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Abstract. Almost all CDCL SAT solvers use the 1-UIP clause learning
scheme for learning new clauses from conflicts, and our current under-
standing of SAT solving provides good reasons for using that scheme. In
particular, the 1-UIP scheme yields asserting clauses, and these assert-
ing clauses have minimum LBD among all possible asserting clauses. As
a result of these advantages, other clause learning schemes, like i-UIP
and all-UIP, that were proposed in early work are not used in modern
solvers. In this paper, we propose a new technique for exploiting the all-
UIP clause learning scheme. Our technique is to employ all-UIP learning
under the constraint that the learnt clause’s LBD does not increase (over
the minimum established by the 1-UIP clause). Our method can learn
clauses that are significantly smaller than the 1-UIP clause while preserv-
ing the minimum LBD. Unlike previous clause minimization methods,
our technique is not limited to learning a sub-clause of the 1-UIP clause.
We show empirically that our method can improve the performance of
state of the art solvers.

1 Introduction

Clause learning is an essential technique in SAT solvers. There is good evidence
to indicate that it is, in fact, the most important technique used in modern SAT
solvers [6]. In early SAT research a number of different clause learning techniques
were proposed [5,19,20,25]. However, following the revolutionary performance
improvements achieved by the Chaff SAT solver, the field has converged on using
the 1-UIP (first Unique Implication Point) scheme [25] employed in Chaff [13]
(as well as other techniques pioneered in the Chaff solver).1 Since then almost all
SAT solvers have employed the 1-UIP clause learning scheme, along with clause
minimization [21], as their primary method for learning new clauses.

However, other clause learning schemes can be used in SAT solvers without
changes to the main data structures. Furthermore, advances in our understand-
ing allow us to better understand the potential advantages and disadvantages of
these alternate schemes. In this paper we reexamine these previously proposed
schemes with a focus on the schemes described in [25]. Improved understanding
1 The idea of UIP clauses was first mentioned in [19], and 1-UIP clauses along with

other UIP clauses were learnt and used in the earlier GRASP SAT solver.
c© Springer Nature Switzerland AG 2020
L. Pulina and M. Seidl (Eds.): SAT 2020, LNCS 12178, pp. 28–45, 2020.
https://doi.org/10.1007/978-3-030-51825-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51825-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-51825-7_3


Clause Size Reduction with all-UIP Learning 29

of SAT solvers, obtained from the last decade of research, allows us to see that
in their original form these alternative clause learning schemes suffer significant
disadvantages over 1-UIP clause learning.

One of the previously proposed schemes was the all-UIP scheme [25]. In
this paper we propose a new way to exploit the main ideas of this scheme that
avoids its main disadvantage which is that it can learn clauses with higher LBD
scores. In particular, we propose to use a all-UIP like clause learning scheme
to generate smaller learnt clauses which retain the good properties of standard
1-UIP clauses. Our method is related to, but not the same as, various clause
minimization methods that try to remove redundant literals from the 1-UIP
clause yielding a clause that is a subset of the 1-UIP clause, e.g., [10,21,24]. Our
method is orthogonal to clause minimization. In particular, our approach can
learn a clause that is not a subset of the 1-UIP clause but which still serves all
of the same purposes as the 1-UIP clause. Clause minimization techniques can
be applied on top of our method to remove redundant literals.

We present various versions of our method and show that these variants are
often capable of learning shorter clauses than the 1-UIP scheme, and that this
can lead to useful performance gains in state of the art SAT solvers.

2 Clause Learning Framework

We first provide some background and a framework for understanding clause
learning as typically used in CDCL SAT solvers. A propositional formula F
expressed in Conjunctive Normal Form (CNF) contains a set of variables V . A
literal is a variable v ∈ V or its negation ¬v. For a literal � we let var(�) denote
its underlying variable. A CNF consists of a conjunction of clauses, each of which
is a disjunction of literals. We often view a clause as being a set of literals and
employ set notation, e.g., � ∈ C and C ′ ⊂ C.

Two clauses C1 and C2 can be resolved when they contain conflicting literals
� ∈ C1 and ¬� ∈ C2. Their resolvent C1 �� C2 is the new clause (C1∪C2)−{�,¬�}.
The resolvent will be a tautology (i.e., a clause containing a literal x and its
negation ¬x) if C1 and C2 contain more than one pair of conflicting literals.

We assume the reader is familiar with the operations of CDCL SAT solvers,
and the main data structures used in such solvers. A good source for this back-
ground is [18].

The Trail. CDCL SAT solvers maintain a trail, T , which is a non-contradictory,
non-redundant sequence of literals that have been assigned true by the solver;
i.e. � ∈ T → ¬� �∈ T , and T contains no duplicates. Newly assigned literals are
added to the end of the trail, and on backtrack literals are removed from the
end of the trail and unassigned. If literal � is on the trail let ι(�) denote its index
on the trail, i.e, T [ι(�)] = �. For convenience, we also let ι(�) = ι(¬�) = ι(var(�))
even though neither ¬� nor var(�) are actually on T . If x and y are both on the
trail and ι(x) < ι(y) we say that x appears before y on the trail.

Two types of true literals appear on the trail: decision literals that have been
assumed to be true by the solver, and unit propagated literals that are forced to
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be true because they are the sole remaining unfalsified literal of a clause. Each
literal � ∈ T has a decision level decLvl(�). Let k be the number of decision
literals appearing before � on the trail. When � is a unit propagated literal
decLvl(�) = k, and when � is a decision literal decLvl(�) = k + 1. For example,
decLvl(d) = 1 for the first decision literal d ∈ T , and decLvl(�) = 0 for all literals
� appearing before d on the trail. The set of literals on T that have the same
decision level forms a contiguous subsequence of T that starts with a decision
literal di and ends just before the next decision literal di+1. If decLvl(di) = i we
call this subsequence of T the i-th decision level.

Each literal � ∈ T also has a clausal reason reason(�). If � is a unit propagated
literal, reason(�) is a clause of the formula such that � ∈ reason(�) and ∀x ∈
reason(�). x �= � →

(
¬x ∈ T ∧ ι(¬x) < ι(�)

)
. That is, reason(�) is a clause that

has become unit implying � due to the literals on the trail above �. If � is a
decision literal then reason(�) = ∅.

In most SAT solvers, clause learning is initiated as soon as a clause is falsified
by T . In this paper we will be concerned with the subsequent clause learning
process which uses T to derive a new clause. We will try to make as few assump-
tions about how T is managed by the SAT solver as possible. One assumption
we will make is that T remains intact during clause learning and is only changed
after the new clause is learnt (by backtracking).

Say that T falsifies a clause CI , and that the last decision literal dk in T has
decision level k. Consider Tk−1 the prefix of T above the last decision level, i.e.,
the sequence of literals T [0]—T [ι(dk) − 1]. We will assume that Tk−1 is unit
propagation complete, although the full trail T might not be. This means
that (a) no clause was falsified by Tk−1. And (b) if Cu is a clause containing the
literal x and all literals in Cu except for x are falsified by Tk−1, then x ∈ Tk−1

and decLvl(x) ≤ max{decLvl(y)|y ∈ Cu ∧ y �= x}. This means that if x appears
in a clause made unit it must have been added to the trail, and added at or
before decision level the clause became unit. Note that more than one clause
might be made unit by T forcing x, or x might be set as a decision before being
forced. This condition ensures that x appears in T at or before the first decision
level it is forced by any clause.

Any clause falsified by T is called a conflict. When a conflict is found, the
final level of the trail, k, need not be unit propagation complete as the solver
typically stops propagation as soon as it finds a conflict. This means that (a)
other clauses might be falsified by T besides the conflict found, and (b) other
literals might be unit implied by T but not added to T .

Definition 1 (Trail Resolvent). A trail resolvent is a clause arising from
resolving a conflict against the reason clause of some literal � ∈ T . Every trail
resolvent is also a conflict.

The following things can be noted about trail resolvents: (1) trail resolvents
are never tautological, as the polarity of all literals in reason(�) other than �
must agree with the polarity of all literals in the conflict (they are all falsified by
T ); (2) one polarity of the variable var(�) resolved on must be a unit propagated
literal whose negation appears in the conflict; and (3) any variable in the conflict
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that is unit propagated in T can be resolved upon (the variable must appear in
different polarities in the conflict and in T ).

Definition 2 (Trail Resolution). A trail resolution is a sequence of trail resol-
vents applied to an initial conflict CI yielding a new conflict CL. A trail reso-
lution is ordered if the sequence of variables v1, . . . , vm resolved have strictly
decreasing trail indices: ι(vi+1) < ι(vi) (1 ≤ i < m). (Note that this implies that
no variable is resolved on more than once).

Ordered trail resolutions resolve unit propagated literals from the end of the
trail to the beginning. W.l.o.g we can require that all trail resolutions be ordered.

Observation 1. If the unordered trail resolution U yields the conflict clause CL

from an initial conflict CI , then there exists an ordered trail resolution O that
yields a conflict clause C ′

L such that C ′
L ⊆ CL.

Proof. Let U be the sequence of clauses CI = C0, C1, . . ., Cm = CL

obtained by resolving on the sequence of variables v1, . . ., vm whose corre-
sponding literals on T are l1, . . ., lm. Reordering these resolution steps so
that the variables are resolved in order of decreasing trail index and remov-
ing duplicates yields an ordered trail resolution O with the desired proper-
ties. Since no reason clause contains literals with higher trail indices, O must
be a valid trail resolution if U was, and furthermore O yields the clause
C ′

L =
⋃m

i=1 reason(li)−{l1,¬l1, . . . , lm,¬lm}. Since U resolves on the same vari-
ables (in a different order) using the same reason clauses we must have C ′

L ⊆ CL.
It can, however, be the case that C ′

L is proper subset of CL: if li is resolved away
it might be reintroduced when resolving on li+1 if ι(li+1) > ι(li). ��

The relevance of trail resolutions is that all proposed clause learning schemes
we are aware of use trail resolutions to produce learnt clauses. Furthermore, the
commonly used technique for clause minimization [21] is also equivalent to a
trail resolution that yields the minimized clause from the un-minimized clause.
Interestingly, it is standard in SAT solver implementations to perform resolution
going backwards along the trail. That is, these implementations are typically
using ordered trail resolutions. Observation 1 shows that this is correct.

Ordered trail resolutions are a special case of trivial resolutions [2]. Trail
resolutions are specific to the trail data structure typically used in SAT solvers.
If T falsifies a clause at its last decision level, then its associated implication
graph [20] contains a conflict node. Cuts in the implication graph that separate
the conflict from the rest of the graph correspond to conflict clauses [2]. It is not
difficult to see that the proof Proposition 4 of [2] applies also to trail resolutions.
This means that any conflict clause in the trail’s implication graph can be derived
using a trail resolution.

2.1 Some Alternate Clause Learning Schemes

A number of different clause learning schemes for generating a new learnt clause
from the initial conflict have been presented in prior work, e.g., [5,19,20,25].
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Fig. 1. Some different clause learning schemes. All use the current trail T and take as
input an initial clause CI falsified by T at its deepest level.

Figure 1 gives a specification of some of these methods: (a) the all-decision
scheme which resolves away all implied literals leaving a learnt clause over only
decision literals; (c) the 1-UIP scheme which resolves away literals from the
deepest decision level leaving a learnt clause with a single literal at the deep-
est level; (d) the all-UIP scheme which resolves away literals from each decision
level leaving a learnt clause with a single literal at each decision level; and (e)
the i-UIP scheme which resolves away literals from the i deepest decision levels
leaving a learnt clause with a single literal at its i deepest decision levels. It
should be noted that when resolving away literals at decision level i, new literals
at decision levels less than i might be introduced into the clause. Hence, it is
important in the i-UIP and all-UIP schemes to use ordered trail resolutions.

Both the all-decision and all-UIP schemes yield a clause with only one literal
at each decision level, and the all-UIP clause will be no larger that the all-
decision clause. Furthermore, it is known [20] that once we reduce the number of
literals at a decision level d to one, we could continue performing resolutions and
later achieve a different single literal at the level d. In particular, a decision level
might contain more than one unique implication point, and in some contexts the
term all-UIP is used to refer to all the unique implication points that exist in a
particular decision level [17] rather than the all-UIP clause learning scheme as is
used here. The algorithms given in Fig. 1 stop at the first UIP of a level, except
for the all-decision schemes with stops at the last UIP of each level.
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2.2 Asserting Clauses and LBD—Reasons to Prefer 1-UIP Clauses

An asserting clause [15] is a conflict clause CL that has exactly one literal � at
its deepest level, i.e., ∀x ∈ CL.decLvl(x) ≤ decLvl(�)∧(decLvl(x) = decLvl(�) →
x = �). All of the clause learning schemes in Fig. 1 produced learnt clauses that
are asserting.

The main advantage of asserting clauses is that they are 1-Empowering [15],
i.e., they allow unit propagation to derive a new forced literal. Hence, asserting
clauses can be used to guide backtracking—the solver can backtrack from the
current deepest level to the point the learnt clause first becomes unit, and then
use the learnt clause to add a new unit implicant to the trail. Since all but the
deepest level was unit propagation complete, this means that the asserting clause
must be a brand new clause; otherwise that unit implication would already have
been made. On the other hand, if the learnt clause CL is not asserting then it
could be that it is a duplicate of another clause already in the formula.

Example 1. Suppose that a is a unit propagated literal and d is a decision literal
with decLvl(d) > decLvl(a). Let the sequence of clauses watched by ¬d be (¬d, x,
¬a), (¬d, y, ¬x, ¬a), (¬d, ¬y, ¬x, ¬a), (¬d, ¬x, ¬a). When d is unit propagated
the clauses on ¬d’s watch list will be checked in this order.

Hence, unit propagation of d will extend the trail by first adding the unit
propagated literal x (with reason(x) = (x, ¬d, ¬a)) and then the unit propagated
literal y (with reason(y) = (y, ¬x, ¬a, ¬d)). Now the third clause on ¬d’s watch
list, (¬d, ¬y, ¬x, ¬a) is detected to be a conflict.

Clause learning can now be initiated from conflict CI = (¬d, ¬y, ¬x, ¬a).
This clause has 3 literals at level decLvl(d) = 10. If we stop clause learning
before reaching an asserting clause, then it is possible to simply resolve CI with
reason(y) to obtain the learnt clause CL = (¬d, ¬x, ¬a). However, this non-
asserting learnt clause is a duplicate of the fourth clause on ¬d’s watch list
which is already in the formula.2 This issue can arise whenever CL contains two
or more literals at the deepest level (i.e., whenever CL is not asserting). In such
cases CL might be a clause already in the formula with its two watches not yet
fully unit propagated (and thus CL is not detected by the SAT solver to be a
conflict) since propagation is typically stopped as soon as a conflict is detected.

The LBD of the learnt clause CL is the number of different decision levels
in it: LBD(CL) =

∣
∣{decLvl(l) | l ∈ CL

}∣
∣ [1]. Empirically LBD is a successful

predictor of clause usefulness: clauses with lower LBD tend to be more useful.
As noted in [1], from the initial falsified clause CI the 1-UIP scheme will produce
a clause CL whose LBD is minimum among all asserting clauses that can be
learnt from CI . If C ′ is a trail resolvent of C and a reason clause reason(l),
then LBD(C ′) ≥ LBD(C) since reason(l) must contain at least one other literal

2 In this example, the fourth clause on ¬d’s watch list subsumes the third clause. But
it is not difficult to construct more elaborate examples where there are no subsumed
clauses and we still obtain learnt clauses that are duplicates of clauses already in the
formula.
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with the same decision level as l and might contain literals with decision levels
not in C. That is, the each trail resolution step might increase the LBD of the
learnt clause and can never decrease the LBD. Hence, the 1-UIP scheme yields
an asserting clause with minimum LBD as it performs the minimum number of
trail resolutions required to generate an asserting clause.

The other schemes must perform more trail resolutions. In fact, all of these
schemes (all-decision, all-UIP, i-UIP) use trail resolutions in which the 1-UIP
clause appears. That is, they all must first generate the 1-UIP clause and
then continue with further trail resolution steps. These extra resolution steps
can introduce many addition decision levels into the final clause. Hence, these
schemes learn clauses with LBD at least as large as the 1-UIP clauses.

Putting these two observations together we see that the 1-UIP scheme pro-
duces asserting clauses with lowest possible LBD. This is a compelling reasons
for using this scheme. Hence, it is not surprising that modern SAT solvers almost
exclusively use 1-UIP clause learning.3

3 Using all-UIP Clause Learning

Although learning clauses with low LBD has been shown empirically to be more
important in SAT solving than learning short clauses [1], clause size is still
important. Smaller clauses consume less memory and help to decrease the size
of future learnt clauses. They are also semantically stronger than longer clauses.

The all-UIP scheme will tend to produce small clauses since the clauses con-
tain at most one literal per decision level. However, the all-UIP clause can have
much higher LBD. Since LBD is more important than size, our approach is to
use all-UIP learning when, and only when, it succeeds in reducing the size of the
clause without increasing its LBD. The all-UIP scheme first computes the 1-UIP
clause when it reduces the deepest level to a single UIP literal. It then proceeds
to reduce the shallower levels (see all-UIP’s for loop in Fig. 1). So our approach
will start with the 1-UIP clause and then try to apply all-UIP learning to reduce
other levels to single literals. As noted above, clause minimization is orthogonal
to our approach, so we also first apply standard clause minimization [21] to the
1-UIP clause. That is, our algorithm stable-alluip (Algorithm 1), starts with the
clause that most SAT solvers learn from a conflict, a minimized 1-UIP clause.

Algorithm 1 tries to compute a clause shorter than the inputted 1-UIP clause
C1. If a clause shorter than C1 cannot be computed the routine returns C1

unchanged. Line 2 uses the parameter tgap to predict if Algorithm 1 will be
successful in producing a shorter clause. This predication is described below. If
the prediction is negative C1 is immediately returned and Algorithm 1 is not
attempted. Otherwise, a copy of C1 is made in Ci and ntries , which counts the
number of times Algorithm 1 is attempted, is incremented.

3 Knuth in his sat13 CDCL solver [7] uses an all-decision clause when the 1-UIP clause
is too large. In this context an all-UIP clause could also be used as it would be no
larger than the all decision clause.



Clause Size Reduction with all-UIP Learning 35

Algorithm 1. stable-alluip
Require: C1 is minimized 1-UIP clause
Require: config a set of configuration parameters to give different versions stable-

alluip.
Require: tgap ≥ 0 is a global parameter, ntries and nsucc are used to dynamically

adjust tgap
1: stable-alluip(C1, T )
2: if (|C1| − LBD(C1) < tgap) return C1

3: ntries++
4: Ci ← C1

5: decLvls ← decision levels in C1 in descending order � These never change
6: for (i = 1; i < |decLvls|; i++) � skip the deepest level decLvls[0]
7: Ci ← try-uip-level (Ci, decLvls[i]) � Try to reduce this level to UIP
8: if

∣
∣{� | � ∈ Ci ∧ decLvl(�) ≥ decLvls[i]}

∣
∣ + (|decLvls| − (i + 1)) ≥ |C1|

9: return C1 � can’t generate smaller clause
10: if pure-alluip ∈ config
11: Ci ← minimize(Ci)

12: if
(
|Ci| < |C1| ∧ alluip-active ∈ config → (AvgVarAct(Ci) > AvgVarAct(C1))

13: nsucc++, return Ci � Ci is smaller than the input clause
14: else
15: return C1

16: try-uip-level(Ci, i) � Do not add new decision levels
17: Ctry = Ci

18: Li = {� |� ∈ Ctry ∧ decLvl(l) = i}
19: while |Li| > 1
20: p ← remove lit with the highest trail index from Li

21: if (∃q ∈ reason(¬p). decLvl(q) �∈ decLvls) � Would add new decision levels
22: if (pure-alluip ∈ config)
23: return Ci � Abort, can’t UIP this level
24: else if (min-alluip ∈ config)
25: continue � Don’t try to resolve away p

26: else
27: Ctry ← Ctry �� reason(¬p)
28: Li = Li ∪ {� | � ∈ reason(¬p) ∧ � �= ¬p ∧ decLvl(�) = i}
29: return Ctry

Then the decision levels of C1 are computed and stored in decLvls in order
from largest to lowest. The for loop of lines 6–9 is then executed for each decision
level decLvls[i]. In the loop the subroutine try-uip-level tries to reduce the set
of literals at decLvls[i] down to a single UIP literal using a sequence of trail
resolutions. Since C1 is a 1-UIP clause decLvls[0] (the deepest level) already
contains only one literal, so we can start at i = 1.

After the call to try-uip-level a check (line 8) is made to see if we can abort
further processing. At this point the algorithm has finished processing levels
decLvls[0]–decLvls [i] so the literals at those levels will not change. Furthermore,
we know that the best that can be done from this point on is to reduce the
remaining |decLvls| − (i + 1) levels down to a single literal each. Hence, adding
these two numbers gives a lower bound on the size of the final computed clause.
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If that lower bound is as large as the size of the initial 1-UIP clause we can
terminate and return the initial 1-UIP clause.

After processing all decision levels, if try-uip-level is using the pure-alluip
configuration, additional reduction in the clause size might be achieved by an
another round of clause minimization (line 11). Finally, if the newly computed
clause Ci is smaller that the input clause C1 it is returned. Otherwise the original
clause C1 is returned. Additionally, if the configuration alluip-active, described
in Sect. 3.1, is being used, then we also require that the average activity level of
the new clause Ci be larger than C1 before we can return the new clause Ci.

try-uip-level (Ci, i) attempts to resolve away the literals at decision level i in
the clause Ci, i.e., those in the set Li (line 18), in order of decreasing trail index,
until only one literal at level i remains. If the resolution step will not introduce
any new decision levels (line 26), it is performed updating Ctry . In addition, all
new literals added to Ctry at level i are added to Li.

On the other hand, if the resolution step would introduce new decision levels
(line 21) then there are two options. The first option we call pure-alluip. With
pure-alluip we abort our attempt to UIP this level and return the clause with
level i unchanged. In the second option, called min-alluip, we continue without
performing the resolution, keeping the current literal p in Ctry . min-alluip then
continues to try to resolve away the other literals in Li (note that p is no longer
in Li) until Li is reduced to a single literal. Hence, min-alluip can leave multiple
literals at level i—all of those with reasons containing new levels along with one
other.4 Observe that the number of literals at level i can not be increased after
processing it with pure-alluip. min-alluip can, however, potentially increase the
number of literals at level i. In resolving away a literal l at level i, more literals
might be introduced into level i, and some of these might not be removable by
min-alluip if their reasons contain new levels. However, both pure-alluip and
min-alluip can increase the number of literals at levels less that i as new literals
can be introduced into those levels when the literals at level i are resolved away.
These added literals at the lower levels might not be removable from the clause,
and thus both methods can yield a longer clause than the input 1-UIP clause.

After trying to UIP each level the clause Ci is obtained. If we were using
pure-alluip we can once again apply recursive clause minimization (line 11) [21],
but this would be useless when using min-alluip as all but one literal of each
level introduces a new level and thus cannot be recursively removed.5

tgap : stable-alluip can produce significantly smaller clauses. However, when it
does not yield a smaller clause, the cost of the additional resolution steps can
hurt the solver’s performance. Since resolution cannot reduce a clause’s LBD, the
maximum size reduction obtainable from stable-alluip is the difference between
the 1-UIP clause’s size and its LBD: gap(C1) = |C1| −LBD(C1). When gap(C1)

4 Since the sole remaining literal u ∈ Li is at a lower trail index than all of the other
literals there is no point in trying to resolve away u—either it will be the decision
literal for level i having no reason, or its reason will contain at least one other literal
at level i.

5 Other more powerful minimization techniques could still be applied.
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is small, applying stable-alluip is unlikely to be cost effective. Our approach is
to dynamically set a threshold on gap(C1), tgap , such that when gap(C1) < tgap
we do not attempt to reduce the clause (line 2). Initially, tgap = 0, and we count
the number of times stable-alluip is attempted (ntries) and the number of times
it successfully yields a shorter clause (nsucc) (line 3 and 13). On every restart if
the success rate since the last restart is greater than 80% (less than 80%), we
decrease (increase) tgap by one not allowing it to become negative.

Example 2. Consider the trail T = . . ., �1, a2, b2, c2,d2, . . ., . . ., e5, f5, g5, h6,
i6, j6, k6, . . ., m10, . . . where the subscript indicates the decision level of each
literal and the literals are in order of increasing trail index.

Ca = ∅ Cb = (b2, ¬�3, ¬a2) Cc = (c2, ¬a2, ¬b2)
Cd = (d2, ¬b2, ¬c2) C� = ∅ Ce = ∅

Cf = (f5, ¬e5, ¬�1) Cg = (g5, ¬a2, ¬f5) Ch = ∅

Ci = (i6, ¬e5, ¬h6) Cj = (j6, ¬f5, ¬i6) Ck = (k6, ¬f5, ¬j6)

Let the clauses Cx, show above, denote the reason clause for literal xi. Suppose
1-UIP learning yields the clause C1 = (¬m10, ¬k6, ¬j6, ¬i6, ¬h6, ¬g5, ¬d2, ¬c2)
where ¬m10 is the UIP from the conflicting level. stable-alluip first tries to find
the UIP for level 6 by resolving C1 with Ck, Cj and then Ci producing the clause
C∗ = (¬m10, ¬h6, ¬g5, ¬f5, ¬e5, ¬d2, ¬c2) where ¬h6 is the UIP for level 6.

stable-alluip then attempts to find the UIP for level 5 by resolving C∗ with
Cg and then Cf . However, resolving with Cf would introduce �1 and a new
decision level into C∗. pure-alluip thus leaves level 5 unchanged. min-alluip, on
the other hand, skips the resolution with Cf leaving f5 in C∗. Besides f5 only
one other literal at level 5 remains in the clause, e5, so min-alluip does not do
any further resolutions at this level. Hence, pure-alluip yields C∗ unchanged,
while min-alluip yields C∗

min = (¬m10, ¬h6, ¬f5, ¬e5, ¬d2, ¬c2,¬a2).
Finally, stable-alluip processes level 2. Resolving away d2 and then c2 will

lead to an attempt to resolve away b2. But again this would introduce a new
decision level with the literal �1. So pure-alluip will leave level 2 unchanged and
min-alluip will leave b2 unresolved. The final clauses produced by pure-alluip
would be (¬m10, ¬h6, ¬f5, ¬e5, ¬d2, ¬c2, ¬a2), a reduction of 1 over the 1-UIP
clause, and by min-alluip would be (¬m10, ¬h6, ¬f5, ¬e5, ¬b2, ¬a2), a reduction
of 2 over the 1-UIP clause. ��

3.1 Variants of stable-alluip

We also developed and experimented with a few variants of the stable-alluip
algorithm which we describe below.

alluip-active: Clauses with Active Variables. stable-alluip learning might
introduce literals with low variable activity into Ci. Low activity variables are
variables that have had low recent participation in clause learning. Hence, clauses
with variables of low activity might not be as currently useful to the solver. Our
variant alluip-active (line 12) in Algorithm 1) computes the average variable
activity of the newly produced all-UIP clause Ci and the original 1-UIP clause
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C1. The new clause Ci will be returned only if it is both smaller and has higher
average variable activity than the original 1-UIP clause. There are, of course,
generalizations of this approach where one has a weighted trade-off between
these factors that allows preferring the new clause when it has large gains in
one metric even though it has small losses in the other. We did not, however,
experiment with such generalizations.

Adjust Variable Activity. An alternative to filtering clauses with low average
variable (alluip-active) is to alter the way variable activities are updated to
account for our new clause learning method. The popular branching heuristics
VSIDS [13] and LBR [8] bump the variable activity for all literals appearing in
the learnt clause CL and all literals resolved away during the conflict analysis
that yielded CL from the initially detected conflict CI (all literals on the conflict
side).

We did not apply this approach to the stable-alluip clause, as we did not
want to bump the activity of the literals above the deepest decision level that
stable-alluip resolves away. Intuitively, these literals did not directly contribute
to generating the conflict. Instead, we tried two modifications to the variable
activity bumping schemes.

Let C1 be the 1-UIP learnt clause and Ci be the stable-alluip learnt clause.
First, we kept all of the variable activity bumps normally done by 1-UIP learn-
ing.6 Then, when the stable-alluip scheme was successful, i.e., Ci was to be used
as the new learnt clause, we perform further updates to the variable activities. In
the alluip-inclusive approach all variables variables appearing in Ci that are not
in C1 have their activities bumped. Intuitively, since the clause Ci is being added
to the clause database we want to increase the activity of all of its variables. On
the other hand, in the alluip-exclusive approach in addition to bumping the
activity of the new variables in Ci we also remove the activity bumps of those
variables in C1 that are no longer in Ci.

In sum, the two modified variable activity update schemes we experi-
mented with were (1) alluip-inclusive ≡ ∀l ∈ Ci − C1. bumpActivity(l)
and (2) alluip-exclusive ≡ ∀l ∈ Ci − C1. bumpActivity(l) ∧

(
∀l ∈ C1 −

Ci. unbumpActivity(l)
)
.

Chronological Backtracking. We tested our new clause learning schemes
on solvers that utilized Chronological Backtracking [12,14]. When chronologi-
cal backtracking is used, the literals on the trail might no longer be sorted by
decision level. So resolving literals in the conflict by highest trail index first no
longer works. However, we can define a new ordering on the literals to replace
the trail index ordering. Let l1 and l2 be two literals on the trail T . We say that
l1 >chron l2 if decLvl(l1) > decLvl(l2) ∨ (decLvl(l1) = decLvl(l2) ∧ ι(l1) > ι(l2)).
That is, literals with higher decision level come first, and if that is equal then
the literal with higher trail index comes first.

6 So extra techniques used by the underlying solver, like reason side rate and locality
[8], were kept intact.
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Exploiting the analysis of [12], it can be observed that all clause learning
schemes continue to work as long as literals are resolved away from the initial
conflict in decreasing >chron order. In our implementation we used a heap (pri-
ority queue) to achieve this ordering of the literal resolutions in order to add our
new schemes to those solvers using chronological backtracking.

4 Implementation and Experiments

We implemented stable-alluip learning schemes on MapleCOMSPS-LRB [9], the
winner of SAT Race 2016 application track. We then evaluated these schemes
and compare against the 1-UIP baseline on the full set of benchmarks from SAT
RACE 2019 main track which contains 400 instances. We ran our experiments
on 2.70 GHz XeonE5-2680 CPUs, allowing 5000 seconds per instance and a
maximum of 12 GB memory.

Fig. 2. Results of MapleCOMSPS-LRB with 1-UIP, pure-alluip, min-alluip,
alluip-active, alluip-inclusive, and alluip-exclusive on SAT2019 race main track.

Figure 2 shows each learning scheme’s solved instances count, PAR-2 score,
and average learnt clause size. We found that the stable-alluip learning schemes
improved solved instances, PAR-2 scores, and learnt clause size over 1-UIP. More
specifically, pure-alluip solved the most instances (+7 over 1-UIP) and the most
UNSAT instances (+4); alluip-inclusive solved the most SAT instances (+6);
and alluip-active yields the best PAR-2 score (−151 than 1-UIP). In all cases
the stable-alluip schemes learnt significantly smaller clauses on average.

Clause Reduction with stable-alluip. To precisely measure stable-alluip’s
clause reduction power, we compare each instance’s learnt clause size from
min-alluip and pure-alluip against 1-UIP. Figure 3 shows the probability den-
sity distribution (PDF) of the relative clause size of the stable-alluip learning
schemes (min-alluip in green and pure-alluip in red) for each instance. min-alluip
(pure-alluip resp.) produces shorter clauses for 88.5% (77.7%) of instances, and
the average relative reduction ratio over 1-UIP is 18.5% (9.6%). Figure 4 com-
pares the average learnt clause size of min-alluip, pure-alluip and 1-UIP per
instance. Both stable-alluip schemes generally yield smaller clauses, and the size
reduction is more significant for instances with larger 1-UIP clauses.
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Fig. 3. Relative clause size reduction
distribution. The X axis indicates the
relative size of difference between all-
UIP and 1-UIP clauses (calculated as
|C1| − |Ci|

|C1|
) for each instance, and the

Y axis shows the probability density.
(Color figure online)

Fig. 4. Average clause size comparison
plot. Each point in the plot represents
an instance. The X and Y axes shows
the clause length from stable-alluip and
1-UIP, respectively. Each green (red) dot
represents an compared instance between
MapleCOMSPS-LRB and Maple-min-
alluip (pure-alluip). (Color figure online)

The results in Fig. 2, 3 and 4 indicate min-alluip often achieves higher clause
reduction than pure-alluip. We also observed that min-alluip attempted algo-
rithm 1 more frequently than pure-alluip (28.8% vs 16.1%), and is more likely to
succeed (59.3% vs 43.4%). This observation agrees with our experiment results.

Reduced Proof Sizes with stable-alluip. A learning scheme that yields
smaller clauses (lemmas) might also construct smaller causal proofs. For 88
UNSAT instances solved mutually by pure-alluip, min-alluip and 1-UIP schemes,
we additionally compared the size of the optimized DRAT proof from the three
learning schemes. We used the DRAT-trim tool [23] with a 30000 second timeout
to check and optimize every DRAT proof once7.

The average optimized DRAT proof from min-alluip and pure-alluip are
556.6MB and 698.5MB, respectively. Both sizes are significantly smaller than
the average optimized proof size from 1-UIP, 824.9MB. The average proof size
reduction per instance for min-alluip and pure-alluip is 16.5% and 3.6% against
1-UIP, which roughly correlate with our clause size observation in Fig. 3.

stable-alluip in Modern SAT Solvers. To validate stable-alluip in mod-
ern SAT solvers, we implemented stable-alluip in the winners of 2017, 2018
and 2019 SAT Race [10,16,22] and in the expMaple-CM-GCBumpOnlyLRB
[11] (expMaple) and CaDiCaL [4] solvers. expMaple is a top ten solver from
2019 SAT race which uses random walk simulation to help branching. We chose
expMaple because the random walk simulation branching heuristic is different
from local branching heuristic (VSIDS and LRB) that we have considered in
7 Applying DRAT-trim multiple times can further reduce the proof size until a fix-

point. However, the full optimization is too time consuming for our experiments.
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Fig. 5. Benchmark results of 1-UIP, pure-alluip. min-alluip, alluip-active and
alluip-inclusive on SAT2019 race main track instances.

Fig. 6. Benchmark results of 1-UIP, pure-alluip. min-alluip, alluip-active and
alluip-inclusive on SAT2019 race main track instances.

alluip-active, alluip-inclusive, and alluip-exclusive. We chose CaDiCaL because
its default configuration (CaDiCaL-default) solved the most instances in the
2019 SAT Race (244). For this experiment, we used the latest available version
of CaDiCaL-default instead of the 2019 SAT Race version [3]. We compared
these solvers’ base 1-UIP learning scheme with pure-alluip, min-alluip and the
top two stable-alluip variants, alluip-active and alluip-inclusive, on the SAT Race
2019 main track benchmarks. We report solved instances, PAR-2 score and the
average clause size.
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Figures 5 and 6 show the results of the stable-alluip configurations in our suite
of modern solvers. Overall, we observed similar performance gain on all mod-
ern solvers as we have seen on MapleCOMSPS-LRB in Fig. 2. More specifically,
almost all configurations improved on solved instance (+3.9 instances in aver-
age) and PAR-2 score (−57.7 in average). The average clause size reduction is
consistent across all solvers. Each configuration also exhibits different strengths:
pure-alluip solved the most instances with the best PAR-2 score on two solvers,
min-alluip yields small clauses, alluip-inclusive solved the most SAT instances,
and alluip-active has stable performance.

On the SAT 2017 race winner MapleLCMDist, all four configurations of
stable-alluip solved more instances than 1-UIP learning. pure-alluip solved more
UNSAT and SAT instances while the other configurations improved on solv-
ing SAT instances. The clause size reduction of stable-alluip is more signifi-
cant on this solver than on MapleCOMSPS-LRB. The SAT 2018 race winner
MapleCB uses chronological backtracking (CB); three out of four configura-
tions outperformed 1-UIP. On the SAT 2019 race winner MapleCB-DL, all four
stable-alluip configurations solved more instances than 1-UIP. MapleCB-DL pri-
oritizes clauses that are learned multiple times. We observed that stable-alluip
clauses are less likely to be duplicated. As an example, min-alluip on average,
added 12% less duplicated clauses into the core clause database than 1-UIP.
This observation is surprising, and the cause is unclear.

On expMaple, three out of four stable-alluip configurations solved more
instances than 1-UIP learning. We noticed that both alluip-active and
alluip-inclusive show better performance than min-alluip and pure-alluip on this
solver. The random walk simulation branching heuristic, however, didn’t impact
the performance of stable-alluip schemes significantly.

CaDiCaL-default with 1-UIP solved 249 instances. Applying alluip-active and
alluip-inclusive helped the solver solve 3 and 2 more instances, respectively. The
1-UIP clauses in CaDiCaL-default were much larger than other solvers on average
(101 vs 60) but the stable-alluip configurations yielded similar clause sizes.

5 Conclusion

In this paper we introduced a new clause learning scheme, stable-alluip, that pre-
serves the strengths 1-UIP learning while learning shorter clauses. We provided
empirical evidence that using stable-alluip and its variants in modern CDCL
solvers achieves significant clause reduction and yields useful performance gains.

Our scheme extends 1-UIP learning by performing further resolution beyond
the deepest decision level in an attempt to find the UIP at each level in the learnt
clause. Since resolutions may increase the clause’s LBD by introducing literals
from new decision levels, we presented two methods to block such literals from
entering the clause. Although our learning scheme is conceptually simple, and we
presented optimizations to reduce and balance the learning cost. We additionally
presented variants of our schemes to account for features used in state of the art
solvers, e.g., local branching heuristics and chronological backtracking.
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Although the field of SAT solving has converged on using the 1-UIP learn-
ing scheme, we have shown the possibility of developing an effective alternative
through understanding the strengths and weaknesses of 1-UIP and clause learn-
ing schemes. Our learning scheme can be generalized and further improved by
exploring more fine-grained trade-offs between different clause quality metrics
beyond clause size and LBD. We also plan to study the interaction between
clause learning and variable branching. Since most of the branching heuristics
are tailored for 1-UIP scheme, their interactions with other learning schemes
requires further study.
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