatible set due to nesting path a,y,
but {a,x,y} is a compatible set. Also, {a,b, z,y} is a compatible set.

By construction any nesting variable is in at least one compatible set. How-
ever, (1) a nesting variable could be even in several compatible sets, and (2)
a compatible set could be compatible with several nodes of 7. Hence, to allow
nested evaluation, we need to ensure that each nesting variable is evaluated only
in one unique node t. As a result, we formalize for every compatible set U that is



350 M. Hecher et al.

Listing 3: Nested table algorithm #3SAT; (depth, x¢, @i, P, o, A, (11, ..., 7)) for
solving #3SAT on node t of a nice TD.

In: Nesting depth > 0, bag x:, bag formula ¢, projection variables P, nested bag
formula 7', abstraction variables A’, and child tables (ri,...7) of t.

Out: Table 7.

if type(t) = leaf then 7 — {{(cnt, 1)}}

else if type(t) = intr, and a € x; is introduced then

Ty T1 D, {.{((14 0)},{(a,1)}}

Tt < O’(‘n\}*l)(H

1

2

3

4 Xt,{cnt« cnt -HybDP, 54, (depth +1, ;‘,AVU»:JA P"W\'e\r(;m;\s,\r\). A“)}Tt)
5 else if type(t) = rem, and a & x: is removed then

6 ‘Tt — XtG(‘nt«—SUM((:nt)(Hatt(Tl)\{a}Tl)

7 else if type(t) = join then

8 [Ty HXt,{( nt«—cnt-cnt’ } (Tl >IN a=a’ PU {an—»a’}TQ)

2SS
Xt acate(ry)

%) Function ass refers to the respective truth assignment I:x: — {0,1} of a given
TOW T € T¢.

subset-minimal, a unique node ¢t compatible with U, denoted by comp(U) :=t.
For simplicity of our algorithms, we assume these unique nodes for U are intro-
duce nodes, i.e., type(t) = intr. We denote the union of all compatible sets U
where comp(U) = t, by nested bag variables x{. Then, the nested bag formula o7}
for a node t of T equals 7' := {c | c € ¢,var(c) C x{'} \ ¢, where formula ¢,
is defined above.

Ezample 5. Recall formula ¢, TD 7 = (T,x) of G, and abstraction vari-
ables A = {z,y} of Example3. Consider TD 7' := (T, '), where x/'(t) :=
x(t) N {z,y} for each node ¢ of T. Observe that 7’ is 7, but restricted to A
and that 7’ is a TD of N;‘ of width 1. Observe that only for compatible
set U = {b,z} we have two nodes compatible with U, namely t; and t3. We
assume comp(U) = t5. Consequently, nested bag formulas are go;jfi = {c1, ¢},
ot = {cs,ca}, and @t =0.

Assume any TD 7 of N;‘ using any set A of abstraction variables. Observe
that the definitions of nested primal graph and nested bag formula ensure that
any set S of vertices connected via edges in G, will “appear” among nested bag
variables of some node of 7. Even more stringent, each variable a € var(yp) \ A
appears only in nested bag formula ¢! of node ¢ unique for a. These unique
variable appearances allow to nest evaluating ;' under some assignment to x(t).

3.2 Hybrid Solving Based on Nested DP

Now, we have definitions at hand to discuss nested DP in the context of hybrid
solving, which combines using both standard solvers and parameterized solvers
exploiting treewidth. We first illustrate the ideas for the problem #3SAT and
then discuss possible generalizations in Sect. 3.3; a concrete implementation is
presented in Sect. 4.

Listing 2 depicts our algorithm HybDP ,5g,, for solving #3SAT. Note that
the recursion is indirect in Line 18 through Line 4 of Listing 3 (discussed later).



Taming High Treewidth with Abstraction, Nested DP and Databases 351

(z, cnt)

(1,2)

Fig. 3. Selected tables obtained by nested DP on TD 7" of N§**¥} (left) and on TD T"
of Ng{,z} (right) for ¢ and projection variables P = {z,y} of Example 6 via HybDP ,5g,, -

Algorithm HybDP,5q,, takes formula ¢, projection variables P’ and abstraction
variables A’. The algorithm uses a global, but rather naive and simple cache
mapping a formula to an integer, and consists of four subsequent blocks of code,
separated by empty lines: (1) Preprocessing & Cache Consolidation, (2) Standard
Solving, (3) Abstraction & Decomposition, and (4) Nested DP.

Block (1) spans Lines 1-3 and performs Boolean conflict propagation and
preprocessing, thereby obtaining projection variables P C P’ (preserving satis-
fying assignments w.r.t. P’), sets A to A’ N P in Line 2, and consolidates cache
with the updated formula . If ¢ is not cached, we do standard solving if the
width is out-of-reach for nested DP in Block (2), spanning Lines 4-10. More
concretely, if ¢ does not contain projection variables, we employ a SAT solver
returning integer 1 or 0. If ¢ contains projection variables and either the width
obtained by heuristically decomposing G, is above thresholdyypria, or the nest-
ing depth exceeds thresholdgcpth, We use a standard #SAT or #3SAT solver
depending on var(p) N P. Block (3) spans Lines 11-13 and is reached if no cache
entry was found in Block (1) and standard solving was skipped in Block (2). If
the width of the computed decomposition is above threshold,pst:r, we need to use
an abstraction in form of the nested primal graph. This is achieved by choosing
suitable subsets E C A of abstraction variables and decomposing ¢ heuristi-
cally. Finally, Block (4) concerns nested DP, cf., Lines 14-20. This block relies
on nested table algorithm #3SAT;, which takes parameters similar to table algo-
rithm #SATy, but additionally requires the nested bag formula for current node t,
projection variables P and abstraction variables. Nested table algorithm #3SAT,
is sketched in Listing 3 and recursively calls for each row r € 7, HybDP ,5q,, on
nested bag formula ¢f* simplified by the assignment ass(r) of the current row r.
This is implemented in Line 4 by using extended projection, cf., Listing 1, where
the count cnt of the respective row r is updated by multiplying the result of
the recursive call HybDP ,5q,,. Notably, as the recursive call HybDP ,5g,, within
extended projection of Line 4 implicitly takes a given current row r, the function
occurrences ass in Line 4 implicitly take this row r as an argument. As a result,
our approach deals with high treewidth by recursively finding and decomposing
abstractions of the graph. If the treewidth is too high for some parts, TDs of
abstractions are used to guide standard solvers.

Ezample 6. Recall formula ¢, set A of abstraction variables, and TD 7" of nested
primal graph Nﬁ given in Example 5. Restricted to projection set P := {x,y},
© has two satisfying assignments, namely {z — 1,y — 0} and {z — 1,y — 1}.



352 M. Hecher et al.

Listing 4: Nested table algorithm QSAT,(depth, xt, ¢, pi', A, (71,..., 7)) for
solving QSAT on node t of a nice tree decomposition.

In: Nesting depth > 0, bag x:, bag QBF ¢; = Q V., nested bag QBF 7',

abstraction variables A, and child tables (r1,...7¢) of t.

Out: Table 7¢.

if type(t) = leaf then 7, — {0}

else if type(t) = intr, and a € x; is introduced then
ro e e, {0(0.0), (0, 1)}

1
2
3
4 [Tt T 0(Q=3v |y |=2Ixt]) ARyBDPGg, (depth +1,07] fasst, a0 (T¢)
5 else if type(t) = rem, and a & x: is removed then

6 |7t — Iate(ry)\(a} 1
7 else if type(t) = join then
8

Tt < HXt (7-1 >IN a=a’ pU{a)—»a’}T2)

acatt(rs)

aExt

%) The cardinality of a table 7 can be obtained via relational algebra (sub-expression):
|7| := ¢, where {{(card, ¢)}} = ¢9Gcara—sm1)T

Consequently, the solution to #3SAT is 2. Figure 3 (left) shows TD 7" of N;f‘ and
tables obtained by HybDP gy, (¢, P, A) for solving projected model counting
on ¢ and P. Note that the same example easily works for #SAT, where P =
var(y).

Algorithm #3dSAT; of Listing 3 works similar to algorithm #SAT:, but
uses attribute “cnt” for storing (projected) counts accordingly. We briefly dis-
cuss executing #3SAT;, in the context of Line 18 of algorithm HybDP ,gq,.,
on node t; of 7', resulting in table 7 as shown in Fig.3 (left). Recall
that comp({a,z,y}) = t1, and, consequently, @i = {{-z,y,a},{z,~y,~a}}.
Then, in Line 4 of algorithm #3SAT;, for each assignment ass(r) to {z,y} of
each row r of 71, we compute HybDP g, (¢, PNvar(y), ) using ¢ = o7 ass(r)].
Each of these recursive calls, however, is already solved by BCP and preprocess-
ing, e.g., @i [{x — 1,y — 0}] of Row 2 simplifies to {{a}}.

Figure 3 (right) shows TD 7" of NJ with E := {x}, and tables obtained
by HybDP 5, (@, P, E). Still, ¢f [ass(r)] for a given assignment ass(r) : {z} —
{0,1} of any row r € 7y can be simplified. Concretely, f [{ — 0}] evaluates
to 0 and ¢f [{x — 1}] evaluates to two variable-distinct clauses, namely {-b}
and {y,a}. Thus, there are 2 satisfying assignments {y — 0}, {y — 1}
of of [{x +— 1}] restricted to P.

Theorem 1. Given formula ¢, projection variables P C  var(y), and
abstraction wvariables A’ C  var(p). Then, HybDP,zq,.(p, P, A") correctly
returns #3ISAT(yp, P).

Proof (Sketch). Observe that (A): (T',x) is a TD of nested primal graph N
such that A C A’N P. The interesting part of algorithm HybDP 5, lies in Block
(3), in particular in Lines 11-13. The proof proceeds by structural induction on
. By construction, we have (B): Every variable of var(y) \ A occurs in some
nested bag formula ¢f* as used in the call to #3SAT; in Line 18 for a unique



Taming High Treewidth with Abstraction, Nested DP and Databases 353

node t of T'. Observe that #3SAT; corresponds to #SAT;, whose correctness is
established via invariants, cf., [24,44], only Line 4 differs. In Line 4 of #3SATy,
HybDP 5, is called recursively on subformulas @{Mass(r)] for each r € 7. By
induction hypothesis, we have (C): these calls result to #3SAT (o [ass(r)], P N
var(p;t[ass(r)])) for each r € 7;. By (A), #3SAT, as called in Line 18 stores only
table attributes in x; C A C P. Thus, by (C), recursive calls can be subsequently
multiplied to cnt for each r € 7.

3.3 Generalizing Nested DP to Other Formalisms

Nested DP as proposed above is by far not restricted to (projected) model count-
ing, or counting problems in general. In fact, one can easily generalize nested
DP to other relevant formalisms, briefly sketched for the QBF formalism.

Quantified Boolean Formulas (QBFs). We assume QBFs of the form ¢ =
V1. VVa. ... FVpy using quantifiers 3,V, where «y is a CNF formula and var(p) =
var(y) = Vi U Va--- UV, Given QBF ¢ = @Q Vi with Q € {3,V}, we
let qvar(p) := V. For an assignment I : V' — {0,1} with V' C V, we let
plI] == ] if V=V, and [I] = Q(V \ V)y[I] if V'CV. Validity of ¢
(QSAT) is recursively defined: V. is walid if there is I: V' — {0, 1} where ¢[[]
is valid; VV.¢ is valid if for every I: V' — {0,1}, o[I] is valid.

Hybrid solving by nested DP can be extended to problem QSAT. To the end
of using this approach for QBFs, we define the primal graph G, for a QBF ¢ =
FV1.VVs. ... 3Vp.y analogously to the primal graph of a Boolean formula, i.e.,
G, := G,. Consequently, also the nested primal graph is defined for a given
set A C var(p) by N:;‘ = N;‘. Now, let A C var(y) be a set of abstraction
variables, and 7 = (T, x) be a TD of N:;‘ and t be a node of T'. Then, the bag
QBF o is given by ¢; = 3V1.VVa.... 3V, and the nested bag QBF i for a
set A C var(p) amounts to ¢t := 3V1.VVa.... 3V,

Algorithm HybDP g, is similar to HybDP ,5q,, of Listing 2, where the projec-
tion variables parameter P’ is removed since P’ constantly coincides with vari-
ables gvar(p) of the outermost quantifier. Further, Line 4 is removed, Lines 8
and 9 are replaced by calling a QSAT solver and nested table algorithm #3SAT,
of Line 18 is replaced by nested table algorithm QSAT, as presented in List-
ing 4. Algorithm QSAT, is of similar shape as algorithm #3SATy, cf., Listing 3,
but does not maintain counts cnt. Further, Line 4 of algorithm QSAT, intu-
itively filters 7 fulfilling the outer-most quantifier, and keeps those rows r of 7,
where the recursive call to HybDP(q,, on nested bag formula simplified by the
assignment ass(r) of r succeeds. For ensuring that the outer-most quantifier @ is
fulfilled, we are either in the situation that @ = 3, which immediately is fulfilled
for every row r in 7 since r itself serves as a witness. If Q = V, we need to
check that 7; contains 2X(Y)1 many (all) rows. The cardinality of table 7, can
be computed via a sub-expression of relational algebra as hinted in the footnote
of Listing 4. Notably, if @Q =V, we do not need to check in Line 8 of Listing4,
whether all rows sustain in table 7; since this is already ensured for both child
tables 71, 7o of t. Then, if in the end the table for the root node of 7 is not empty,



354 M. Hecher et al.

it is guaranteed that either the table contains some (if @ = 3) or all (if Q = V)
rows and that ¢ is valid. Note that algorithm QSAT, can be extended to also
consider more fine-grained quantifier dependency schemes.

Compared to other algorithms for QSAT using treewidth [9,10], hybrid solv-
ing based on nested DP is quite compact without the need of nested tables.
Instead of rather involved data structures (nested tables), we use here plain
tables that can be handled by modern database systems efficiently.

4 Implementation and Preliminary Results

We implemented a hybrid solver nestHDB! based on nested DP in Python3 and
using table manipulation techniques by means of SQL and the database manage-
ment system (DBMS) Postgres. Our solver builds upon the recently published
prototype dpdb [24], which applied a DBMS for plain dynamic programming
algorithms. However, we used the most-recent version 12 of Postgres and we
let it operate on a tmpfs-ramdisk. In our solver, the DBMS serves the purpose
of extremely efficient in-memory table manipulations and query optimization
required by nested DP, and therefore nestHDB benefits from database technol-
ogy.

Nested DP & Choice of Standard Solvers. We implemented dedicated
nested DP algorithms for solving #SAT and #3SAT, where we do (nested) DP
up to thresholdgepth = 2. Further, we set thresholdpybria = 1000 and therefore
we do not “fall back” to standard solvers based on the width (cf., Line 7 of
Listing 2), but based on the nesting depth.

Also, the evaluation of the nested bag formula is “shifted” to the database if
it uses at most 40 abstraction variables, since Postgres efficiently handles these
small-sized Boolean formulas. Thereby, further nesting is saved by executing
optimized SQL statements within the TD nodes. A value of 40 seems to be a
nice balance between the overhead caused by standard solvers for small formulas
and exponential growth counteracting the advantages of the DBMS. For hybrid
solving, we use #SAT solver sharpSAT [48] and for #3SAT we employ the recently
published #3SAT solver projMC [35], solver sharpSAT and SAT solver picosat [4].
Observe that our solver immediately benefits from better standard solvers and
further improvements of the solvers above.

Choosing Non-nesting Variables & Compatible Nodes. TDs are com-
puted by means of heuristics via decomposition library htd [1]. For finding good
abstractions (crucial), i.e., abstraction variables for the nested primal graph, we
use encodings for solver clingo [27], which is based on logic programming (ASP)
and therefore perfectly suited for solving reachability via nesting paths. There,
among a reasonably sized subset of vertices of smallest degree, we aim for a
preferably large (maximal) set A of abstraction variables such that at the same
time the resulting graph Ng"f is reasonably sparse, which is achieved by minimiz-
ing the number of edges of N:,‘. To this end, we use built-in (cost) optimization,

! Source code, instances, and detailed results are available at: tinyurl.com/nesthdb.


https://tinyurl.com/nesthdb

Taming High Treewidth with Abstraction, Nested DP and Databases 355

900

<+ 1.nestHDB
800 < 2.nestHDB(sc)
< 3.miniC2D
7001 . 4 dpdb
6004 * 5.gpusat2
- 6.d4
5001 = 7.countAntom
8.c2d ‘
4001 < 9.ganak !
10.sharpSAT ]
3007 . 11.5dd {
P!
200] * 12sts
13.dsharp
1004 < 14.cnf2eadt
-+ 15.approxmc3
900

0 T T
700 800 1000 1100 1200

Fig. 4. Cactus plot of instances for #SAT, where instances (x-axis) are ordered for
each solver individually by runtime[seconds] (y-axis). thresholdapser = 38.

where we take the best results obtained by clingo after running at most 35s.
For the concrete encodings used in nestHDB, we refer to the online repository
as stated above. We expect that this initial approach can be improved and that
extending by problem-specific as well as domain-specific information might help
in choosing promising abstraction variables A.

As rows of tables during (nested) DP can be independently computed and
parallelized [25], hybrid solver nestHDB potentially calls standard solvers for
solving subproblems in parallel using a thread pool. Thereby, the uniquely com-
patible node for relevant compatible sets U, as denoted in this paper by comp(U),
is decided during runtime among compatible nodes on a first-come-first-serve
basis.

Benchmarked Solvers & Instances. We benchmarked nestHDB and 16
other publicly available #SAT solvers on 1,494 instances recently consid-
ered [24]. Among those solvers are single-core solvers miniC2D [41], d4 [34],
c2d [13], ganak [46], sharpSAT [48], sdd [14], sts [21], dsharp [39], cnf2eadt [32],
cachet [45], sharpCDCL [30], approxmc3 [8], and bdd_minisat [49]. We also included
multi-core solvers dpdb [24], gpusat2 [25], as well as countAntom [7]. While
nestHDB itself is a multi-core solver, we additionally included in our com-
parison nestHDB(sc), which is nestHDB, but restricted to a single core only.
The instances [24] we took are already preprocessed by pmc [33] using recom-
mended options -vivification -eliminatelit -litImplied -iterate=10
-equiv -orGate -affine for preserving model counts. However, nestHDB still
uses pmc with these options also in Line 1 of Listing 2.

Further, we considered the problem #3SAT, where we compare solvers pro-
jMC [35], clingo [27], ganak [46], nestHDB (see footnote 1), and nestHDB(sc)
on 610 publicly available instances? from projMC (consisting of 15 planning,
60 circuit, and 100 random instances) and Fremont, with 170 symbolic-markov
applications, and 265 misc instances. For preprocessing in Line 1 of Listing 2,

2 Sources: tinyurl.com/projmc;tinyurl.com/pme-fremont-01-2020.


https://tinyurl.com/projmc
https://tinyurl.com/pmc-fremont-01-2020

356 M. Hecher et al.

bench- 1 tw upper bound time
mark set| %% V" max 0-30 31-50 >50 | 22|  [h]
planning|nestHDB 30 7 0 0 7| 2.88
nestHDB(sc)| 30 7 0o 0 7| 3.31
projMC 26 6 0 0 6| 3.01
ganak 19 5 0 0 5| 3.36
clingo 4 1 0 0 1| 4.00
circ|nestHDB 99 34 10 16| 60| 2.10
nestHDB(sc)| 99 34 4 14| 52| 4.60 4
projMC 91 28 10 11| 49| 6.23 « 1.nestHDB
ganak 99 34 10 16| 60| 1.21 8001 « 2.nestHDB(sc)
clingo 99 31 10 16| 57 4.44 00 « 3.projMC
random|nestHDB | 79 80 20 17| 67[10.91 | I 9ne
nestHDB(sc)| 79 30 20 15| 65| 11.29 6007 =
projMC 84 30 20 15| 65| 11.09 5004
ganak 19 19 0 0| 19| 23.18
clingo 24 25 0 0| 25| 21.38 4001
markov |nestHDB 23 62 0 0| 62| 31.98 3001
nestHDB(sc)| 23 61 0 0| 61] 32.54
projMC 8 54 0 0| 54| 33.65 2001
ganak 59 64 0 4| 68|30.32 1001
clingo 3 38 0 0| 38| 37.54
misc|nestHDB 47 38 17 0| 55| 46.12 %% 100 150 200 7=
nestHDB(sc)| 47 38 13 0| 51| 48.20
projMC 47 38 13 0| 51| 45.90
ganak 44 38 15 0| 53|45.72
clingo 63 38 15 1| 54| 44.79
Y| nestHDB 99 171 47 33251 93.99
nestHDB(sc)| 99 170 37 29(236| 99.95
projMC 91 156 43 26| 225| 99.88
ganak 99 160 25 20|205/103.78
clingo 99 133 25 17|175(112.15

Fig.5. Number of solved #3SAT insts., grouped by upper bound intervals of
treewidth (left), cactus plot (right). time[h] is cumulated wall clock time, timeouts
count as 900s. thresholdapstr = 8.

nestHDB uses pmc as before, but without options -equiv -orGate -affine to
ensure preservation of models (equivalence).

Benchmark Setup. Solvers ran on a cluster of 12 nodes. Each node of the
cluster is equipped with two Intel Xeon E5-2650 CPUs consisting of 12 physical
cores each at 2.2 GHz clock speed, 256 GB RAM. For dpdb and nestHDB, we
used Postgres 12 on a tmpfs-ramdisk (/tmp) that could grow up to at most 1 GB
per run. Results were gathered on Ubuntu 16.04.1 LTS machines with disabled
hyperthreading on kernel 4.4.0-139. We mainly compare total wall clock time and
number of timeouts. For parallel solvers (dpdb, countAntom, nestHDB) we allow
12 physical cores. Timeout is 900s and RAM is limited to 16 GB per instance
and solver. Results for gpusat2 are taken from [24].

Benchmark Results. The results for #SAT showing the best 14 solvers are
summarized in the cactus plot of Fig.4. Overall it shows nestHDB among the
best solvers, solving 1,273 instances. The reason for this is, compared to dpdb,
that nestHDB can solve instances using TDs of primal graphs of widths larger
than 44, up to width 266. This limit is even slightly larger than the width of
264 that sharpSAT on its own can handle. We also tried using minic2d instead



Taming High Treewidth with Abstraction, Nested DP and Databases 357

900 - w . e . 900 -eue e - . e e v
800 8001 o
.
7001 * .. 700 o

600 . 600

projMC
ganak

400 . 400{ *

300 * 3001 *

200 . . 200

.
100 . 100

."" % '. . ol
-
2

0 100 200 300 400 500 600 700 800 900 0 100 00 300 400 500 600 700 800 900
nestHDB nestHDB

Fig. 6. Scatter plot of instances for #3SAT, where the x-axis shows runtime in seconds
of nestHDB compared to the y-axis showing runtime of projMC (left) and of ganak
(right). thresholdapstr = 8.

of sharpSAT as standard solver for solvers nestHDB and nestHDB(sc), but we
could only solve one instance more. Notably, nestHDB(sc) has about the same
performance as nestHDB, indicating that parallelism does not help much on
the instances. Further, we observed that the employed simple cache as used in
Listing 2, provides only a marginal improvement.

Figure5 (left) depicts a table of results on #3SAT, where we observe that
nestHDB does a good job on instances with low widths below threshold.psty = 8
(containing ideas of dpdb), but also on widths well above 8 (using nested DP).
Notably, nestHDB is also competitive on widths well above 50. Indeed, nestHDB
and nestHDB(sc) perform well on all benchmark sets, whereas on some sets the
solvers projMC, clingo and ganak are faster. Overall, parallelism provides a signif-
icant improvement here, but still nestHDB(sc) shows competitive performance,
which is also visualized in the cactus plot of Fig. 5 (right). Figure 6 shows scatter
plots comparing nestHDB to projMC (left) and to ganak (right). Overall, both
plots show that nestHDB solves more instances, since in both cases the y-axis
shows more black dots at 900 s than the x-axis. Further, the bottom left of both
plots shows that there are plenty easy instances that can be solved by projMC and
ganak in well below 50s, where nestHDB needs up to 200s. Similarly, the cactus
plot given in Fig.5 (right) shows that nestHDB can have some overhead com-
pared to the three standard solvers, which is not surprising. This indicates that
there is still room for improvement if, e.g., easy instances are easily detected,
and if standard solvers are used for those instances. Alternatively, one could
also just run a standard solver for at most 50s and if not solved within 50s,
the heavier machinery of nested dynamic programming is invoked. Apart from
these instances, Fig. 6 shows that nestHDB solves harder instances faster, where
standard solvers struggle.



358 M. Hecher et al.

5 Conclusion

We presented nested dynamic programming (nested DP) using different levels
of abstractions, which are subsequently refined and solved recursively. This app-
roach is complemented with hybrid solving, where (search-intense) subproblems
are solved by standard solvers. We provided nested DP algorithms for prob-
lems related to Boolean satisfiability, but the idea can be easily applied for
other formalisms. We implemented some of these algorithms and our bench-
mark results are promising. For future work, we plan deeper studies of problem-
specific abstractions, in particular for QSAT. We want to further tune our solver
parameters (e.g., thresholds, timeouts, sizes), deepen interleaving with solvers
like projMC, and to use incremental solving for obtaining abstractions and evalu-
ating nested bag formulas, where intermediate solver references are kept during
dynamic programming and formulas are iteratively added and (re-)solved.

Acknowledgements. The work has been supported by the Austrian Science Fund
(FWF), Grants Y698, and P32830, as well as the Vienna Science and Technology
Fund, Grant WWTF ICT19-065.

References

1. Abseher, M., Musliu, N., Woltran, S.: htd — a free, open-source framework for (cus-
tomized) tree decompositions and beyond. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 376-386. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59776-8_30

2. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. 40, 353-373 (2011)

3. Bannach, M., Berndt, S.: Practical access to dynamic programming on tree decom-
positions. Algorithms 12(8), 172 (2019)

4. Biere, A.: PicoSAT essentials. JSAT 4(2-4), 75-97 (2008)

5. Bliem, B., Charwat, G., Hecher, M., Woltran, S.: D-FLAT?: subset minimization in
dynamic programming on tree decompositions made easy. Fundam. Inform. 147(1),
27-61 (2016)

6. Bodlaender, H., Koster, A.: Combinatorial optimization on graphs of bounded
treewidth. Comput. J. 51(3), 255-269 (2008)

7. Burchard, J., Schubert, T., Becker, B.: Laissez-faire caching for parallel #SAT
solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 46-61.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_5

8. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for SAT. In: AAAI 2014, pp. 1722—
1730. The AAAI Press (2014)

9. Charwat, G., Woltran, S.: Expansion-based QBF solving on tree decompositions.
Fundam. Inform. 167(1-2), 59-92 (2019)

10. Chen, H.: Quantified constraint satisfaction and bounded treewidth. In: ECAI
2004, pp. 161-170. IOS Press (2004)

11. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377-387 (1970)


https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1007/978-3-319-24318-4_5

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Taming High Treewidth with Abstraction, Nested DP and Databases 359

Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

Darwiche, A.: New advances in compiling CNF to decomposable negation normal
form. In: ECAI 2004, pp. 318-322. I0S Press (2004)

Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: IJCAI 2011, pp. 819-826. AAAT Press/IJCAI (2011)

Dell, H., Komusiewicz, C., Talmon, N., Weller, M.: The PACE 2017 parameter-
ized algorithms and computational experiments challenge: the second iteration. In:
IPEC 2017, pp. 30:1-30:13. LIPIcs, Dagstuhl Publishing (2017)

Dell, H., Roth, M., Wellnitz, P.: Counting answers to existential questions. In:
ICALP 2019. LIPIcs, vol. 132, pp. 113:1-113:15. Schloss Dagstuhl - Leibniz-
Zentrum fir Informatik (2019)

Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. T'CS.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete
problems for counting complexity classes. Theoret. Comput. Sci. 340(3), 496-513
(2005). https://doi.org/10.1016/j.tcs.2005.03.012

Eiben, E., Ganian, R., Hamm, T., Kwon, O.: Measuring what matters: a hybrid
approach to dynamic programming with treewidth. In: MFCS 2019. LIPIcs, vol.
138, pp. 42:1-42:15. Dagstuhl Publishing (2019)

Ermon, S., Gomes, C.P., Selman, B.: Uniform solution sampling using a constraint
solver as an oracle. In: UAI 2012, pp. 255-264. AUAI Press (2012)

Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Answer set solving with bounded
treewidth revisited. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 132-145. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61660-5_13

Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Exploiting Treewidth for Pro-
jected Model Counting and Its Limits. In: Beyersdorff, O., Wintersteiger, C.M.
(eds.) SAT 2018. LNCS, vol. 10929, pp. 165-184. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94144-8_11

Fichte, J.K., Hecher, M., Thier, P., Woltran, S.: Exploiting database management
systems and treewidth for counting. In: Komendantskaya, E., Liu, Y.A. (eds.)
PADL 2020. LNCS, vol. 12007, pp. 151-167. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-39197-3_10

Fichte, J.K., Hecher, M., Zisser, M.: An improved GPU-based SAT model counter.
In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 491-509. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_29

Ganian, R., Ramanujan, M.S., Szeider, S.: Combining treewidth and backdoors
for CSP. In: STACS 2017, pp. 36:1-36:17 (2017). https://doi.org/10.4230/LIPIcs.
STACS.2017.36

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. TPLP 19(1), 27-82 (2019). https://doi.org/10.1017/S1471068418000054
Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified Boolean for-
mulas. In: Handbook of Satisfiability, FAIA, vol. 185, pp. 761-780. IOS Press
(2009). https://doi.org/10.3233/978-1-58603-929-5-761

Hecher, M., Morak, M., Woltran, S.: Structural decompositions of epistemic logic
programs. CoRR abs/2001.04219 (2020). http://arxiv.org/abs/2001.04219


https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.tcs.2005.03.012
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.1007/978-3-319-94144-8_11
https://doi.org/10.1007/978-3-030-39197-3_10
https://doi.org/10.1007/978-3-030-39197-3_10
https://doi.org/10.1007/978-3-030-30048-7_29
https://doi.org/10.4230/LIPIcs.STACS.2017.36
https://doi.org/10.4230/LIPIcs.STACS.2017.36
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.3233/978-1-58603-929-5-761
http://arxiv.org/abs/2001.04219

360

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

M. Hecher et al.

Klebanov, V., Manthey, N., Muise, C.: SAT-based analysis and quantification of
information flow in programs. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio,
P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 177-192. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40196-1_16

Kloks, T. (ed.): Treewidth: Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007 /BFb0045375

Koriche, F., Lagniez, J.M., Marquis, P., Thomas, S.: Knowledge compilation for
model counting: affine decision trees. In: IJCAI 2013. The AAAI Press (2013)
Lagniez, J., Marquis, P.: Preprocessing for propositional model counting. In: AAAI
2014, pp. 2688-2694. AAAI Press (2014)

Lagniez, J.M., Marquis, P.: An improved decision-DDNF compiler. In: IJCAI 2017,
pp. 667—673. The AAAI Press (2017)

Lagniez, J., Marquis, P.: A recursive algorithm for projected model counting. In:
AAAT 2019, pp. 1536-1543. AAAT Press (2019)

Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Evaluation of an MSO-solver. In:
ALENEX 2012, pp. 55-63. SIAM/Omnipress (2012)

Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter. In:
Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 276-294. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98334-9_19

Maniu, S., Senellart, P., Jog, S.: An experimental study of the treewidth of real-
world graph data (extended version). CoRR abs/1901.06862 (2019). http://arxiv.
org/abs/1901.06862

Muise, C., Mcllraith, S.A., Beck, J.C., Hsu, E.I.: DSHARP: fast d-DNNF compi-
lation with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) AI 2012. LNCS (LNAI),
vol. 7310, pp. 356-361. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30353-1_36

Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications, vol. 31. OUP, Oxford (2006)

Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams. In:
IJCAI 2015, pp. 3141-3148. The AAAI Press (2015)

Pulina, L., Seidl, M.: The 2016 and 2017 QBF solvers evaluations (QBFEVAL’16
and QBFEVAL’17). Artif. Intell. 274, 224-248 (2019). https://doi.org/10.1016/j.
artint.2019.04.002

Robertson, N., Seymour, P.D.: Graph minors II: algorithmic aspects of tree-width.
J. Algorithms 7, 309-322 (1986)

Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50-64 (2010)

Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: SAT 2004 (2004)
Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: a scalable probabilistic exact
model counter. In: IJCAI 2019, pp. 1169-1176. ijcai.org (2019)

Tamaki, H.: Positive-instance driven dynamic programming for treewidth. J.
Comb. Optim. 37(4), 1283-1311 (2018). https://doi.org/10.1007/s10878-018-
0353-2

Thurley, M.: sharpSAT — counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424-429. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_38
Toda, T., Soh, T.: Implementing efficient all solutions SAT solvers. ACM J. Exp.
Algorithmics 21(1.12) (2015). Special Issue SEA 2014


https://doi.org/10.1007/978-3-642-40196-1_16
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-319-98334-9_19
http://arxiv.org/abs/1901.06862
http://arxiv.org/abs/1901.06862
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1016/j.artint.2019.04.002
https://doi.org/10.1016/j.artint.2019.04.002
https://doi.org/10.1007/s10878-018-0353-z
https://doi.org/10.1007/s10878-018-0353-z
https://doi.org/10.1007/11814948_38

	Taming High Treewidth with Abstraction, Nested Dynamic Programming, and Database Technology
	1 Introduction
	2 Background
	3 Towards Nested Dynamic Programming
	3.1 Essentials for Nested Dynamic Programming
	3.2 Hybrid Solving Based on Nested DP
	3.3 Generalizing Nested DP to Other Formalisms

	4 Implementation and Preliminary Results
	5 Conclusion
	References




