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Abstract. In applications, QBF solvers are expected to not only decide
whether a given formula is true or false but also return a solution in
the form of a strategy. Determining whether strategies can be efficiently
extracted from proof traces generated by QBF solvers is a fundamental
research task. Most resolution-based proof systems are known to implic-
itly support polynomial-time strategy extraction through a simulation of
the evaluation game associated with an input formula, but this approach
introduces large constant factors and results in unwieldy circuit repre-
sentations. In this work, we present an explicit polynomial-time strategy
extraction algorithm for the V-Exp+Res proof system. This system is
used by expansion-based solvers that implement counterexample-guided
abstraction refinement (CEGAR), currently one of the most effective
QBF solving paradigms. Our argument relies on a Curry-Howard style
correspondence between strategies and V-Exp+Res derivations, where
each strategy realizes an invariant obtained from an annotated clause
derived in the proof system.

1 Introduction

Continued improvements in the performance of satisfiability (SAT) solvers [14]
are enabling a growing number of applications in areas such as electronic
design automation [35]. At the same time, many of the underlying problems
are hard for complexity classes beyond NP and as such cannot be expected
to have succinct propositional encodings. Super-polynomial growth in encod-
ing size imposes a limit on the problem instances that can be feasibly solved
even with extremely efficient SAT solvers. Decision procedures for more succinct
languages such as Quantified Boolean Formulas (QBFs) represent a potential
solution to this scaling issue. QBFs extend propositional formulas with quan-
tification over truth values and support more succinct encodings for a range of
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problems [32]. Recent years have seen significant advancements in QBF solver
technology [20,21,25,26,29,30,34,36], up to a point where reduction to QBF can
be more efficient than reduction to SAT [13].

In some applications, QBF solvers are required to not only decide whether
a given formula is true or false but also compute a solution in the form of a
strategy. For example, if a synthesis problem is encoded as a QBF, a solver is
expected to either return the synthesized program or an explanation why the
specification cannot be satisfied [13]. Determining whether the proof trace of a
QBF solver can be efficiently transformed into a strategy—whether the proof
system supports polynomial-time strategy extraction—is a fundamental research
task [2,3,6,10,27].

One of the most successful QBF solving paradigms relies on partial Shannon
expansion [1,8] of universal variables within a counterexample-guided abstrac-
tion refinement (CEGAR) loop, as implemented in RAREQS [21], and, more
recently, in IITIHAD [9] and QFUN [20]. The underlying proof system V-Exp+Res
[22] offers exponentially shorter proofs for certain classes of formulas than Q-
resolution [6], and can polynomially simulate Q-resolution on formulas with
few quantifier alternations [4], which includes many practically relevant cases.!
Polynomial-time strategy extraction follows from the fact that V-Exp+Res proofs
can be used to guide the universal player in an evaluation game [6,11], but turn-
ing this argument into circuits that compute a winning strategy is rather inef-
ficient. An explicit construction based on this idea for Q-resolution requires the
introduction of several gates for each literal in the proof and quantifier level of
the input formula [27], leading to unwieldy circuits that are substantially larger
than the original proof. In this work, we present a strategy extraction algorithm
for V-Exp+Res that is multi-linear in the number of proof steps and univer-
sal variables. This is asymptotically optimal for a construction that follows the
structure of the proof and maintains a circuit for each universal variable.

Our algorithm is inspired by [33], which for the first time has given a
local soundness argument for V-Exp+Res. [33] constructs partial strategies along
the V-Exp+Res-proof and provides a semantic abstraction that relates the con-
structed strategies to the clauses in the proof. In contrast, we associate a full
strategy to each node in the V-Exp+Res-proof and develop a syntactic argument
that ensures the soundness of the construction. For each clause in the proof,
we define a propositional invariant that corresponds to a syntactic weakening of
the input formula’s negated matrix. We then show that strategies satisfying the
invariants for the premises of a resolution step can be combined into a strategy
that satisfies the invariant for the resolvent. The main technical challenge we
had to overcome in deriving this syntactic weakening is that V-Exp+Res proofs
work over an extended propositional alphabet where multiple versions of the
same variable with different annotations may exist simultaneously. Our invari-
ant translates the propositions from the extended alphabet back to formulas over
the original vocabulary.

! Conversely, there are classes of formulas with exponentially shorter Q-resolution
proofs [22], so that the systems are mutually separated.
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We believe that our syntactic soundness argument is more transparent than
the semantic construction from [33]. The clarity of the argument is also what
allows us to obtain a concise circuit representation of the resulting strategy.
Further, our syntactic argument establishes a Curry-Howard correspondence
between proof construction and strategy extraction. For each inference rule com-
bining proof terms, the correspondence provides a rule combining program terms.
The result is a program isomorphic to the proof. The widest-known correspon-
dence is between natural deduction proofs and lamba-calculus programs [18]. In
this paper we establish a precise correspondence between V-Exp+Res-proofs and
strategies—the strategy constructed for a node in the proof DAG satisfies the
invariant for the clause derived at that node. In contrast, the correspondence
stays implicit in the semantic argument from [33]. We expect that our ideas of
obtaining such an invariant by weakening the matrix and translating the clauses
over the extended alphabet back to a formula over the original variables will
have applications in studying further Curry-Howard correspondences for other
resolution-based QBF proof systems.

2 Preliminaries

Quantified Boolean Formulas (QBFs). We consider quantified Boolean formulas
(QBFs) with standard propositional connectives A,V,—, <, @, and quantifiers
V,3. We denote existentially quantified variables by z and y, and universally
quantified variables by u. Variables range over B = {0,1}. A literal [ is a vari-
able x or its negation —x. We write @ for a set of variables or literals. A clause is a
disjunction of literals, and a propositional formula in conjunctive normal form is
a conjunction of clauses. We write O for the empty clause. Throughout the paper,
QBF's are assumed to be in prenex conjunctive normal form (PCNF). A PCNF
formula @ = II. consists of a sequence IT = Qiv; ... Quv, with Q; € {V,3}
for 1 < ¢ < n, called the quantifier prefix of @, and a propositional formula ¢
in conjunctive normal form, called the matrix of . We define a relation <y on
variables from the quantifier prefix as v; < v; whenever ¢ < j. We extend <
to a relation on literals in the obvious way and drop the quantifier prefix IT from
the subscript when it is clear from the context.

@QBF FExpansion Proofs. We consider a proof system for false PCNF formu-
las known as V-Exp+Res [22]. This system combines instantiation of universal
variables with propositional resolution. Instantiation leads to existential liter-
als [” that are annotated with an assignment 7 : u; — B of the universal vari-
ables u; = {u|u < [} that precede the variable of | in the quantifier prefix.
Following Beyersdorff et al. [6], we write 1[7] = [{w=7(w) [u=I} 4 filter out assign-
ments that are not permitted in the annotation of [. We sometimes treat an
assignment 7 : u — B in an annotation as a set of literals and write [ € T
if 7(I) = 1. We write C7 for a clause C' with all its literals annotated with [7].
The proof rules of V-Exp+Res are shown in Fig. 1. A V-Exp+Res proof of a PCNF
formula @ is a sequence of clauses ending with the empty clause such that each
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(V-exp) Ci1Va® Co V —z?

{I"V |1 € C,1 is existential} C1V Cy (res)

Here, C is a clause from the matrix and 7 an assignment to all univer-
sal variables falsifying the universal literals of C'. Both C; and C> are
annotated clauses and x° is an annotated variable.

Fig. 1. The proof rules of V-Exp+Res.

clause is derived either by universal expansion (V-exp) or by resolution (res) from
clauses appearing earlier in the sequence.

3 Strategies

A PCNF formula can be interpreted as the specification of a game between
an existential and a universal player [31]. The game proceeds by the players
assigning values to their respective variables in turn, following the order of the
quantifier prefix. The goal of the universal player is to falsify the matrix, the
goal of the existential player is to satisfy the matrix. Strategies for either player
can be conveniently represented as binary trees.

Definition 1 (Strategy). Let & = Il.p be a PCNF formula. A (universal)
strategy for @ is a labeled, rooted binary tree with the following properties:

1. Leaf nodes are labeled with L, inner nodes are labeled with variables of @, and
edges are labeled with 0 or 1.

2. Nodes labeled with existential variables have exactly two child nodes, and nodes
labeled with universal variables have a single child node. Moreover, edges lead-
ing to distinct child nodes have distinct labels.

3. The sequence of variables encountered as labels on any path from the root to
a leaf follows the order < of variables in the quantifier prefix.

A strategy P for & is complete if each path from the root of P to a leaf contains
all variables of @. Fach path from the root to a leaf of a strategy induces a truth
assignment in the obvious way. A strategy P is a (universal) winning strategy
for @ if every such assignment falsifies the matriz ¢.

We write P = Str(v, P~, PT) for a strategy P with root labeled by variable v
and principal subtrees P~ and P* such that the edge to the root of P~ is labeled
with 0 and the edge to the root of P is labeled with 1. We use ) to denote the
“empty” strategy and write P = Str(v,0, PT) and P = Str(v, P~,() to denote
strategies with root nodes that only have a 1-child and a 0-child, respectively.
In the next section, we will associate each clause C' in a V-Exp+Res proof
with a strategy P. For clauses C derived by the V-exp rule with assignment 7,
the corresponding strategy simply sets the universal variables according to 7.
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Definition 2. Let & = Il.p be a PCNF formula and 7 an assignment of the
universal variables of ®. We define ConstStrat(II,7) as the complete strategy
for @ where each assignment is consistent with T.

0o "l 4

/\
Example 1. The figure to the right shows the strategy U U
computed by ConstStrat(3z1VuIze, ~u). The tree 0 0
encodes the assignments {0/x1,0/u,0/z2}, {0/21, O/xz\l sz\l

0/u,1/xa}, {1/21,0/u,0/x2}, {1/21,0/u,1/xo} falsifying u. | 1 1 1

4 Local Soundness

We present a local soundness argument for V-Exp+Res using strategies. To this
end, we will define a Combine operator that joins strategies along a deriva-
tion [33]. For each derived clause C, we will show that the strategy created for
this clause by the Combine operator satisfies a propositional invariant obtained
from C'. Here, by a strategy Psatisfying a formula 1 we mean that every assign-
ment consistent with P satisfies 1), which we will write as P = .2 In this
notation, we will show that

P = enc(C) = —p,

where ¢ denotes the matrix and enc(C') translates the clause C back into a
formula over the original variables of the QBF as

enc(C) = /\ ( /\ u) = ;.

ac:’ cC u€ET;

The invariant enc(C') = - can be understood by considering the evaluation
game: if the existential player responds to every universal play in an annotation
by setting the literal to false, the current strategy is winning for the universal
player. Ultimately, at the empty clause, enc(dJ) = 1 and the combined strategy
turns into a winning strategy.

4.1 Combine

We will now introduce the Combine operator that merges two strategies P and @
in a top-down manner and annotates each clause in a V-Exp+Res derivation
with a strategy. We write C' [P] for a clause C annotated with strategy P. The
definition of Combine as shown in Definition 4 is adapted from the definition of an
operator defined by Suda and Gleiss [33]. Since we work with complete strategy
trees (rather than partial strategies), the top-most variable remains equivalent
between two strategies when recursing on them in lock-step, so it is sufficient to

2 If the strategy P is identified with the disjunction of assignments induced by its
root-to-leaf paths, the relation P |= v coincides with propositional entailment.
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perform a case distinction on the top-most variable encountered in a strategy.
Moreover, our definition of Combine is tailored to V-Exp+Res.

Clauses derived by (V-exp) are annotated with the strategy ConstStrat(II,7)
that plays the assignment 7. For the (res) rule we have the following cases:

— The top-most variable, say w, is universal:

o If the outgoing edge of u (lit(u), see Definition 3 below) differs from the
annotation 7(u) of the pivot in at least one of P and @, we select the
strategy that differs.

o If lit(u) equals the annotation 7(u) of the pivot in both P and @, we recurse.

— The top-most variable, say x, is existential:

e If z is the pivot of the inference rule, we combine the two strategies.
e If z is not the pivot, we recurse.

The base cases are when a universal edge differs, or we reach the pivot.

Definition 3 (lit). We define lit as the partial function mapping universal strat-
egy nodes to the literal they represent, based on their (unique) child node.

[ it P =Str(u, P, 0)
lit(P) = { u if P = Str(u,0, P)

Definition 4 (Combine). We define Combine as a function from two strate-

gies, P and @, and an annotated variable x™ to a new strategy inductively on a

V-Exp+Res derivation in Fig. 2. We write Combine in infix notation as PUQ.
o

Note that in the case where both lit(P) # I and lit(Q) # [ there is freedom of
which strategy out of P and @ to select. We will use the variant selecting P.
Ezxample 1. We introduce our running example and use it to demonstrate the
combination of two strategies via Combine in Fig. 3.

Theorem 1. Let C' be a clause derived by V-Exp+Res and P be the correspond-
ing strategy annotation computed by Combine. Then P = enc(C) = —p.

Proof. By induction on the V-Exp+Res derivation.

Base case. The base case corresponds to the V-exp rule.
(V-exp)

C7 [P € ConstStrat(I1, 7)]

We need to show that P |= enc(C™) = —p. From the definition of ConstStrat
we know that P satisfies all universal literals in enc(C7) following the assign-
ments determined by 7. P similarly satisfies the literals in the corresponding
negated clause ~C' in —p, making both remaining formulas over the existential
variables equivalent. The negated matrix —p is weaker than just =C, thus the
implication holds.
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For a (V-exp) inference

V-
O [ConstStrat(1L, 7)) o)

For a (res) rule with pivot z”

[P] CiVv—-z" CyVva™ [Q]
C1VCsy [Pl_ﬂl_Q]

(res)

Top-most variable is universal:
Then P € {Str(u, P~,0), Str(u, 0, P},
and Q € {Str(u,Q,0),Str(u,0,Q")}, and I € {u, ~u}.

if € 7, and lit(P) # 1 PLQ =p

if 1 € 7, and lit(Q) # P;|_|TQ 0

ifler, and lit(P) =1it(Q) =1 o= 7—{I}
~ifl=u PUQ = Str(u,0, PTUQY)
—ifl=-u PUQ = Str(u, P~ UQ",0)

Top-most variable is existential:
if 7 ={}, P=Str(z,P~,P")

and Q = Str(z,Q~, Q") PUQ = Str(z,Q ™, PT)
if y # x, P = Str(y, P~, P")
and Q = Str(y,Q ™, Q") PUQ ¥ Str(y, P~ UQ™, PTUQ")

Fig. 2. Combine defined inductively along a V-Exp+Res derivation.

Induction Step. For a resolution rule with strategy annotations P, () and the
combination of P and @, i.e. PUQ
"L‘T

[P] Cl vV —x” C2 VT [Q]
C1 Vv Cy [PUQ]

(res)

we need to show that

PEenc(CyV-zT)= -y
and Q kFEenc(CaVva) =g
implies PUQ Eenc(Cy vV C2) = —p

Let m be an arbitrary complete assignment determined by strategy PUQ.
o

We need to show that 7 = enc(C} V C2) = —¢ given the induction hypothesis.
By case distinction:
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Consider annotated clauses C1 V-zy* [P]

and Cs V x5! [Q]. The strategies P and

@ and their combination along the res- o Ty o Ty

olution with pivot z3*, i.e., P IEIIQ are
x

2
depicted to the right. Combine proceeds
recursively—top-down—along the trees /N AN /\ /\
P and Q. At level z1, we simply re- 11 1o ol 11 ol 11 11 o
curse and proceed by combining the sub- 1L 1 1L 1 N
strategies along the paths 0/z1 and 1/z1 s
from P and @ because x is not the pivot.
On the path along 0/z1 we detect that z
0/uq in P differs from the pivot’s annota- P
tion 1/u1 and we select the sub-strategy ol "1
anchored in u; from P. On the path along 01 %4
1/x1 the annotation for u; matches with N N\
the values in P and @ and we continue to 1u‘2 u‘zo 1u‘2 ufi
level x2, which is the pivot. We select the L L 1L 1
sub-strategy starting in 0/z2 from @ and
the sub-strategy starting in 1/z5 from P P Tlﬂll Q@
and are done. 2

Fig. 3. An application of Combine.

1. If w j~ enc(Cy Vv C3) the implication is true and we are done.
2. If 7 = enc(Cy V C3) we have two cases:
(a) 7~ Ayey u (m differs from the assignment determined by 7):
Let us assume, w.l.o.g., that 7 is from P, then we have the following
induction hypothesis:

ﬂ):enc(Cl)/\</\u:>x>:>—mp.

ueT

Since we are in case m = enc(Cy V C3), by the definition of enc we know
that m = enc(C1). Furthermore we know that 7 [~ A ., u satisfying the
left-hand side of the outer implication, thus m must satisfy —¢ for the IH
to be valid. Since, in this case the Combine operator evaluates to P and
7 is from P, P |=enc(Cy V Cs) = —p is valid.
(b) 7= Aueru (7 equals the assignment determined by 7):

Again, since we are in case m |= enc(Cy V C3), by the definition of enc
we know that 7 = enc(Cy) and 7 |= enc(Cs). We also know that 7 |
Aucrt, so when © € P the IH simplifies to 7 = 2 = —¢. Similarly
the TH simplifies to 7 = -z = —¢ for 7 € Q. Assume z = 1, then
P |= —~¢. When we assume x = 0, then @ |= —¢. In either case, because
we assume the IH to be true, we know —¢ needs to be true. Combine
chooses the respective paths in P and ) and combines them so that
Str(z,Q~, PT) = enc(Cy vV C3) = —p is valid. 0
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Remark on the Curry-Howard correspondence established by Theorem 1:

— We relate the clauses of a V-Exp+Res-proof and the extracted strategies: P |=
enc(C) = — signifies that the strategy P is a witness for the validity of the
QBF formula IT.enc(C) = —p.

— We relate the rules of a V-Exp+Res-proof to strategy construction operators:
For an expansion-axiom with regard to an assignment 7, the strategy is given
by ConstStrat(I7, 7). For a resolution step, the strategy is obtained by applying
the Combine operator on the strategies for the parent nodes.

5 Implementing Strategies Using Circuits

The strategies we have introduced in the previous section have size exponential in
the number of existential variables in the quantifier prefix. Thus, it is impractical
to consider strategy extraction using such a data structure. Instead, we will now
demonstrate how we can implement the Combine operator on circuits. We will
show how we can construct the circuit for n output variables in such a way
that the size of the circuit is in the order of O(p - n), where p is the proof
length (number of clauses). This size is asymptotically optimal when constructing
circuits locally along the proof derivation for n variables, considering that each
inference can potentially manipulate each circuit.

5.1 Circuit Construction

We begin by introducing a number of auxiliary circuits. In the following let L,
R, and B (short for “left”, “right”, and “bottom”, according to their respective
positions in the inference rule) be tuples of circuits and let y be the input
variables. We write f,,, for the circuit with output w; for f € {L, R, B}.

Definition 5 (Equiv). We define the circuits Equivfi for f € {L,R}. These
circuits decide if all f,,, evaluate to T(u;) up to level i, given input y:

Equivi'(y) £ 1 and Equivi'(y) = Equivi' ™ (y) A fu,_, (y) & 7(ui1)

Next we define the circuits DiffiL and DifFZR using Equiv. The purpose of the
Diff circuits is to choose one of L and R simulating the case of Combine when
one of the strategies differs from 7 at a universal edge. We need to consistently
select the function values from either L or R starting from some index ¢ for all
subsequent outputs u; with j > i.

Definition 6 (Diff). We define the circuits DiffiLA and D.ifflé symmetrically to
each other. We informally describe the circuit Diff% : Diff} is true, given input
y, if there has been a difference between an Ly, and 7(u;) for j < i and when
there has been no difference between R, and 7(uy) for k < j. Formally:

Diff} (y) £ 0 and Diff’ (y) = Diff. (y) V (Equivy (y) A Lo, (y) @ 7(u;))
Diff%(y) = 0 and Diffiy(y) = Diffi; ' (y) V (Equivi’(y) A Ry, (y) ® 7(us))
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Proposition 1. Let f € {L, R} be either the left or right circuit and let g €
{L, R} —{f} be the opposite one. Once it has been established that Diff% is true,

we know that Ding cannot turn true for j > i if it has not been true already at .
Formally,

Diff’ (y) A —Diff} () = —Diff (y),
for j > is a tautology.

Proof. Assume that f = L and g = R, with the other case symmetric. It is clear
that when Diff’ (y) is true, Equiv;’(y) must be false for j > i. When Equiv;’ (y)

is false, we know that Diff}, will remain false, if DifFZé was false. a

Note that both Diff} and DifF}/ can be true at the same index 7. Namely, when
there is no difference up to some level j < i (Equivi’(y) = Equivy’(y) = 1) but
both Ly, (y) # 7(u;) and Ry, (y) # 7(u;). In this case we have the same freedom
as in Combine when both lit(P) and lit(Q) differ from 7.

Definition 7 (Circuit extraction for V-Exp+Res). Let R be a V-Exp+Res
proof. The circuit extraction Cir(u;) for output u; maps vertices in R to circuits
as defined in Fig. 4—with the circuits Comb,,, defined as follows.

Let o € {A,V}. For u; < x we define

Comb;, (y) = if Diff}, ' (y) then Ly, (y)
else if Diff}; ' (y) then Ry, (y)
else L, (y) o Ry, (y).

Let u,, be the mazimum universal variable with w,, < . For x < u;, we define

Comby,, (y, ) = if Diff7*(y) then L., (y,x)
else if Diffy (y) then Ry, (y,x)
else (mxV Ly, (y,2)) A (zV Ry, (y,x)).

Note that in the case when both Diff’ and Diff’, are true for 4, we prefer L (like
we have preferred the left strategy P in Combine), due to the order of appearance
in the if-then-else cascade.

Example 2. Consider again the strategies P and @ introduced in Example 1.
Strategy P encodes the circuits L., (z1) = x1 and L, (z1,22) = 1 & 2.
Strategy ) encodes the circuits R, (z1) = 1 and Ry, (x1,22) = 21 ® x2. We
will show that combining the circuits L and R results in circuits B encoded by
P %IIQ, ie. By, (x1) =1 and By, (z1,22) = 21 V .

x

2

We will demonstrate that our circuit construction yields the same circuits:
For B,, we are in the case u; < zo and Diff} and Diff are false by definition,
© = A because the annotation u; of the pivot is 1 so Definition 7 evaluates to

By, (x1) = if Diff) (1) then z;
else if Diff%(z;) then 1

else r1 A1
:Il/\lzl‘l.
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For a (V-exp) inference

— (V-e —— (V-e
C—*uie-r [0} ( Xp) Cm,;ET [1] ( Xp)
For a (res) rule with pivot z”
[Lui] CiV—-zxT CoVvaz™ [Rui}
(res)

C1V Oy [Bu,;]

if u; <z, and —u; € T By, = Comby, (y)
def

if o < u; B., = Comby,(y, z)
ifu; <z, and u; € 7 By, Lo Comby,, (y)

Fig. 4. Circuit extraction for V-Exp+Res proofs.

For B,, we are in case = < ug, and u; is the maximum u; < x so we have

By, (z1,22) = if DifflL(xl) then =1 & x9
else if Diffp(x1) then z; @ zy
else (mxo V(21 & 22)) A (22 V (21 D 22)).

Diff} (1) evaluates to Ly, (1) ® 7(u1) = 2, ® 1 = —z; indicating a difference in
L when z7 = 0 leading us to choose the “if-then” branch: 0 < x5, which is true
when x5 = 0. Diff (1) evaluates to Ry, (z1) ® 7(u1) = 1 ® 1 = 0 indicating no
difference in R. So when xy = 1, we reach the “else” branch, which evaluates
to 1 for both 3 = 0 and x5 = 1. Overall, we know that only the assignment
1 = 0,9 = 1 makes B, false, thus we determine that B, (z1,z2) = x1 V —xa.

5.2 Correctness and Running Time

Lemma 1. Let P and Q be strategies and let L and R be families of circuits
representing P and Q, respectively. Then the family B of circuits as specified
in Definition 7 represents PUQ.

-

Proof (Sketch). When a function value for an output differs from the annotation
in circuit L we select the circuits from L for all consecutive outputs. While this
operation is implicit in Combine by selecting whole sub-trees of a strategy, we
need to make this operation explicit for each output in the circuit construction,
by looking at all preceding outputs, which we do in the Diff circuits.

If all preceding outputs equal the annotation, then we compute the new func-
tion value for the current output as a disjunction or conjunction, depending on
the assignment to the output in the annotation. This operation mimics Combine,
both in selecting the differing edge, if an edge differs, and keeping the equivalent
edge, if both function values equal the annotation.
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The case where we reach the pivot variable in Combine and select sub-
strategies from both input strategies, again needs to be made explicit in the
circuit construction: We need to check that we are in this case, by inspecting
whether one of the preceding outputs differs, like described above. However, we
need to check only the outputs up to the level of the pivot variable. Beyond that,
the selection of the sub-strategies at the pivot needs to be simulated, which we
do by adding a multiplexer with the pivot being the selector input.

The case where the top-most existential variable differs from the pivot in
Combine and we recurse is implicit in the circuit construction: The function val-
ues depend on these variables, but we do not need to handle existential variables
beyond the multiplexer construction.

The case where we recurse in Combine when both universal edges adhere
to the annotation is implicit in the circuit construction as well: it amounts to
iterative computation of the functions according to the quantifier level. a

Lemma 2. Given a V-Exp+Res derivation of length p from a PCNF formula ®
with n universal variables, the circuits as defined in Definition 7 can be computed
in time O(p - n).

Proof. For each output u;, we need a circuit DifFiLfl. To compute that circuit
we reuse the circuits computing Equivéif1 and Difffz, which we have already
computed for u;_1, so for output u; we only have to add the checks R,, , &
7(u;—1) and Ly, , ®7(u;—1) of constant size, and gates connecting these circuits,
also of constant size. Thus, the number of gates of the Diffy, circuits for all n
outputs is in the order of O(n). The same analysis applies to the Diff g circuits,
adding another O(n). The if-then-else cascade adds another constant, but the
overall circuit complexity at a proof node remains O(n). Thus, overall we have
a circuit size and running time of O(p - n). O

In combination with Theorem 1, the preceding lemmas imply the following.

Theorem 2. Given aV-Exp+Res derivation of length p from a PCNF formula ®
with n universal variables, a family of circuits implementing a universal winning
strategy for @ can be computed in time O(p - n).

Similarity to Craig Interpolation. When the circuit has a single output, note that
the Diff circuits are always false and we only use the “else” branches. In this case,
our system resembles a symmetric Craig interpolation system, cf. [19,24,28].

6 Circuit Extraction for QParity

We demonstrate our strategy extraction algorithm with the QPARITY formulas.
Each formula QPARITY,, has a single universal variable with the parity function
on n variables as the unique universal winning strategy. Since Q-resolution proofs
can be efficiently turned into bounded-depth circuits computing a universal win-
ning strategy, QPARITY is known to be hard for Q-resolution [6]. At the same
time, it has short (even tree-like) V-Exp+Res proofs, and our strategy extraction
algorithm obtains a small circuit representing the n-bit parity function.
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Ezample 8 (QPARITY). The formula QPARITY says that there exists an assign-
ment of x1,...,x, such that u # z1; ® - - - ® x,, for all assignments of u. Clearly,
this formula is false, and the (unique) winning strategy for the universal player
is to assign u = z1 ® --- ® x,,. A PCNF encoding is obtained by introducing
auxiliary variables satisfying y; < @;:1 x; as follows:

QPARITY,, := 3z ... 2,Yu3yo - . . Yn-(—%0) A (U & yn) A /\(yl < (Yim1 B x4))
i=1

The biconditional u < y,, yields the clauses (—u V —y,) and (u V y,), and each
formula (y; < (yi—1 ®x;)) translates to clauses (—y;—1Va; Vy;), (Yi—1V -z Vy:),
(yi—1Va;V-y;), and (—y;—1 V-x; V-y;). Beyersdorff et al. show how to construct
short tree-like proofs for QPARITY in V-Exp+Res [4, Theorem 2]. We illustrate
their construction for the case n = 2. By expanding the universal variable u
(applying the V-exp rule), we obtain the following initial clauses:

(Wo “w1y™) A (Yo ~r1yr’) A (Y w2y ™) A (yi 22y ) A (Yo “—z1yr™)

C] Cz C3 C4 CS
A (Yor1=y1) A (2 —~wa—ye ™) A (myi'zeys ) A (2wo) A (m90™) A (y2*) A (my3)
e N N N~
Cs Cr Cyg Cy Cho C1i1 Ci2

A resolution refutation completing the V-Exp+Res proof is shown in Fig. 5, where
each clause is annotated with the circuit computed for w according to Def. 7.
The empty clause is annotated (z1 V x2) A (mx1 V —29) = 21 @ x2, which is a
winning strategy.

[o]C:  C2[t]  [0]Cs  Caf1] (0] C5  Ce [1] [0] C7  Cs[1]

N N N ~

[z1] o yo—y "yt yrtyr w2ty [z2]  [bwa] wotvoy Myt —y oyl oy s [

[1 V2] Yo Yoyt ~y2 ‘Y2 Yo Yo Y Ty My [Cxn V nag)
(1 Vx2) A (mz1 V —x2)] yo yo—y2"ys  Co [1] Cio [0] Cu1 [0] Ci2 [1]
:L'1 Vv ZL'2 —\331 V _‘x2

Fig. 5. V-Exp+Res proof of QPARITY,. We compress the last proof steps since they do
not affect the extracted circuit—either we add a conjunction with 1 or a disjunction
with 0.
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7 Related Work

Suda and Gleiss present a local soundness argument for several resolution-based
QBF calculi, including a generalization of V-Exp+Res [33]. They interpret clauses
derived in these systems as abstractions of partial strategies (a partial strategy
does not need to be defined for all moves of the existential player), and show that
resolution can be understood in terms of combining partial strategies. Sound-
ness of a proof system is obtained by showing that partial strategies with the
premises of a resolution step as their abstractions result in a partial strategy that
abstracts to the resolvent. The statement that the partial strategy constructed
at a particular node of a proof DAG abstracts to the clause derived at that
node is proved only indirectly, through observing that there are simple partial
strategies abstracting to initial clauses.

By contrast, we define a syntactic weakening of the matrix for each node
in the proof DAG and show that the strategy extracted at that node satisfies
the weakened matrix. Moreover, we manipulate complete strategies, which are
defined for all moves of the existential player. We believe that our use of complete
strategies and an explicit syntactic construction offer a considerably simpler and
clearer local soundness argument for V-Exp+Res.

A correspondence between Q-resolution proofs and strategies was first
observed by Goultiaeva et al. [15] and later extended to long-distance Q-
resolution by Egly et al. [12]. Balabanov and Jiang [2] present a linear-time
strategy extraction algorithm for Q-resolution that was generalized to long-
distance Q-resolution by Balabanov et al. [3]. Beyersdorff et al. [5] prove a corre-
spondence between strategies and proofs in IRM-calc, a system that generalizes
V-Exp+Res. The notion that efficient extraction of winning moves from proofs
leads to polynomial-time strategy extraction is folklore. Peitl et al. [27] give
an explicit construction for Q-resolution with a dependency scheme. Chew and
Clymo [11] provide a general argument for QBF proof systems that combine
a propositional proof system with universal expansion. Surprisingly, they also
identify feasible interpolation of the underlying propositional proof system (i.e,
the property that interpolants can be computed from refutation proofs in poly-
nomial time [24]) as a necessary condition for such systems to have polynomial-
time strategy extraction. They further show that the QRAT proof system does
not have polynomial-time strategy extraction unless P=PSPACE. By contrast,
Heule et al. [16] proved that the (almost) dual proof system for true formulas
does have polynomial-time strategy extraction.

Jiang et al. [23] synthesize Boolean functions with a single output using
propositional Craig interpolation [19,24,28]. Given a Boolean relation ¢
B" x B — B, the authors of [23] derive a circuit f(z) such that Ve.Ju.o(x,u) =
Va.p(x, f(x)) holds. They derive a resolution refutation from Va.3u.o(x,u) by
negating it first and then expanding the universal quantifier to obtain an unsat-
isfiable CNF instance —¢(x,0) A —p(x, 1), which is then split into two partitions

def

A% = —p(x,0) and B* = —p(x,1). An interpolant I(z) for these partitions
satisfies (A™* — I) and (B* — —1I), hence the circuit f(z) = I(x) yields 1 if
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—p(x,0) and 0 if —p(x, 1), satisfying the requirement above. I(x) is obtained
by annotating all clauses C' in the resolution refutation by partial interpolants
Io, where Io £ 0if C € A™, Ic £ 1if C € B*, and I, = (zV I}) A (mz V Iy) if
C' is the result of a resolution of C7 and C5 with partial interpolants I; and I5,
respectively, on the pivot literal x.

The construction of the partitions A™ and B* in [23] is analogous to QBF
Expansion, and propositional interpolation is a (less general) version of the cir-
cuit extraction in Fig.4. Consequently, [23] can be seen as a special case of our
framework that is limited to a single universally quantified variable. In fact, [23]
proposes an iterative approach to deal with multiple outputs (universal quanti-
fiers, respectively), requiring the repeated construction of refutations and inter-
polants and the substitution of outputs one at a time.

Hofferek et al. [17] extend the approach of Jiang et al. [23] to n universally
quantified Boolean variables by (syntactically) expanding the quantified formula
into 2™ partitions and adapting the interpolation system to multiple partitions
accordingly. Their approach targets the theory of uninterpreted functions with
equality, which is a more expressive logic, but is limited to V3V-prefixes and
imposes an order on the resolution steps in the propositional part of the refuta-
tion.

Beyersdorft et al. [7] present a feasible interpolation technique for the cal-
culi LQU'-Res and IRM-calc. Their approach is restricted to instances of the
form 3p.Qq.Qr.A(p,q) A B(p,r) (where g and r can be quantified arbitrar-
ily) and yields an interpolant I(p). They show that for instances of the form
IpVu.Qq.Qr.(A(p,q) Vu) A(B(p,r)V —u) the resulting interpolant I(p) repre-
sents a strategy for instantiating «. While this approach extends Jiang et al. [23]
to arbitarily quantified partitions, it is still limited to a single output w.

8 Conclusion

We presented a polynomial-time strategy extraction algorithm for V-Exp+Res
with a running time that is multi-linear in the number of universal variables
and resolution steps in the proof. It is based on a local soundness argument
showing that each intermediate strategy constructed for a derived clause satisfies
a propositional invariant obtained from that clause. This invariant translates
annotated literals back to the vocabulary of the original formula and gives them
a clear semantics based on the evaluation game: if the existential player responds
to the universal play in the annotation by setting the literal to false, the current
strategy is winning for the universal player. We believe that this idea can be
extended to more general proof systems such as IRM-calc [5]. Moreover, our
interpretation of annotated clauses in terms of the original variables may open
up new ways of integrating search-based (QCDCL) solvers with expansion.
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